Displaying publications 41 - 60 of 77 in total

Abstract:
Sort:
  1. Iranpour F, Merican AM, Teo SH, Cobb JP, Amis AA
    Knee, 2017 Jun;24(3):555-563.
    PMID: 28330756 DOI: 10.1016/j.knee.2017.01.011
    BACKGROUND: Patellofemoral instability is a major cause of anterior knee pain. The aim of this study was to examine how the medial and lateral stability of the patellofemoral joint in the normal knee changes with knee flexion and measure its relationship to differences in femoral trochlear geometry.

    METHODS: Twelve fresh-frozen cadaveric knees were used. Five components of the quadriceps and the iliotibial band were loaded physiologically with 175N and 30N, respectively. The force required to displace the patella 10mm laterally and medially at 0°, 20°, 30°, 60° and 90° knee flexion was measured. Patellofemoral contact points at these knee flexion angles were marked. The trochlea cartilage geometry at these flexion angles was visualized by Computed Tomography imaging of the femora in air with no overlying tissue. The sulcus, medial and lateral facet angles were measured. The facet angles were measured relative to the posterior condylar datum.

    RESULTS: The lateral facet slope decreased progressively with flexion from 23°±3° (mean±S.D.) at 0° to 17±5° at 90°. While the medial facet angle increased progressively from 8°±8° to 36°±9° between 0° and 90°. Patellar lateral stability varied from 96±22N at 0°, to 77±23N at 20°, then to 101±27N at 90° knee flexion. Medial stability varied from 74±20N at 0° to 170±21N at 90°. There were significant correlations between the sulcus angle and the medial facet angle with medial stability (r=0.78, p<0.0001).

    CONCLUSIONS: These results provide objective evidence relating the changes of femoral profile geometry with knee flexion to patellofemoral stability.

    Matched MeSH terms: Cartilage, Articular/physiology
  2. Hong-Seng G, Sayuti KA, Karim AH
    Biomed Mater Eng, 2017;28(2):75-85.
    PMID: 28372262 DOI: 10.3233/BME-171658
    BACKGROUND: Existing knee cartilage segmentation methods have reported several technical drawbacks. In essence, graph cuts remains highly susceptible to image noise despite extended research interest; active shape model is often constraint by the selection of training data while shortest path have demonstrated shortcut problem in the presence of weak boundary, which is a common problem in medical images.

    OBJECTIVES: The aims of this study is to investigate the capability of random walks as knee cartilage segmentation method.

    METHODS: Experts would scribble on knee cartilage image to initialize random walks segmentation. Then, reproducibility of the method is assessed against manual segmentation by using Dice Similarity Index. The evaluation consists of normal cartilage and diseased cartilage sections which is divided into whole and single cartilage categories.

    RESULTS: A total of 15 normal images and 10 osteoarthritic images were included. The results showed that random walks method has demonstrated high reproducibility in both normal cartilage (observer 1: 0.83±0.028 and observer 2: 0.82±0.026) and osteoarthritic cartilage (observer 1: 0.80±0.069 and observer 2: 0.83±0.029). Besides, results from both experts were found to be consistent with each other, suggesting the inter-observer variation is insignificant (Normal: P=0.21; Diseased: P=0.15).

    CONCLUSION: The proposed segmentation model has overcame technical problems reported by existing semi-automated techniques and demonstrated highly reproducible and consistent results against manual segmentation method.

