Displaying publications 41 - 60 of 84 in total

Abstract:
Sort:
  1. Kanagesan S, Aziz SB, Hashim M, Ismail I, Tamilselvan S, Alitheen NB, et al.
    Molecules, 2016 Mar 11;21(3):312.
    PMID: 26978339 DOI: 10.3390/molecules21030312
    Manganese ferrite (MnFe2O4) magnetic nanoparticles were successfully prepared by a sol-gel self-combustion technique using iron nitrate and manganese nitrate, followed by calcination at 150 °C for 24 h. Calcined sample was systematically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and vibrational sample magnetometry (VSM) in order to identify the crystalline phase, functional group, morphology, particle size, shape and magnetic behavior. It was observed that the resultant spinal ferrites obtained at low temperature exhibit single phase, nanoparticle size and good magnetic behavior. The study results have revealed the existence of a potent dose dependent cytotoxic effect of MnFe2O4 nanoparticles against 4T1 cell lines at varying concentrations with IC50 values of 210, 198 and 171 μg/mL after 24 h, 48 h and 72 h of incubation, respectively. Cells exposed to higher concentrations of nanoparticles showed a progressive increase of apoptotic and necrotic activity. Below 125 μg/mL concentration the nanoparticles were biocompatible with 4T1 cells.
    Matched MeSH terms: Manganese Compounds/administration & dosage; Manganese Compounds/therapeutic use*; Manganese Compounds/chemistry*
  2. Karimi G, Shahar S, Homayouni N, Rajikan R, Abu Bakar NF, Othman MS
    Asian Pac J Cancer Prev, 2012;13(9):4249-53.
    PMID: 23167323
    While associations between trace elements and heavy metals with prostate cancer are still debatable, they have been considered as risk factors for prostate cancer. Thus, this study aimed to detect any links between selected minerals and heavy metals including Se, Zn, Cu, Mn and Fe with prostate cancer. A case control study was carried out among 100 subjects (case n=50, control n=50), matched for age and ethnicity. Trace elements and heavy metals level in hair and nail samples were determined by ICP-MS. Mean selenium levels in hair and nail of the cases were significantly lower as compared to controls. A similar trend was noted for zinc in both hair and nail samples, whereas the mean level of copper was significantly higher in cases than controls. Similar elevation was noted for iron and manganese (p<0.05 for all parameters). Low levels of selenium and zinc and high levels of copper, iron and manganese appear to be associated with the risk of prostate cancer. Further studies to elucidate the causal mechanisms and appropriate chemopreventive measures are needed.
    Matched MeSH terms: Manganese/analysis
  3. Kasim MF, Darman AKAB, Yaakob MK, Badar N, Kamarulzaman N
    Phys Chem Chem Phys, 2019 Sep 11;21(35):19126-19146.
    PMID: 31432825 DOI: 10.1039/c9cp01664c
    In this study, nano- and microsized zinc oxide (ZnO) materials were doped with different manganese (Mn) contents (1-5 mol%) via a simple sol-gel method. The structural, morphological, optical and chemical environments of the materials were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), UV-visible spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS). XRD results revealed that all synthesised materials were pure and single phased with a hexagonal wurtzite structure of ZnO. However, at a low annealing temperature, a nanorod-like shape can be obtained for all Zn(1-x)MnxO materials. In addition, EDX spectra confirmed the presence of Mn in the ZnO lattice and the atomic percentage was nearly equal to the calculated stoichiometry. UV-vis spectroscopy further revealed that materials in nano size exhibited band gap widening with an increase of the Mn content in the ZnO lattice. In contrast, micron state materials exhibited band gap narrowing with increasing Mn content up to 3% and then begin to widen when Mn > 3%. This is because the band gaps of these materials are affected by the dimensions of the crystals and the Mn content in the materials. Furthermore, XPS results revealed the existence of multiple states of Mn in all synthesised materials. By combining the information obtained from UV-vis and the XPS valence band, shifting in the valence band maximum (VBM) and conduction band minimum (CBM) was observed. Based on XPS results, the calculation of density functional theory studies revealed that the presence of Mn2+, Mn3+, and Mn4+ ions in the materials influences the band gap changes. It was also revealed that the nanosized Zn0.99Mn0.01O exhibited a higher photocatalytic activity than the other samples for degrading methylene blue (MB) dyes, owing to its smallest crystallite size.
