Displaying publications 41 - 60 of 72 in total

Abstract:
Sort:
  1. Leong SW, Chia SL, Abas F, Yusoff K
    Bioorg Med Chem Lett, 2020 04 15;30(8):127065.
    PMID: 32127259 DOI: 10.1016/j.bmcl.2020.127065
    In the present study, a series of nine stable 3,4,5-methoxylphenyl-containing asymmetrical diarylpentanoids, derivatives of curcuminoids, have been synthesized, characterized and evaluated for their in-vitro anti-cancer potential against a panel of BRAF- and KRAS-mutated colorectal cancer cell lines including T84, LoVo and SW620, HT29, RKO and NCI-H508, respectively. Structure-activity relationship study on cytotoxicity of tested compounds suggested that the presence of meta-hydroxyl and adjacent dimethoxyl groups are crucial for enhanced cytotoxicity of diarylpentanoids. Among the evaluated analogs, 8 has been identified as the lead compound due to its highest chemotherapeutic index of 9.9 and nano molar scale cytotoxicity against SW620 and RKO. Colonies formation and cell cycle analyses on 8-treated RKO cells showed that 8 exhibits strong anti-proliferative activity by inducing G2/M-phase cell arrest. Subsequent flow cytometry based annexin-V and DCFHDA studies suggested that 8 could induce apoptosis through intracellular ROS-dependent pathway. Further Western blot studies confirmed that 8 has induced intrinsic apoptosis in RKO cells through the up-regulations of Bad and Bax pro-apoptotic proteins and down-regulations of Bcl-2 and Bcl-xL pro-survival proteins. In all, the present results suggest that 8 could be a potent lead which deserves further modification and investigation in the development of small molecule-based anti-colorectal cancer agents.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  2. Leong SW, Chia SL, Abas F, Yusoff K
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858795 DOI: 10.3390/molecules25173877
    In the present study, we investigated the in-vitro anti-cancer potential of six diarylpentanoids against a panel of BRAF- and KRAS-mutated colorectal cancer cell lines including T84, SW620, LoVo, HT29, NCI-H508, RKO, and LS411N cells. Structure-activity relationship study suggested that the insertions of tetrahydro-4H-thiopyran-4-one and brominated phenyl moieties are essential for better cytotoxicity. Among the evaluated analogs, 2e has been identified as the lead compound due to its low IC50 values of approximately 1 µM across all cancer cell lines and high chemotherapeutic index of 7.1. Anti-proliferative studies on LoVo cells showed that 2e could inhibit cell proliferation and colony formations by inducing G2/M cell cycle arrest. Subsequent cell apoptosis assay confirmed that 2e is a Bcl-2 inhibitor that could induce intrinsic cell apoptosis by creating a cellular redox imbalance through its direct inhibition on the Bcl-2 protein. Further molecular docking studies revealed that the bromophenyl moieties of 2e could interact with the Bcl-2 surface pocket through hydrophobic interaction, while the tetrahydro-4H-thiopyran-4-one fragment could form additional Pi-sulfur and Pi-alkyl interactions in the same binding site. In all, the present results suggest that 2e could be a potent lead that deserves further modification and investigation in the development of a new Bcl-2 inhibitor.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  3. Lim GCC, Rampal KG, Fuad I, Lim AK
    Med J Malaysia, 1997 Jun;52(2):117-23.
    PMID: 10968068
    This study aims to evaluate the practice of adjuvant chemotherapy in colorectal cancer at the Institute of Radiotherapy and Oncology, Hospital Kuala Lumpur. A retrospective analysis of 320 patients' records from 1986 to 1994 was carried out. Adjuvant chemotherapy was given to 98 patients. Cancers of the rectum and sigmoid colon constituted over 60% of the patients. All the regimes used were 5-fluorouracil-based. The oral route was the most commonly used (55.1%). Toxicity was seldom the reason for stopping treatment (2%). The adjuvant treatment employed has been tolerable while the survival was comparable with other centres.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  4. Md Nesran ZN, Shafie NH, Ishak AH, Mohd Esa N, Ismail A, Md Tohid SF