    Matched MeSH terms: Cartilage, Articular/pathology
  3. Wan Osman WN, Lau SF, Mohamed S
    Phytother Res, 2017 Dec;31(12):1954-1961.
    PMID: 29067744 DOI: 10.1002/ptr.5949
    The effect of scopoletin-standardized Morinda elliptica leaf extract against osteoarthritis was investigated in ex vivo explant culture and preclinical rodent model. Thirty male rats were grouped (n = 6) into untreated osteoarthritis (OA), OA + Diclofenac (5 mg/kg), and OA + extract (200 and 400 mg/kg) and compared with healthy control. Monosodium iodoacetate were injected into the right intra-articular knee joints to induce OA. The rats were evaluated for OA severity via physical (micro-CT and histological observations), biochemical, ELISA, and mRNA expression analysis (for inflammation and cartilage degradation biomarkers), after 28 days of treatment. The extract suppressed glycosaminoglycan release from the cartilage explant in the presence of Interleukin-1β. The 200 mg/kg dose appeared better than 400 mg/kg dose, at reducing cartilage and subchondral bone erosions in OA-induced rats, by significantly down-regulating the collagenases and aggrecanase. The extract dose-dependently reduced serum inflammation biomarkers and increased bone formation biomarkers to near normal levels in the OA-induced rats. M. elliptica leaf scopoletin-standardised extract alleviated OA progression and articular cartilage structure, by ameliorating cartilage degradation, nitric oxide levels, inflammation, bone /cartilage homeostasis, collagenase/aggrecanase activities, chondrocytes survival, subchondral bone structure and integrity.
    Matched MeSH terms: Cartilage, Articular/drug effects*
  4. Saw KY, Hussin P, Loke SC, Azam M, Chen HC, Tay YG, et al.
    Arthroscopy, 2009 Dec;25(12):1391-400.
    PMID: 19962065 DOI: 10.1016/j.arthro.2009.07.011
    PURPOSE: The purpose of the study was to determine whether postoperative intra-articular injections of autologous marrow aspirate (MA) and hyaluronic acid (HA) after subchondral drilling resulted in better cartilage repair as assessed histologically by Gill scoring.
    METHODS: In a goat model we created a 4-mm full-thickness articular cartilage defect in the stifle joint (equivalent to 1.6 cm in the human knee) and conducted subchondral drilling. The animals were divided into 3 groups: group A (control), no injections; group B (HA), weekly injection of 1 mL of sodium hyaluronate for 3 weeks; and group C (HA + MA), similar to group B but with 2 mL of autologous MA in addition to HA. MA was obtained by bone marrow aspiration, centrifuged, and divided into aliquots for cryopreservation. Fifteen animals were equally divided between the groups and sacrificed 24 weeks after surgery, when the joint was harvested, examined macroscopically and histologically.
    RESULTS: Of the 15 animals, 2 from group A had died of non-surgery-related complications and 1 from group C was excluded because of a joint infection. In group A the repair constituted mainly scar tissue, whereas in group B there was less scar tissue, with small amounts of proteoglycan and type II collagen at the osteochondral junction. In contrast, repair cartilage from group C animals showed almost complete coverage of the defect with evidence of hyaline cartilage regeneration. Histology assessed by Gill scoring was significantly better in group C with 1-way analysis of variance yielding an F statistic of 10.611 with a P value of .004, which was highly significant.
    CONCLUSIONS: Postoperative intra-articular injections of autologous MA in combination with HA after subchondral drilling resulted in better cartilage repair as assessed histologically by Gill scoring in a goat model.
    CLINICAL RELEVANCE: After arthroscopic subchondral drilling, this novel technique may result in better articular cartilage regeneration.
    Matched MeSH terms: Cartilage, Articular/cytology; Cartilage, Articular/drug effects; Cartilage, Articular/physiology*
  5. Dashtdar H, Rothan HA, Tay T, Ahmad RE, Ali R, Tay LX, et al.
    J Orthop Res, 2011 Sep;29(9):1336-42.
    PMID: 21445989 DOI: 10.1002/jor.21413