    Matched MeSH terms: Manganese
  4. Khoo, Hock-Eng, Azrina Azlan, Mohd Aizat Idris, Amin Ismail, Muhammad Rizal Razman
    MyJurnal
    The present study was carried out to determine the concentrations of selected metal elements (lead, copper, manganese, zinc and iron) in 51 samples of commercial drinking water and tap water available in Malaysia. The results indicated that low metal elements were found in the studied water samples. Lead, manganese, zinc and iron were not detected in some of the studied samples, except copper. The concentrations of the metal elements in the studied samples were well below the maximum permitted concentrations as recommended. Therefore these drinking water are safe for consumption and do not pose adverse effect to the health of consumers due to metal toxicity.
    Matched MeSH terms: Manganese
  5. Kulandaivalu S, Suhaimi N, Sulaiman Y
    Sci Rep, 2019 Mar 20;9(1):4884.
    PMID: 30894621 DOI: 10.1038/s41598-019-41203-3
    A novel layer-by-layer (LBL) based electrode material for supercapacitor consists of polypyrrole/graphene oxide and polypyrrole/manganese oxide (PPy/GO|PPy/MnO2) has prepared by electrochemical deposition. The formation of LBL assembled nanocomposite is confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The field emission scanning electron microscopy images clearly showed that PPy/MnO2 was uniformly coated on PPy/GO. The PPy/GO|PPy/MnO2 symmetrical supercapacitor has revealed outstanding supercapacitive performance with a high specific capacitance of 786.6 F/g, an exceptionally high specific energy of 52.3 Wh/kg at a specific power of 1392.9 W/kg and preserve a good cycling stability over 1000 cycles. It is certain that PPy/GO|PPy/MnO2 has an extraordinary perspective as an electrode for future supercapacitor developments. This finding contributes to a significant impact on the evolution of electrochemical supercapacitor.
    Matched MeSH terms: Manganese Compounds
  6. Lee WS, Aziz HA, Tajarudin HA
    Water Environ Res, 2023 Aug;95(8):e10913.
    PMID: 37475142 DOI: 10.1002/wer.10913
    Groundwater is one of the alternatives to surface water that can be used for drinking water; however, it normally exists with high iron and manganese content. In this study, a column study was conducted to observe the elimination of iron (Fe) and manganese (Mn) in the groundwater under different retention times by using zeolite immobilized with iron-oxidizing bacteria (IOB). Rossellomorea sp., representing an IOB, was found from the isolation process and was further cultured in the laboratory for immobilization into the natural zeolite as replacement materials for the sand filter. When the zeolite assisted with the Rossellomorea sp. was used, the elimination of Fe and Mn were 99.34% and 88.92%, respectively, compared to the removal of Fe and Mn, which were 93.62% and 93.73%, respectively, for media without immobilization. The presence of Rossellomorea sp. enhances the Fe oxidation, resulting in high removal of Fe. The Thomas and Yoon-Nelson models were performed in both raw zeolite and zeolite with IOB. The total coliform (most probable number [MPN]) increased from 70.8 to 307.6 MPN/100 mL because of the Rossellomorea sp. present that promotes the growth of coliform bacteria. In conclusion, the immobilization of zeolite with IOB is a potential technique to extract the Fe and Mn in the groundwater. PRACTITIONER POINTS: Zeolite incorporated with Rossellomorea sp. has higher removal performance of Fe, whereas the removal of Mn reduced compared to the raw zeolite. The presence of Rossellomorea sp. enhances the oxidation of ferrous iron and improves the removal of Fe in the groundwater because the ferric iron is the priority ion to be exchanged. The removal of UV254 increase when Rossellomorea sp. present in the zeolite because the Rossellomorea sp. consume the natural organic matter as carbon source.
    Matched MeSH terms: Manganese
  7. Lew LC, Choi SB, Tan PL, Liong MT
    J Appl Microbiol, 2014 Mar;116(3):644-53.