    Biomed Res Int, 2019;2019:3480569.
    PMID: 31930117 DOI: 10.1155/2019/3480569
    Epigallocatechin-3-gallate (EGCG) is the most abundant bioactive polyphenolic compound among the green tea constituents and has been identified as a potential anticancer agent in colorectal cancer (CRC) studies. This study was aimed to determine the mechanism of actions of EGCG when targeting the endoplasmic reticulum (ER) stress pathway in CRC. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed on HT-29 cell line and normal cell line (3T3) to determine the EGCG toxicity. Next, western blot was done to observe the expression of the related proteins for the ER stress pathway. The Caspase 3/7 assay was performed to determine the apoptosis induced by EGCG. The results demonstrated that EGCG treatment was toxic to the HT-29 cell line. EGCG induced ER stress in HT-29 by upregulating immunoglobulin-binding (BiP), PKR-like endoplasmic reticulum kinase (PERK), phosphorylation of eukaryotic initiation factor 2 alpha subunit (eIF2α), activating transcription 4 (ATF4), and inositol-requiring kinase 1 alpha (IRE1α). Apoptosis was induced in HT-29 cells after the EGCG treatment, as shown by the Caspase 3/7 activity. This study indicates that green tea EGCG has the potential to inhibit colorectal cancer cells through the induction of ER stress.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  5. Mirakhorli M, Rahman SA, Abdullah S, Vakili M, Rozafzon R, Khoshzaban A
    Mol Med Rep, 2013 Feb;7(2):613-7.
    PMID: 23232902 DOI: 10.3892/mmr.2012.1226
    Multidrug resistance protein 2 (MRP2), encoded by the ATP-binding cassette C2 (ABCC2) gene, is an efflux pump located on the apical membrane of many polarized cells, which transports conjugate compounds by an ATP-dependent mechanism. The correlation of G1249A ABCC2 polymorphism with the development of colorectal cancer (CRC) and poor prognosis was evaluated in patients who were treated with fluorouracil/-leucovorin (FL) plus oxaliplatin (FOLFOX-4). A total of 50 paraffin‑embedded tissue samples collected from CRC patients were analyzed to identify the polymorphism. Patients were in stage II/III and received postoperative FOLFOX-4 chemotherapy. As a control group, an equal number of unrelated healthy subjects were enrolled in the study. The polymorphism was genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method, and results were compared with clinicopathological markers, early relapse and survival rates. During the 12 months of follow-up, local and distant recurrences were observed in 15 (30%) patients. No significant difference in the distribution of wild-type and polymorphic genotypes was observed between the patient and control groups and between the patients who experienced recurrence within 1 year and those who did not (all P>0.05). In conclusion, the G1249A polymorphism is not associated with CRC risk and early recurrence. However, significant correlation was observed between G1249A polymorphism and the overall survival and disease-free survival of the patients.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  6. Mohamed GA, Al-Abd AM, El-Halawany AM, Abdallah HM, Ibrahim SRM
    J Ethnopharmacol, 2017 Feb 23;198:302-312.
    PMID: 28108382 DOI: 10.1016/j.jep.2017.01.030
    ETHNOPHARMACOLOGICAL RELEVANCE: Cancer has proceeded to surpass one of the most chronic illnesses to be the major cause of mortality in both the developing and developed world. Garcinia mangostana L. (mangosteen, family Guttiferae) known as the queen of fruits, is one of the most popular tropical fruits. It is cultivated in Southeast Asian countries: Malaysia, Indonesia, Sri Lanka, Burma, Thailand, and Philippines. Traditionally, numerous parts of G. mangostana have been utilized to treat various ailments such as abdominal pain, haemorrhoids, food allergies, arthritis, leucorrhoea, gonorrhea, diarrhea, dysentery, wound infection, suppuration, and chronic ulcer.