    Chondrogenic differentiated mesenchymal stem cells (CMSCs) have been shown to produce superior chondrogenic expression markers in vitro. However, the use of these cells in vivo has not been fully explored. In this study, in vivo assessment of cartilage repair potential between allogenic-derived chondrogenic pre-differentiated mesenchymal stem cells and undifferentiated MSCs (MSCs) were compared. Bilateral full thickness cartilage defects were created on the medial femoral condyles of 12 rabbits (n = 12). Rabbits were divided into two groups. In one group, the defects in the right knees were repaired using alginate encapsulated MSCs while in the second group, CMSCs were used. The animals were sacrificed and the repaired and control knees were assessed at 3 and 6 months after implantation. Quantitative analysis was performed by measuring the Glycosaminoglycans (GAGs)/total protein content. The mean Brittberg score was higher in the transplanted knees as compared to the untreated knee at 6 months (p  0.05). This study demonstrates that the use of either MSC or CMSC produced superior healing when compared to cartilage defects that were untreated. However, both cells produced comparable treatment outcomes.
    Matched MeSH terms: Cartilage, Articular/injuries; Cartilage, Articular/pathology*; Cartilage, Articular/surgery
  6. Duarte-Silva M, Guerra-Pinto F, Camelo-Barbosa N, Beja-da-Costa P
    Malays Orthop J, 2019 Jul;13(2):38-41.
    PMID: 31467650 DOI: 10.5704/MOJ.1907.007
    Meniscectomy is the most common surgery in orthopaedics. The absence of meniscal tissue might be related to irreversible damage to the articular cartilage. Meniscal replacement is a tissue-engineering technique for post-meniscectomy syndrome. Its success depends on the implant integration which was vastly proven in animal model studies. Histological evidence is hard to obtain in humans due to ethical issues. We report a clinical case in which a collagen scaffold meniscal implant was harvested six months after implantation due to mechanical failure. Histological analysis was performed revealing vascularisation not only of the peripheral attachment of the implant but also on the anterior horn. These morphologic findings demonstrate that this implant allows the colonisation by precursor cells and vessels, leading to the formation of a fully functional tissue. This present report is one of the few independent reports of scaffold biological integration in the literature.
    Matched MeSH terms: Cartilage, Articular
  7. Nurzazlin, B.Z.N., Shamsul, B.S., Yahya, N.H.M., Ruszymah, B.H.I., Abdul Rani, R., Chowdhury, S.R.
    Medicine & Health, 2018;13(1):77-87.
    MyJurnal
    Culture expanded chondrocytes isolated from non-load bearing region of osteoarthritic (OA) joint has been used to construct tissue engineered cartilage for treatment purposes. The aim of the study was to compare the histological properties of the cartilage tissue and morphological properties of the chondrocytes isolated from less and severely affected OA knee. Human articular cartilage was obtained as redundant tissue from consented patients with late-stage OA undergoing total knee replacement surgery at Universiti Kebangsaan Malaysia Medical Centre (UKMMC). Articular cartilage was graded according to Dougados and Osteoarthritis Research Society International (OARSI) classification. Articular cartilage was classified into less affected (LA; Grade 0-1) and severely affected (SA; Grade 2-3). Cartilage tissue from less and severely affected region was stained with Safranin O staining. Isolated chondrocytes from each group were cultured until passage 4 (P4). Their growth patterns, cell areas, and circularity were compared. LA-cartilage tissue shows uniform spread of safranin O staining indicating intact extracellular matrix (ECM) component. However, SA-cartilage shows significant reduction and unstable staining due to its degraded ECM. LA-chondrocytes showed an aggregated growth compared to SA-chondrocyte that remains monolayer. Moreover, LA-chondrocytes have significantly higher cell area with wider spreading at passage 0 and 4 compared to SA-chondrocytes. It was also found that chondrocyte circularity increased with passage, and circularity of LAchondrocytes was significantly higher than that of the SA-chondrocytes at passage 3. This study demonstrated the considerable difference in the cellular properties for less and severely affected chondrocytes and implication of these differences in cell-based therapy needed to be explored.
    Matched MeSH terms: Cartilage, Articular