    PMID: 24267975 DOI: 10.1111/jam.12399
    The study aimed to evaluate the effects of Mn(2+) and Mg(2+) on lactic acid production using response surface methodology and to further study their effects on interactions between the enzymes and substrates along the hexose monophosphate pathway using a molecular modelling approach.
    Matched MeSH terms: Manganese Compounds/pharmacology*
  8. Lew LC, Liong MT, Gan CY
    J Appl Microbiol, 2013 Feb;114(2):526-35.
    PMID: 23082775 DOI: 10.1111/jam.12044
    AIMS: The study aimed to optimize the growth and evaluate the production of putative dermal bioactives from Lactobacillus rhamnosus FTDC 8313 using response surface methodology, in the presence of divalent metal ions, namely manganese and magnesium.
    METHODS AND RESULTS: A central composite design matrix (alpha value of ± 1.414) was generated with two independent factors, namely manganese sulphate (MnSO(4) ) and magnesium sulphate (MgSO(4) ). The second-order regression model indicated that the quadratic model was significant (P < 0.01), suggesting that the model accurately represented the data in the experimental region. Three-dimensional response surfaces predicted an optimum point with maximum growth of 10.59 log(10) CFU ml(-1) . The combination that produced the optimum point was 0.80 mg ml(-1) MnSO(4) and 1.09 mg ml(-1) MgSO(4) . A validation experiment was performed, and data obtained showed a deviation of 0.30% from the predicted value, ascertaining the predictions and the reliability of the regression model used. Effects of divalent metal ions on the production of putative dermal bioactives, namely hyaluronic acid, diacetyl, peptidoglycan, lipoteichoic acid and organic acids in the region of optimized growth, were evaluated using 3D response surfaces generated. Evaluation based on the individual and interaction effects showed that both manganese and magnesium played an important role in the production of these putative bioactives.
    CONCLUSIONS: Optimum growth of Lact. rhamnosus FTDC 8313 in reconstituted skimmed milk was achieved at 10.59 log(10) CFU ml(-1) in the presence of MnSO(4) (0.80 mg ml(-1) ) and MgSO(4) (1.09 mg ml(-1) ). Production of putative dermal bioactive and inhibitory compounds including hyaluronic acid, diacetyl, peptidoglycan, lipoteichoic acid and organic acids at the regions of optimized growth showed potential dermal applications.
    SIGNIFICANT AND IMPACT OF THE STUDY: This research can serve as a fundamental study to further evaluate the potential of Lactobacillus strains in non-gut-related roles such as dermal applications.
    Matched MeSH terms: Manganese Compounds/pharmacology*
  9. Lin KA, Oh WD, Zheng MW, Kwon E, Lee J, Lin JY, et al.
    J Colloid Interface Sci, 2021 Jun 15;592:416-429.
    PMID: 33691223 DOI: 10.1016/j.jcis.2021.02.030
    Aerobic oxidation of 5-Hydroxymethylfurfural (HMF) to 2,5-Diformylfuran (DFF) using O2 gas represents a sustainable approach for valorization of lignocellulosic compounds. As manganese dioxide (MnO2) is validated as a useful oxidation catalyst and many crystalline forms of MnO2 exist, it is critical to explore how the crystalline structures of MnO2 influence their physical/chemical properties, which, in turn, determine catalytic activities of MnO2 crystals for HMF oxidation to DFF. In particular, six MnO2 crystals, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, ε-MnO2, and λ-MnO2 are prepared and investigated for their catalytic activities for HMF oxidation to DFF. With different morphologies and crystalline structures, these MnO2 crystals possess very distinct surficial chemistry, redox capabilities, and textural properties, making these MnO2 exhibit different catalytic activities towards HMF conversion. Especially, β-MnO2 can produce much higher DFF per surface area than other MnO2 crystals. β-MnO2 could achieve the highest CHMF = 99% and YDFF = 97%, which are much higher than the reported values in literature, possibly because the surficial reactivity of β-MnO2 appears to be highest in comparison to other MnO2 crystals. Especially, β-MnO2 could exhibit YDFF > 90% over 5 cycles of reusability test, and maintain its crystalline structure, revealing its advantageous feature for aerobic oxidation of HMF to DFF. Through this study, the relationship between morphology, surface chemistry, and catalytic activity of MnO2 with different crystal forms is elucidated for providing scientific insights into design, application and development of MnO2-based materials for aerobic oxidation of bio-derived molecules to value-added products.