    AIM OF STUDY: Although anticancer activity has been reported for the plant, the goal of the study was designed to isolate and characterize the active metabolites from G. mangostana and measure their cytotoxic properties. In this research, the mechanism of antiproliferative/cytotoxic effects of the tested compounds was investigated.

    MATERIALS AND METHODS: The CHCl3 fraction of the air-dried fruit hulls was repeatedly chromatographed on SiO2, RP18, Diaion HP-20, and polyamide columns to furnish fourteen compounds. The structures of these metabolites were proven by UV, IR, 1D, and 2D NMR measurements and HRESIMS. Additionally, the cytotoxic potential of all compounds was assessed against MCF-7, HCT-116, and HepG2 cell lines using SRB-U assay. Antiproliferative and cell cycle interference effects of potentially potent compounds were tested using DNA content flow cytometry. The mechanism of cell death induction was also studied using annexin-V/PI differential staining coupled with flow cytometry.

    RESULTS: The CHCl3 soluble fraction afforded two new xanthones: mangostanaxanthones V (1) and VI (2), along with twelve known compounds: mangostanaxanthone IV (3), β-mangostin (4), garcinone E (5), α-mangostin (6), nor-mangostin (7), garcimangosone D (8), aromadendrin-8-C-β-D-glucopyranoside (9), 1,2,4,5-tetrahydroxybenzene (10), 2,4,3`-trihydroxybenzophenone-6-O-β-glucopyranoside (11), maclurin-6-O-β-D-glucopyranoside (rhodanthenone) (12), epicatechin (13), and 2,4,6,3`,5`-pentahydroxybenzophenone (14). Only compound 5 showed considerable antiproliferative/cytotoxic effects with IC50's ranging from 15.8 to 16.7µM. Compounds 3, 4, and 6 showed moderate to weak cytotoxic effects (IC50's ranged from 45.7 to 116.4µM). Using DNA content flow cytometry, it was found that only 5 induced significant cell cycle arrest at G0/G1-phase which is indicative of its antiproliferative properties. Additionally, by using annexin V-FITC/PI differential staining, 5 induced cells killing effect via the induction of apoptosis and necrosis in both HepG2 and HCT116 cells. Compound 3 produce necrosis and apoptosis only in HCT116 cells. On contrary, 6 induced apoptosis and necrosis in HepG2 cells and moderate necrosis in HCT116 cells.

    CONCLUSION: Fourteen compounds were isolated from chloroform fraction of G. mangostana fruit hulls. Cytotoxic properties exhibited by the isolated xanthones from G. mangostana reinforce the avail of it as a natural cytotoxic agent against various cancers. These evidences could provide relevant bases for the scientific rationale of using G. mangostana in anti-cancer treatment.

    Matched MeSH terms: Colorectal Neoplasms/drug therapy
  7. Nasir SN, Abu N, Ab Mutalib NS, Ishak M, Sagap I, Mazlan L, et al.
    Clin Transl Oncol, 2018 Jun;20(6):775-784.
    PMID: 29098557 DOI: 10.1007/s12094-017-1788-x
    PURPOSE: Colorectal cancer (CRC) is one of the most widely diagnosed cancers in men and women worldwide. With the advancement of next-generation sequencing technologies, many studies have highlighted the involvement of long non-coding RNAs (lncRNAs) in cancer development. Growing evidence demonstrates that lncRNAs play crucial roles in regulating gene and protein expression and are involved in various cancers, including CRC. The field of lncRNAs is still relatively new and a lot of novel lncRNAs have been discovered, but their functional roles are yet to be elucidated. This study aims to characterize the expression and functional roles of a novel lncRNA in CRC.

    METHOD: Several methods were employed to assess the function of LOC285629 such as gene silencing, qPCR, proliferation assay, BrdU assay, transwell migration assay, ELISA and protein profiler.

    RESULTS: Via in silico analyses, we identified significant downregulation of LOC285629, a novel lncRNA, across CRC stages. LOC285629 expression was significantly downregulated in advanced stages (Stage III and IV) compared to Stage I (Kruskal-Wallis Test; p = 0.0093). Further in-house validation showed that the expression of LOC285629 was upregulated in colorectal cancer tissues and cell lines compared to the normal counterparts, but was downregulated in advanced stages. By targeting LOC285629, the viability, proliferative abilities, invasiveness and resistance of colorectal cancer cells towards 5-fluorouracil were reduced. It was also discovered that LOC285629 may regulate cancer progression by targeting several different proteins, namely survivin, BCL-xL, progranulin, PDGF-AA, enolase 2 and p70S6 K.