  8. Khoo SS, Loi KW, Tan KT, Suhaeb AR, Simmrat S
    Malays Orthop J, 2015 Jul;9(2):57-59.
    PMID: 28435613 MyJurnal DOI: 10.5704/MOJ.1507.003
    Septic arthritis is a surgical emergency. Prompt diagnosis and immediate treatment reduce the destruction of articular cartilage and give better outcome. We describe a simple, minimally invasive closed tube irrigation system for the initial treatment of septic arthritis of the knee in a patient with complex medical problems who was unfit to undergo surgery.
    Matched MeSH terms: Cartilage, Articular
  9. Tay, L.X.
    JUMMEC, 2015;18(1):1-8.
    MyJurnal
    Osteoarthritis (OA) affects millions of people worldwide with its irreversible destruction of articular cartilage. Recently, the potential of using chondrogenic differentiated multipotent mesenchymal stromal cells (cMSCs) for OA treatment is being assessed. Preliminary clinical studies have been encouraging. However current studies have also demonstrated that cMSCs are not biochemically and biomechanically identical to native articular chondrocytes (ACs). Thus, there is an urgent need for the implementation of proteomic applications as proteomics involve protein identification, relative quantification of proteins and studies of post-translational modification which reveal novel regulating processes of complex mechanisms such as in chondrogenesis. A comprehensive understanding of chondrogenesis is essential for the establishment of an effective cMSC model to regenerate cartilage. In this article, we will review current proteomic studies on chondrogenesis, focusing on recent findings and the proteomic approaches utilised.
    Matched MeSH terms: Cartilage, Articular
  10. Hani AF, Kumar D, Malik AS, Walter N, Razak R, Kiflie A
    Acad Radiol, 2015 Jan;22(1):93-104.
    PMID: 25481518 DOI: 10.1016/j.acra.2014.08.008
    Quantitative assessment of knee articular cartilage (AC) morphology using magnetic resonance (MR) imaging requires an accurate segmentation and 3D reconstruction. However, automatic AC segmentation and 3D reconstruction from hydrogen-based MR images alone is challenging because of inhomogeneous intensities, shape irregularity, and low contrast existing in the cartilage region. Thus, the objective of this research was to provide an insight into morphologic assessment of AC using multilevel data processing of multinuclear ((23)Na and (1)H) MR knee images.
    Matched MeSH terms: Cartilage, Articular/anatomy & histology*; Cartilage, Articular/metabolism*
  11. Tay LX, Ahmad RE, Dashtdar H, Tay KW, Masjuddin T, Ab-Rahim S, et al.
    Am J Sports Med, 2012 Jan;40(1):83-90.
    PMID: 21917609 DOI: 10.1177/0363546511420819
    Mesenchymal stem cells (MSCs) represent a promising alternative form of cell-based therapy for cartilage injury. However, the capacity of MSCs for chondrogenesis has not been fully explored. In particular, there is presently a lack of studies comparing the effectiveness of MSCs to conventional autologous chondrocyte (autoC) treatment for regeneration of full-thickness cartilage defects in vivo.
    Matched MeSH terms: Cartilage, Articular/injuries*; Cartilage, Articular/surgery*
  12. Moktar NM, Yusof HM, Yahaya NH, Muhamad R, Das S
    Clin Ter, 2010;161(1):25-8.
    PMID: 20393674
    AIMS: The mRNA level for interleukin-6 (IL-6) is an important marker of osteoarthritis (OA). The present study aimed to investigate the level of IL-6 mRNA in the cartilage of OA knee while comparing it to the normal cartilage obtained from the same patient.
    MATERIALS AND METHODS: A total of 21 patients who underwent total knee replacement were recruited for this study. Sectioning of the destructive cartilage was performed in the medial part of the proximal tibiofemoral cartilage. The unaffected lateral part of the knee in the same patient, served as a control. The mRNA level for IL-6 was assessed using LightCycler 2.0 quantitative real-time polymerase chain reaction (qRT-PCR). actin mRNA was used as an endogenous control.
    RESULTS: Twelve out of 21 patients (57.1%) exhibited up regulation of IL-6 mRNA in the OA cartilage as compared to the normal cartilage. The rest of the patients (42.9%) showed down regulation of IL-6 mRNA. The statistical analysis showed there was insignificant level of IL-6 mRNA in the OA (1.91 +/- 0.45) as compared to the normal cartilage (1.13 +/- 0.44) (p > 0.05). The inter-individual variation in the level of IL-6 mRNA in the cartilage of idiopathic knee was in accordance with previous findings.