    Matched MeSH terms: Manganese Compounds
  10. Lin R, Hu E, Liu M, Wang Y, Cheng H, Wu J, et al.
    Nat Commun, 2019 04 09;10(1):1650.
    PMID: 30967531 DOI: 10.1038/s41467-019-09248-0
    Despite the importance of studying the instability of delithiated cathode materials, it remains difficult to underpin the degradation mechanism of lithium-rich cathode materials due to the complication of combined chemical and structural evolutions. Herein, we use state-of-the-art electron microscopy tools, in conjunction with synchrotron X-ray techniques and first-principle calculations to study a 4d-element-containing compound, Li2Ru0.5Mn0.5O3. We find surprisingly, after cycling, ruthenium segregates out as metallic nanoclusters on the reconstructed surface. Our calculations show that the unexpected ruthenium metal segregation is due to its thermodynamic insolubility in the oxygen deprived surface. This insolubility can disrupt the reconstructed surface, which explains the formation of a porous structure in this material. This work reveals the importance of studying the thermodynamic stability of the reconstructed film on the cathode materials and offers a theoretical guidance for choosing manganese substituting elements in lithium-rich as well as stoichiometric layer-layer compounds for stabilizing the cathode surface.
    Matched MeSH terms: Manganese
  11. Mahmad-Toher AS, Govender N, Dorairaj D, Wong MY
    Sci Rep, 2022 Sep 20;12(1):15690.
    PMID: 36127366 DOI: 10.1038/s41598-022-19308-z
    Rice brown spot (BS) exerts devastating agronomic effects on grain quality and overall productivity. In Peninsular Malaysia, BS disease incidence is fairly prevalent and little is known about the diversity of BS pathogens in the local granaries. Fifteen isolates from BS symptomatic rice plants were identified at five different rice granaries across Peninsular Malaysia. Based on the morphological and molecular analyses, two isolates were confirmed as Bipolaris oryzae while the rest were identified as Exserohilum rostratum. Phylogenetic tree analysis revealed that BS incidence in rice granaries in Peninsular Malaysia is caused by a pair of closely related fungal pathogens, E. rostratum and B. oryzae, with the former being more predominant. Cultural characterization of E. rostratum isolate KT831962 showed the best growth and sporulation activity on corn meal agar plates incubated in complete darkness. The effects of calcium silicate (CaSiO3) and rice husk ash (RHA) soil amendment against MR219 and MR253 rice varieties were evaluated during rice-E. rostratum interaction. Results showed that soil amelioration using CaSiO3 and RHA singly and in combination with manganese (Mn) significantly reduced rice BS disease severity. The BS disease index was reduced significantly to less than 31.6% in the silicon-treated rice plants relative to the control plants at 41.2%. Likewise, the grain yield at the harvest stage showed significantly higher yield in the Si-treated rice plants in comparison to the control, non-Si treated rice plants. The findings highlight the potential of RHA agro-waste as Si fertilizer in a sustainable rice production system.
    Matched MeSH terms: Manganese/pharmacology
  12. Mamat, M., Abdullah, M.A.A., Jaafar, A.M., Soh, S.K.C., Lee, C.E.
    ASM Science Journal, 2018;11(101):105-113.
    MyJurnal
    As textile production flourishes nowadays, the amount of dyed wastewater entering the
    water body has also increased. Dyes could have serious negative impacts to the environment
    and also the human health, hence, they need to be removed from the water body. In this
    study, layered double hydroxide (LDH) of manganese/aluminium (MnAl) was synthesised
    to be used as a potential adsorbent to remove methyl orange (MO) dye due to its unique
    lamellar structure which provides LDH with high anion adsorption and exchange ability.