    CONCLUSION: Our findings suggest that LOC285629 may be further developed as a potential therapeutic target for CRC treatment.

    Matched MeSH terms: Colorectal Neoplasms/drug therapy
  8. Nassar ZD, Aisha AF, Idris N, Khadeer Ahamed MB, Ismail Z, Abu-Salah KM, et al.
    Oncol Rep, 2012 Mar;27(3):727-33.
    PMID: 22134768 DOI: 10.3892/or.2011.1569
    Deregulated cell signaling pathways result in cancer development. More than one signal transduction pathway is involved in colorectal cancer pathogenesis and progression. Koetjapic acid (KA) is a naturally occurring seco-A-ring oleanene triterpene isolated from the Sandoricum koetjape stem bark. We report the cellular and molecular mechanisms of anticancer activity of KA towards human colorectal cancer. The results showed that KA induces apoptosis in HCT 116 colorectal carcinoma cells by inducing the activation of extrinsic and intrinsic caspases. We confirmed that KA-induced apoptosis was mediated by DNA fragmentation, nuclear condensation and disruption in the mitochondrial membrane potential. Further studies on the effect of KA on cancer pathways show that the compound causes down-regulation of Wnt, HIF-1α, MAP/ERK/JNK and Myc/Max signaling pathways and up-regulates the NF-κB signaling pathway. The result of this study highlights the anticancer potential of KA against colorectal cancer.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  9. Ng CV
    Ann Pharmacother, 2005 Jun;39(6):1114-8.
    PMID: 15886290
    To report 2 cases of hypersensitivity reactions associated with oxaliplatin treatment in Asian patients.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy
  10. Onwe EE, Ghani FA, Abdullah M, Osman M, Zin RRM, Vivian AN, et al.
    Adv Exp Med Biol, 2020;1292:97-112.
    PMID: 32542457 DOI: 10.1007/5584_2020_521
    Colorectal carcinoma (CRC) is a malignancy of epithelial origin in the large bowel. The elucidation of the biological functions of programmed cell death ligand-1 (PD-L1), thymidylate synthase (TYMS), and deleted in colorectal cancer (DCC) biomarkers including their roles in the pathophysiology of CRC - has led to their applications in diagnostic and chemo-pharmaceutics. We investigated whether PD-L1, TYMS, and DCC protein expression in CRC tumors are predictive biomarkers of treatment outcome for CRC patients. The expressions of PD-L1, TYMS, and DCC were evaluated by immunohistochemistry (IHC) in 91 paraffin-embedded samples from patients who underwent colectomy procedure in Hospital Serdang, Selangor, Malaysia. There was high expression of DCC in most cases: 84.6% (77/91). PD-L1 showed low expression in 93.4% (86/91) of cases and high expression in 6.6% (5/91) of cases. Low and high expressions of TYMS were detected in 53.8% (49/91) and 46.2% (42/91) of the CRC cases, respectively. There was a significant association between the TYMS expression and gender (P 
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  11. Pandurangan AK, Esa NM
    Asian Pac J Cancer Prev, 2014;15(14):5501-8.
    PMID: 25081655
    Luteolin, 3', 4', 5,7-tetrahydroxyflavone, belongs to a group of naturally occurring compounds called flavonoids that are found widely in the plant kingdom. It possesses many beneficial properties including antioxidant, anti- inflammatory, anti-bacterial, anti-diabetic and anti-proliferative actions. Colorectal cancer (CRC) is a leading cause of cancer related deaths worldwide. Many signaling pathways are deregulated during the progression of colon cancer. In this review we aimed to analyze the protection offered by luteolin on colon cancer. During colon cancer genesis, luteolin known to reduce oxidative stress thereby protects the cell to undergo damage in vivo. Wnt/β-catenin signaling, deregulated during neoplastic development, is modified by luteolin. Hence, luteolin can be considered as a potential drug to treat CRC.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  12. Piaru SP, Mahmud R, Abdul Majid AM, Ismail S, Man CN
    J Sci Food Agric, 2012 Feb;92(3):593-7.