    CONCLUSIONS: These observations suggest IL-6 could also act as a catabolic agent in some patients or its expression might be influenced by other cytokines.
    Study site: Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM), Kuala Lumpur, Malaysia
    Matched MeSH terms: Cartilage, Articular/metabolism*; Cartilage, Articular/pathology
  13. Rasit AH, Sharaf I, Pan KL
    Med J Malaysia, 2004 Dec;59 Suppl F:52-3.
    PMID: 15941163
    Sleeve fracture of the inferior pole of the patella is a rare and distinctive fracture in children with few published reports. These fractures are frequently misdiagnosed and neglected. We highlight a case of a neglected and misdiagnosed sleeve fracture of the patella in an eleven-year-old boy. This was initially diagnosed as an avulsion fracture of the tibial tubercle. A good outcome was achieved after open reduction and internal fixation.
    Matched MeSH terms: Cartilage, Articular/injuries*; Cartilage, Articular/surgery
  14. Choi JR, Yong KW, Choi JY
    J Cell Physiol, 2018 Mar;233(3):1913-1928.
    PMID: 28542924 DOI: 10.1002/jcp.26018
    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair.
    Matched MeSH terms: Cartilage, Articular/cytology; Cartilage, Articular/injuries*
  15. Ude CC, Ng MH, Chen CH, Htwe O, Amaramalar NS, Hassan S, et al.
    Osteoarthritis Cartilage, 2015 Aug;23(8):1294-306.
    PMID: 25887366 DOI: 10.1016/j.joca.2015.04.003
    OBJECTIVES: Our previous studies on osteoarthritis (OA) revealed positive outcome after chondrogenically induced cells treatment. Presently, the functional improvements of these treated OA knee joints were quantified followed by evaluation of the mechanical properties of the engineered cartilages.
    METHODS: Baseline electromyogram (EMGs) were conducted at week 0 (pre-OA), on the locomotory muscles of nine un-castrated male sheep (Siamese long tail cross) divided into controls, adipose-derived stem cells (ADSCs) and bone marrow stem cells (BMSCs), before OA inductions. Subsequent recordings were performed at week 7 and week 31 which were post-OA and post-treatments. Afterwards, the compression tests of the regenerated cartilage were performed.
    RESULTS: Post-treatment EMG analysis revealed that the control sheep retained significant reductions in amplitudes at the right medial gluteus, vastus lateralis and bicep femoris, whereas BMSCs and ADSCs samples had no further significant reductions (P < 0.05). Grossly and histologically, the treated knee joints demonstrated the presence of regenerated neo cartilages evidenced by the fluorescence of PKH26 tracker. Based on the International Cartilage Repair Society scores (ICRS), they had significantly lower grades than the controls (P < 0.05). The compression moduli of the native cartilages and the engineered cartilages differed significantly at the tibia plateau, patella femoral groove and the patella; whereas at the medial femoral condyle, they had similar moduli of 0.69 MPa and 0.40-0.64 MPa respectively. Their compression strengths at all four regions were within ±10 MPa.
    CONCLUSION: The tissue engineered cartilages provided evidence of functional recoveries associated to the structural regenerations, and their mechanical properties were comparable with the native cartilage.
    KEYWORDS: Cartilage; Cell therapy; Function; Osteoarthritis; Regeneration
    Matched MeSH terms: Cartilage, Articular/pathology; Cartilage, Articular/physiopathology
  16. Koh SM, Chan CK, Teo SH, Singh S, Merican A, Ng WM, et al.
    Knee, 2020 Jan;27(1):26-35.
    PMID: 31917106 DOI: 10.1016/j.knee.2019.10.028
    PURPOSE: Osteoarthritis (OA) of the knee is a multifactorial degenerative disease typically defined as the 'wear and tear' of articular joint cartilage. However, recent studies suggest that OA is a disease arising from chronic low-grade inflammation. We conducted a study to investigate the relationship between chronic inflammatory mediators present in both the systemic peripheral blood system and localised inflammation in synovial fluid (SF) of OA and non-OA knees; and subsequently made direct comparative analyses to understand the mechanisms that may underpin the processes involved in OA.