    MnAl was synthesized by using co-precipitation method and characterized by powder X-ray
    diffraction (PXRD), Fourier-Transform Infrared Spectroscopy (FTIR), Inductively coupled
    plasma atomic emission spectroscopy (ICP-AES) and Carbon, Hydrogen, Nitrogen, Sulphur
    (CHNS) elemental analysers, and Accelerated Surface Area and Porosity Analyzer (ASAP).
    Adsorption studies were conducted at different contact times and dosages of MnAl to evaluate
    the performance of MnAl in removing MO from water. Kinetic and isotherm models were
    tested using pseudo-first order, pseudo-second order, Langmuir isotherm and Freundlich
    isotherm. MnAl LDH was found to be perfectly fitted into pseudo-second order and Langmuir
    isotherm.
    Matched MeSH terms: Manganese
  13. Mat Nasir N, Md Isa Z, Ismail NH, Ismail R, Mohd Tamil A, Jaafar MH, et al.
    Sci Rep, 2024 Apr 13;14(1):8590.
    PMID: 38615144 DOI: 10.1038/s41598-024-59206-0
    Hypertension (HPT) is the leading modifiable risk factor for cardiovascular diseases and premature death worldwide. Currently, attention is given to various dietary approaches with a special focus on the role of micronutrient intake in the regulation of blood pressure. This study aims to measure the dietary intake of selected minerals among Malaysian adults and its association with HPT. This cross-sectional study involved 10,031 participants from the Prospective Urban and Rural Epidemiological study conducted in Malaysia. Participants were grouped into HPT if they reported having been diagnosed with high blood pressure [average systolic blood pressure (SBP)/average diastolic blood pressure (DBP) ≥ 140/90 mm Hg]. A validated food frequency questionnaire (FFQ) was used to measure participants' habitual dietary intake. The dietary mineral intake of calcium, copper, iron, magnesium, manganese, phosphorus, potassium, sodium, and zinc was measured. The chi-square test was used to assess differences in socio-demographic factors between HPT and non-HPT groups, while the Mann-Whitney U test was used to assess differences in dietary mineral intake between the groups. The participants' average dietary intake of calcium, copper, iron, magnesium, manganese, phosphorus, potassium, selenium, sodium, and zinc was 591.0 mg/day, 3.8 mg/day, 27.1 mg/day, 32.4 mg/day, 0.4 mg/day, 1431.1 mg/day, 2.3 g/day, 27.1 µg/day, 4526.7 mg/day and 1.5 mg/day, respectively. The intake was significantly lower among those with HPT than those without HPT except for calcium and manganese. Continuous education and intervention should be focused on decreasing sodium intake and increasing potassium, magnesium, manganese, zinc, and calcium intake for the general Malaysian population, particularly for the HPT patients.
    Matched MeSH terms: Manganese
  14. Mohammed, Thamer Ahmed, Abdul Halim Ghazali
    MyJurnal
    In Malaysia, the use of groundwater can help to meet the increasing water demand. The utilization of the aquifers is currently contributing in water supplies, particularly for the northern states. In this study, quantitative and qualitative assessments were carried out for the groundwater exploitation in the states of Kelantan, Melaka, Terengganu and Perak. The relevant data was acquired from the Department of Mineral and Geoscience, Malaysia. The quantitative assessment mainly included the determination of the use to yield ratio (UTY). The formula was proposed to determine the UTY ratio for aquifers in Malaysia. The proposed formula was applied to determine the maximum UTY ratios for the aquifers located in the states of Kelantan, Melaka, and Terengganu, and were found to be 4.2, 5.2 and 0.6, respectively. This indicated that exploitation of groundwater was beyond the safe limit in the states of Kelantan and Melaka. The qualitative assessment showed that the groundwater is slightly acidic. In addition, the concentrations of iron and manganese were found to be higher than the allowable limits, but the chloride concentration was found within the allowable limit.
    Matched MeSH terms: Manganese
  15. Mohd Abdah MAA, Azman NHN, Kulandaivalu S, Sulaiman Y
    Sci Rep, 2019 Nov 14;9(1):16782.