    PMID: 25520982
    In this study the chemical composition, antioxidant activities and cytotoxic effect of the essential oils of Myristica fragrans (nutmeg) and Morinda citrifolia (mengkudu) were determined.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  13. Pramanik A, Xu Z, Shamsuddin SH, Khaled YS, Ingram N, Maisey T, et al.
    ACS Appl Mater Interfaces, 2022 Mar 09;14(9):11078-11091.
    PMID: 35196008 DOI: 10.1021/acsami.1c21655
    Nanomedicines, while having been approved for cancer therapy, present many challenges such as low stability, rapid clearance, and nonspecificity leading to off-target toxicity. Cubosomes are porous lyotropic liquid crystalline nanoparticles that have shown great premise as drug delivery vehicles; however, their behavior in vivo is largely underexplored, hindering clinical translation. Here, we have engineered cubosomes based on the space group Im3m that are loaded with copper acetylacetonate as a model drug, and their surfaces are functionalized for the first time with Affimer proteins via copper-free click chemistry to actively target overexpressed carcinoembryonic antigens on LS174T colorectal cancer cells. Unlike nontargeted cubosomes, Affimer tagged cubosomes showed preferential accumulation in cancer cells compared to normal cells not only in vitro (2D monolayer cell culture and 3D spheroid models) but also in vivo in colorectal cancer mouse xenografts, while exhibiting low nonspecific absorption and toxicity in other vital organs. Cancerous spheroids had maximum cell death compared to noncancerous cells upon targeted delivery. Xenografts subjected to targeted drug-loaded cubosomes showed a 5-7-fold higher drug accumulation in the tumor tissue compared to the liver, kidneys, and other vital organs, a significant decrease in tumor growth, and an increased survival rate compared to the nontargeted group. This work encompasses the first thorough preclinical investigation of Affimer targeted cubosomes as a cancer therapeutic.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  14. Ryan ARA, Rosita ARA, Kamarul AK, Qureshi A
    Med J Malaysia, 1999 Sep;54(3):293-5.
    PMID: 11045053
    Colorectal cancer is currently the third most common cancer in Malaysia. Elevated expression of COX-2, an induced cyclooxygenase isoenzyme, has been seen in colonic adenomas and colorectal carcinoma. There is evidence that inhibition of this COX-2 can decrease the risk of colorectal cancer. Selective COX-2 inhibitors may have a role in reducing the risk of colorectal cancer in high-risk individuals.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  15. Samad MA, Saiman MZ, Abdul Majid N, Karsani SA, Yaacob JS
    Molecules, 2021 Jan 13;26(2).
    PMID: 33450878 DOI: 10.3390/molecules26020376
    Colorectal cancer (CRC) is the most common cancer among males and females, which is associated with the increment of telomerase level and activity. Some plant-derived compounds are telomerase inhibitors that have the potential to decrease telomerase activity and/or level in various cancer cell lines. Unfortunately, a deeper understanding of the effects of telomerase inhibitor compound(s) on CRC cells is still lacking. Therefore, in this study, the aspects of telomerase inhibitors on a CRC cell line (HCT 116) were investigated. Screening on HCT 116 at 48 h showed that berberine (10.30 ± 0.89 µg/mL) is the most effective (lowest IC50 value) telomerase inhibitor compared to boldine (37.87 ± 3.12 µg/mL) and silymarin (>200 µg/mL). Further analyses exhibited that berberine treatment caused G0/G1 phase arrest at 48 h due to high cyclin D1 (CCND1) and low cyclin-dependent kinase 4 (CDK4) protein and mRNA levels, simultaneous downregulation of human telomerase reverse transcriptase (TERT) mRNA and human telomerase RNA component (TERC) levels, as well as a decrease in the TERT protein level and telomerase activity. The effect of berberine treatment on the cell cycle was time dependent as it resulted in a delayed cell cycle and doubling time by 2.18-fold. Telomerase activity and level was significantly decreased, and telomere erosion followed suit. In summary, our findings suggested that berberine could decrease telomerase activity and level of HCT 116, which in turn inhibits the proliferative ability of the cells.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  16. Samuel VP, Dahiya R, Singh Y, Gupta G, Sah SK, Gubbiyappa SK, et al.