    METHODS: 20-Plex proteins were quantified using Human Magnetic Luminex® assay (R&D Systems, USA) from plasma and SF of OA (n = 14) and non-OA (n = 14) patients. Ingenuity Pathway Analysis (IPA) software was used to predict the relationship and possible interaction of molecules pertaining to OA.

    RESULTS: There were significant differences in plasma level for matrix metalloproteinase (MMP)-3, interleukin (IL)-27, IL-8, IL-4, tumour necrosis factor-alpha, MMP-1, IL-15, IL-21, IL-10, and IL-1 beta between the groups, as well as significant differences in SF level for IL-15, IL-8, vascular endothelial growth factor (VEGF), MMP-1, and IL-18. Our predictive OA model demonstrated that toll-like receptor (TLR) 2, macrophage migration inhibitory factor (MIF), TLR4 and IL-1 were the main regulators of IL-1B, IL-4, IL-8, IL-10, IL-15, IL-21, IL-27, MMP-1 and MMP-3 in the plasma system; whilst IL-1B, TLR4, IL-1, and basigin (BSG) were the regulators of IL-4, IL-8, IL-10, IL-15, IL-18, IL-21, IL-27, MMP-1, and MMP-3 in the SF system.

    CONCLUSION: The elevated plasma IL-8 and SF IL-18 may be associated with the pathogenesis of OA via the activation of MMP-3.