    PMID: 31728061 DOI: 10.1038/s41598-019-53421-w
    Asymmetric supercapacitors (ASC) have shown a great potential candidate for high-performance supercapacitor due to their wide operating potential which can remarkably enhance the capacitive behaviour. In present work, a novel positive electrode derived from functionalised carbon nanofibers/poly(3,4-ethylenedioxythiophene)/manganese oxide (f-CNFs/PEDOT/MnO2) was prepared using a multi-step route and activated carbon (AC) was fabricated as a negative electrode for ASC. A uniform distribution of PEDOT and MnO2 on f-CNFs as well as porous granular of AC are well-observed in FESEM. The assembled f-CNFs/PEDOT/MnO2//AC with an operating potential of 1.6 V can achieve a maximum specific capacitance of 537 F/g at a scan rate of 5 mV/s and good cycling stability (81.06% after cycling 8000 times). Furthermore, the as-prepared ASC exhibited reasonably high specific energy of 49.4 Wh/kg and low charge transfer resistance (Rct) of 2.27 Ω, thus, confirming f-CNFs/PEDOT/MnO2//AC as a promising electrode material for the future energy storage system.
    Matched MeSH terms: Manganese Compounds
  16. Mokhtar MB, Praveena SM, Aris AZ, Yong OC, Lim AP
    Mar Pollut Bull, 2012 Nov;64(11):2556-63.
    PMID: 22901962 DOI: 10.1016/j.marpolbul.2012.07.030
    This study was designed as the first to assess the trace metal (Cd, Cu, Fe, Mn, Ni and Zn) in coral skeleton in relation to metal availabilities and sampling locations in Sabah. The study also aims to determine the differential abilities of Scleractinian coral species as a bioindicator of environmental conditions. Skeletons of Scleractinian coral (Hydnophora microconos, Favia speciosa and Porites lobata) showed concentrations of Fe, Mn and Ni relatively higher than Cd and Zn in the skeletons. Statistical analyses outputs showed significant relationships between trace metal concentrations in coral species and those in seawater and sediment. The highest bioaccumulation factors among three Scleractinian coral species investigated was for Zn followed by Mn, Ni, Fe, Cd and Cu can provide a sign about pollution levels. However, metal tolerance, coral structure and morphology as well as multispecies monitoring are factors that need to be a focus in future studies.
    Matched MeSH terms: Manganese/analysis
  17. Mostak Ahmed, Noorlidah Abdullah, Nuruddin MM
    Sains Malaysiana, 2016;45:1609-1615.
    In recent decades, minimizing the frequency of nutrient deficiency and malnutrition in rural areas of developing
    countries becomes an alarming issue. Oyster mushrooms are rich source of both macro and micro nutrients. The
    objective of this paper was to evaluate the yield of newly introduced oyster mushroom strains viz. Pleurotus sajorcaju
    (PSC), Pleurotus flabellatus (FLB), Pleurotus florida (FLO), Pleurotus ostreatus (PO2
    and PO3
    ), Pleurotus ostreatus
    (HK-51) and Pleurotus geesteranus (PG1
    and PG3
    ) and to justify their nutritional values when grown in the climatic
    condition of Bangladesh. Strain HK-51 produced the highest amount of fresh sporophore (197.80 g). In contrast, the
    highest number of fruiting body was obtained from the strain FLO (82 g) followed by strain PSC (69 g). Strain PG1 has
    recorded the highest biological yield (278 g), productivity (55%) and biological efficiency (96%). Nutrient and mineral
    analysis of sporophore of strain PG1 showed protein (31.80%), lipid (3.6%), potassium (1.3 mg/100 g), phosphorus
    (0.8 mg/100 g), calcium (32 mg/100 g), iron (43 mg/100 g), magnesium (12 mg/100 g), copper (3.5 mcg/100 g), zinc
    (12.5 mcg/100 g) and manganese (2.3 mcg/100 g). This study showed that the strain PG1
    performed well with regard to
    quality and productivity as compared to other strains. Hence, oyster mushroom strain PG1
    is a potential cheap source
    of nutrients and minerals to combat socioeconomic problems including malnutrition, diseases linked to malnutrition,
    poverty reduction and agricultural diversity.
    Matched MeSH terms: Manganese
  18. Nasir AM, Goh PS, Ismail AF
    Chemosphere, 2018 Jun;200:504-512.