    J Environ Pathol Toxicol Oncol, 2019;38(2):133-141.
    PMID: 31679276 DOI: 10.1615/JEnvironPatholToxicolOncol.2019029388
    The current study is a review of the literature on patients with diabetes who are diagnosed with colorectal cancer (CRC), encompassing recent research on CRC and the molecular level changes occurring in these patients on the basis of varying environmental as well as non-environmental factors. It has been noted that nearly 50% of all patients undergo the systemic treatment module; however, most of them exhibit drug resistance. In addition, targeted gene therapy has also been used in treatment but has been found to be effective only in patients with a specified molecular profile (or else this might lead to an increased risk of developing resistant mutations). This has led to increasing interest among researchers in finding innovative treatment options. Metformin, a biguanide, has been widely used in treating diabetes. The drug has been reportedly used in cases of hypothesis-generating retrospective population studies of diabetic patients showing reduced incidence of cancer. Metformin helps in reduction of excess insulin levels that possess various effects on cell signaling and metabolism. Nonetheless, there is need for an in-depth study on its molecular mechanism to fill any existing research gaps.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  17. Sheikh BY, Sarker MMR, Kamarudin MNA, Mohan G
    Biomed Pharmacother, 2017 Dec;96:834-846.
    PMID: 29078261 DOI: 10.1016/j.biopha.2017.10.038
    Despite various anticancer reports, antiproliferative and apoptosis inducing activity of citral in HCT116 and HT29 cells have never been reported. This study aimed to evaluate the cytotoxic and apoptosis inducing effects of citral in colorectal cancer cell lines. The citral-treated cells were subjected to MTT assay followed by flow cytometric Annexin V-FITC/PI, mitochondrial membrane potential and intracellular reactive oxygen species (ROS) determination. The apoptotic proteins expression was investigated by Western blot analysis. Citral inhibited the growth of HCT116 and HT29 cells by dose- and time-dependent manner without inducing cytotoxicity in CCD841-CoN normal colon cells. Flow cytometric analysis showed that citral (50-200μM; 24-48h) induced the externalization of phoshpotidylserine and reduced the mitochondrial membrane potential in HCT116 and HT29 cells. Citral elevated intracellular ROS level while attenuating GSH levels in HCT116 and HT29 cells which were reversed with N-acetycysteine (2mM) pre-treatment indicating that citral induced mitochondrial-mediated apoptosis via augmentation of intracellular ROS. Citral induced the phosphorylation of p53 protein and the expression of Bax while decreasing Bc-2 and Bcl-xL expression which promoted the cleavage of caspase-3. Collectively, our data suggest that citral induced p53 and ROS-mediated mitochondrial-mediated apoptosis in human colorectal cancer HCT116 and HT29 cells.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy
  18. Singh A, Patel P, Patel VK, Jain DK, Veerasamy R, Sharma PC, et al.
    Curr Cancer Drug Targets, 2017;17(5):456-466.
    PMID: 28067178 DOI: 10.2174/1568009617666170109150134
    BACKGROUND: Colorectal cancer is a devastating disease with a dismal prognosis which is heavily hampered by delayed diagnosis. Surgical resection, radiation therapy and chemotherapy are the curative options. Due to few therapeutic treatments available i.e., mono and combination therapy and development of resistance towards drug response, novel and efficacious therapy are urgently needed.