    Matched MeSH terms: Cartilage, Articular/metabolism*; Cartilage, Articular/pathology
  17. Lau SF, Wolschrijn CF, Siebelt M, Vernooij JC, Voorhout G, Hazewinkel HA
    Vet J, 2013 Oct;198(1):116-21.
    PMID: 23846028 DOI: 10.1016/j.tvjl.2013.05.038
    The aetiopathogenesis of medial coronoid disease (MCD) remains obscure, despite its high prevalence. The role of changes to subchondral bone or articular cartilage is much debated. Although there is evidence of micro-damage to subchondral bone, it is not known whether this is a cause or a consequence of MCD, nor is it known whether articular cartilage is modified in the early stages of the disease. The aim of the present study was to use equilibrium partitioning of an ionic contrast agent with micro-computed tomography (microCT) to investigate changes to both the articular cartilage and the subchondral bone of the medial coronoid processes (MCP) of growing Labrador retrievers at an early stage of the disease and at different bodyweights. Of 14 purpose-bred Labrador retrievers (15-27 weeks), six were diagnosed with bilateral MCD and one was diagnosed with unilateral MCD on the basis of microCT studies. The mean X-ray attenuation of articular cartilage was significantly higher in dogs with MCD than in dogs without MCD (P<0.01). In all dogs, the mean X-ray attenuation of articular cartilage was significantly higher at the lateral (P<0.001) than at the proximal aspect of the MCP, indicating decreased glycosaminoglycan content. Changes in parameters of subchondral bone micro-architecture, namely the ratio of bone volume to tissue volume (BV/TV), bone surface density (BS/TV), bone surface to volume ratio (BS/BV), trabecular thickness (Tb.Th; mm), size of marrow cavities described by trabecular spacing (Tb.Sp; mm), and structural model index (SMI), differed significantly by litter (P<0.05) due to the difference in age and weight, but not by the presence/absence of MCD (P>0.05), indicating that subchondral bone density is not affected in early MCD. This study demonstrated that cartilage matrix and not subchondral bone density is affected in the early stages of MCD.
    Matched MeSH terms: Cartilage, Articular/pathology*; Cartilage, Articular/radiography
  18. Moo EK, Han SK, Federico S, Sibole SC, Jinha A, Abu Osman NA, et al.
    J Biomech, 2014 Mar 21;47(5):1004-13.
    PMID: 24480705 DOI: 10.1016/j.jbiomech.2014.01.003
    Cartilage lesions change the microenvironment of cells and may accelerate cartilage degradation through catabolic responses from chondrocytes. In this study, we investigated the effects of structural integrity of the extracellular matrix (ECM) on chondrocytes by comparing the mechanics of cells surrounded by an intact ECM with cells close to a cartilage lesion using experimental and numerical methods. Experimentally, 15% nominal compression was applied to bovine cartilage tissues using a light-transmissible compression system. Target cells in the intact ECM and near lesions were imaged by dual-photon microscopy. Changes in cell morphology (N(cell)=32 for both ECM conditions) were quantified. A two-scale (tissue level and cell level) Finite Element (FE) model was also developed. A 15% nominal compression was applied to a non-linear, biphasic tissue model with the corresponding cell level models studied at different radial locations from the centre of the sample in the transient phase and at steady state. We studied the Green-Lagrange strains in the tissue and cells. Experimental and theoretical results indicated that cells near lesions deform less axially than chondrocytes in the intact ECM at steady state. However, cells near lesions experienced large tensile strains in the principal height direction, which are likely associated with non-uniform tissue radial bulging. Previous experiments showed that tensile strains of high magnitude cause an up-regulation of digestive enzyme gene expressions. Therefore, we propose that cartilage degradation near tissue lesions may be due to the large tensile strains in the principal height direction applied to cells, thus leading to an up-regulation of catabolic factors.
    Matched MeSH terms: Cartilage, Articular/injuries*; Cartilage, Articular/physiology
  19. Moo EK, Abusara Z, Abu Osman NA, Pingguan-Murphy B, Herzog W
    J Biomech, 2013 Aug 9;46(12):2024-31.
    PMID: 23849134 DOI: 10.1016/j.jbiomech.2013.06.007
    Morphological studies of live connective tissue cells are imperative to helping understand cellular responses to mechanical stimuli. However, photobleaching is a constant problem to accurate and reliable live cell fluorescent imaging, and various image thresholding methods have been adopted to account for photobleaching effects. Previous studies showed that dual photon excitation (DPE) techniques are superior over conventional one photon excitation (OPE) confocal techniques in minimizing photobleaching. In this study, we investigated the effects of photobleaching resulting from OPE and DPE on morphology of in situ articular cartilage chondrocytes across repeat laser exposures. Additionally, we compared the effectiveness of three commonly-used image thresholding methods in accounting for photobleaching effects, with and without tissue loading through compression. In general, photobleaching leads to an apparent volume reduction for subsequent image scans. Performing seven consecutive scans of chondrocytes in unloaded cartilage, we found that the apparent cell volume loss caused by DPE microscopy is much smaller than that observed using OPE microscopy. Applying scan-specific image thresholds did not prevent the photobleaching-induced volume loss, and volume reductions were non-uniform over the seven repeat scans. During cartilage loading through compression, cell fluorescence increased and, depending on the thresholding method used, led to different volume changes. Therefore, different conclusions on cell volume changes may be drawn during tissue compression, depending on the image thresholding methods used. In conclusion, our findings confirm that photobleaching directly affects cell morphology measurements, and that DPE causes less photobleaching artifacts than OPE for uncompressed cells. When cells are compressed during tissue loading, a complicated interplay between photobleaching effects and compression-induced fluorescence increase may lead to interpretations in cell responses to mechanical stimuli that depend on the microscopic approach and the thresholding methods used and may result in contradictory interpretations.
    Matched MeSH terms: Cartilage, Articular/cytology; Cartilage, Articular/metabolism*
  20. Abd Latif MJ, Jin Z, Wilcox RK
    J Biomech, 2012 May 11;45(8):1346-52.
    PMID: 22483055 DOI: 10.1016/j.jbiomech.2012.03.015
    The spinal facet joints are known to be an important component in the kinematics and the load transmission of the spine. The articular cartilage in the facet joint is prone to degenerative changes which lead to back pain and treatments for the condition have had limited long term success. There is currently a lack of information on the basic biomechanical properties of the facet joint cartilage which is needed to develop tissue substitution or regenerative interventions. In the present study, the thickness and biphasic properties of ovine facet cartilage were determined using a combination of indentation tests and computational modelling. The equilibrium biphasic Young's modulus and permeability were derived to be 0.76±0.35 MPa and 1.61±1.10×10⁻¹⁵ m⁴/(Ns) respectively, which were within the range of cartilage properties characterised from the human synovial joints. The average thickness of the ovine facet cartilage was 0.52±0.10 mm, which was measured using a needle indentation test. These properties could potentially be used for the development of substitution or tissue engineering interventions and for computational modelling of the facet joint. Furthermore, the developed method to characterise the facet cartilage could be used for other animals or human donors.
    Matched MeSH terms: Cartilage, Articular/anatomy & histology; Cartilage, Articular/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links