    PMID: 29501887 DOI: 10.1016/j.chemosphere.2018.02.126
    A novel hydrous iron-nickel-manganese (HINM) trimetal oxide was successfully fabricated using oxidation and coprecipitation method for metalloid arsenite removal. The atomic ratio of Fe:Ni:Mn for this adsorbent is 3:2:1. HINM adsorbent was identified as an amorphous nanosized adsorbent with particle size ranged from 30 nm to 60 nm meanwhile the total active surface area and pore diameter of HINM area of 195.78 m2/g and 2.43 nm, respectively. Experimental data of arsenite adsorption is best fitted into pseudo-second order and Freundlich isotherm model. The maximum adsorption capacity of arsenite onto HINM was 81.9 mg/g. Thermodynamic study showed that the adsorption of arsenite was a spontaneous and endothermic reaction with enthalpy change of 14.04 kJ/mol and Gibbs energy of -12 to -14 kJ/mol. Zeta potential, thermal gravimetric (TGA) and Fourier transform infrared (FTIR) analysis were applied to elucidate the mechanism of arsenite adsorption by HINM. Mechanism of arsenite adsorption by HINM involved both chemisorption and physisorption based on the electrostatic attraction between arsenite ions and surface charge of HINM. It also involved the hydroxyl substitution by arsenite ions through the formation of inner-sphere complex. Reusability of HINM trimetal oxide was up to 89% after three cycles of testing implied that HINM trimetal oxide is a promising and practical adsorbent for arsenite.
    Matched MeSH terms: Manganese Compounds/chemistry*
  19. Natasha AN, Sopyan I, Mel M, Ramesh S
    Med J Malaysia, 2008 Jul;63 Suppl A:85-6.
    PMID: 19024996
    The effect of Manganese (Mn) addition on the Vickers hardness and relative density of nanocrystalline hydroxyapatite (HA) dense bodies were studied. The starting Mn doped HA powders was synthesized via sol-gel method with Mn concentration varies from 2 mol% up to 15 mol% Mn. The Mn doped HA disc samples were prepared by uniaxial pressing at 200MPa and subsequently sintered at 1300 degrees C. Characterization was carried out where appropriate to determine the phases present, bulk density, Vickers hardness of the various content of Mn doped HA dense bodies. The addition of Mn was observed to influence the color appearance of the powders and dense bodies as well. Higher Mn concentration resulted in dark grey powders. It was also found that the hardness and relative density of the material increased as the Mn content increased and influenced by the crystallinity of the prepared Mn doped HA powders.
    Matched MeSH terms: Manganese Compounds/chemistry*
  20. Nemati K, Abu Bakar NK, Abas MR, Sobhanzadeh E, Low KH
    Environ Monit Assess, 2011 May;176(1-4):313-20.
    PMID: 20632089 DOI: 10.1007/s10661-010-1584-3
    A study was carried out to investigate the fractionation of Cd, Cr, Cu, Fe, Mn, Pb, and Zn in shrimp aquaculture sludge from Selangor, Malaysia, using original (unmodified) and modified four-steps BCR (European Community Bureau of Reference, now known as the Standards Measurements and Testing Program) sequential extraction scheme. Step 2 of the unmodified BCR procedure (subsequently called Method A) involves treatment with 0.1 M hydroxylammonium chloride at pH 2, whereas 0.5 M hydroxylammonium chloride at pH 1.5 was used in the modified BCR procedure (subsequently called Method B). Metal analyses were carried out by flame atomic absorption spectrometry. A pseudo-total aqua-regia digest of BCR CRM 701 has also been undertaken for quality assurance purposes. The recovery of Method A for all metals studied ranges from 96.14% to 105.26%, while the recovery for Method B ranges from 95.94% to 122.40%. Our results reveal that Method A underestimated the proportion of metals bound to the easily reducible fraction except for copper. Therefore, the potential mobility of these elements is higher than others. Thus, to use this sludge as a fertilizer we have to first find a remediation for reduction of heavy metal contamination.
    Matched MeSH terms: Manganese/isolation & purification; Manganese/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links