    OBJECTIVE: In this study, we have studied the potential of histone deacetylase inhibitors in colorectal cancer.

    RESULTS: Histone deacetylase inhibitors (HDACIs) are an emerging class of therapeutic agents having potential anticancer activity with minimal toxicity for different types of malignancies in preclinical studies. HDACIs have proven less effective in monotherapy thus the combination of HDACIs with other anticancer agents are being assessed for the treatment of colorectal cancer.

    CONCLUSION: The molecular mechanism emphasizing the anticancer effect of HDACIs in colorectal cancer was illustrated and a recapitulation was carried out on the recent advances in the rationale behind combination therapies currently underway in clinical evaluations.

    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  19. Song DSS, Leong SW, Ng KW, Abas F, Shaari K, Leong CO, et al.
    SLAS Discov, 2019 06;24(5):548-562.
    PMID: 30897027 DOI: 10.1177/2472555219831405
    DNA mismatch repair (MMR) deficiency has been associated with a higher risk of developing colorectal, endometrial, and ovarian cancer, and confers resistance in conventional chemotherapy. In addition to the lack of treatment options that work efficaciously on these MMR-deficient cancer patients, there is a great need to discover new drug leads for this purpose. In this study, we screened through a library of commercial and semisynthetic natural compounds to identify potential synthetic lethal drugs that may selectively target MLH1 mutants using MLH1 isogenic colorectal cancer cell lines and various cancer cell lines with known MLH1 status. We identified a novel diarylpentanoid analogue, 2-benzoyl-6-(2,3-dimethoxybenzylidene)-cyclohexenol, coded as AS13, that demonstrated selective toxicity toward MLH1-deficient cancer cells. Subsequent analysis suggested AS13 induced elevated levels of oxidative stress, resulting in DNA damage where only the proficient MLH1 cells were able to be repaired and hence escaping cellular death. While AS13 is modest in potency and selectivity, this discovery has the potential to lead to further drug development that may offer better treatment options for cancer patients with MLH1 deficiency.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  20. Soo HC, Chung FF, Lim KH, Yap VA, Bradshaw TD, Hii LW, et al.
    PLoS One, 2017;12(1):e0170551.
    PMID: 28107519 DOI: 10.1371/journal.pone.0170551
    Cudraflavone C (Cud C) is a naturally-occurring flavonol with reported anti-proliferative activities. However, the mechanisms by which Cud C induced cytotoxicity have yet to be fully elucidated. Here, we investigated the effects of Cud C on cell proliferation, caspase activation andapoptosis induction in colorectal cancer cells (CRC). We show that Cud C inhibits cell proliferation in KM12, Caco-2, HT29, HCC2998, HCT116 and SW48 CRC but not in the non-transformed colorectal epithelial cells, CCD CoN 841. Cud C induces tumor-selective apoptosis via mitochondrial depolarization and activation of the intrinsic caspase pathway. Gene expression profiling by microarray analyses revealed that tumor suppressor genes EGR1, HUWE1 and SMG1 were significantly up-regulated while oncogenes such as MYB1, CCNB1 and GPX2 were down-regulated following treatment with Cud C. Further analyses using Connectivity Map revealed that Cud C induced a gene signature highly similar to that of protein synthesis inhibitors and phosphoinositide 3-kinase (PI3K)-AKT inhibitors, suggesting that Cud C might inhibit PI3K-AKT signaling. A luminescent cell free PI3K lipid kinase assay revealed that Cud C significantly inhibited p110β/p85α PI3K activity, followed by p120γ, p110δ/p85α, and p110α/p85α PI3K activities. The inhibition by Cud C on p110β/p85α PI3K activity was comparable to LY-294002, a known PI3K inhibitor. Cud C also inhibited phosphorylation of AKT independent of NFκB activity in CRC cells, while ectopic expression of myristoylated AKT completely abrogated the anti-proliferative effects, and apoptosis induced by Cud C in CRC. These findings demonstrate that Cud C induces tumor-selective cytotoxicity by targeting the PI3K-AKT pathway. These findings provide novel insights into the mechanism of action of Cud C, and indicate that Cud C further development of Cud C derivatives as potential therapeutic agents is warranted.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links