Displaying publications 41 - 60 of 84 in total

Abstract:
Sort:
  1. Rusi, Chan PY, Majid SR
    PLoS One, 2015;10(7):e0129780.
    PMID: 26158447 DOI: 10.1371/journal.pone.0129780
    The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm(-2). The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg(-1) at current density of 1.85 Ag(-1) in 0.5 M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5 M KOH and 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 10(3) Fg(-1) and an energy density of 309 Whkg(-1) in a 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolyte at a current density of 10 Ag(-1). The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications.
    Matched MeSH terms: Manganese Compounds/chemistry*
  2. Nemati K, Abu Bakar NK, Abas MR, Sobhanzadeh E, Low KH
    Environ Monit Assess, 2011 May;176(1-4):313-20.
    PMID: 20632089 DOI: 10.1007/s10661-010-1584-3
    A study was carried out to investigate the fractionation of Cd, Cr, Cu, Fe, Mn, Pb, and Zn in shrimp aquaculture sludge from Selangor, Malaysia, using original (unmodified) and modified four-steps BCR (European Community Bureau of Reference, now known as the Standards Measurements and Testing Program) sequential extraction scheme. Step 2 of the unmodified BCR procedure (subsequently called Method A) involves treatment with 0.1 M hydroxylammonium chloride at pH 2, whereas 0.5 M hydroxylammonium chloride at pH 1.5 was used in the modified BCR procedure (subsequently called Method B). Metal analyses were carried out by flame atomic absorption spectrometry. A pseudo-total aqua-regia digest of BCR CRM 701 has also been undertaken for quality assurance purposes. The recovery of Method A for all metals studied ranges from 96.14% to 105.26%, while the recovery for Method B ranges from 95.94% to 122.40%. Our results reveal that Method A underestimated the proportion of metals bound to the easily reducible fraction except for copper. Therefore, the potential mobility of these elements is higher than others. Thus, to use this sludge as a fertilizer we have to first find a remediation for reduction of heavy metal contamination.
    Matched MeSH terms: Manganese/isolation & purification; Manganese/chemistry
  3. Lew LC, Choi SB, Tan PL, Liong MT
    J Appl Microbiol, 2014 Mar;116(3):644-53.
    PMID: 24267975 DOI: 10.1111/jam.12399
    The study aimed to evaluate the effects of Mn(2+) and Mg(2+) on lactic acid production using response surface methodology and to further study their effects on interactions between the enzymes and substrates along the hexose monophosphate pathway using a molecular modelling approach.
    Matched MeSH terms: Manganese Compounds/pharmacology*
  4. Promsuwan K, Soleh A, Saisahas K, Saichanapan J, Kanatharana P, Thavarungkul P, et al.
    J Colloid Interface Sci, 2021 Sep;597:314-324.
    PMID: 33872888 DOI: 10.1016/j.jcis.2021.03.162
    A unique nanocomposite was fabricated using negatively charged manganese dioxide nanoparticles, poly (3,4-ethylenedioxythiophene) and reduced graphene oxide (MnO2/PEDOT/rGO). The nanocomposite was deposited on a glassy carbon electrode (GCE) functionalized with amino groups. The modified GCE was used to electrochemically detect dopamine (DA). The surface morphology, charge effect and electrochemical behaviours of the modified GCE were characterized by scanning electron microscopy, energy dispersive X-ray analysis (EDX), cyclic voltammetry and electrochemical impedance spectroscopy, respectively. The MnO2/PEDOT/rGO/GCE exhibited excellent performance towards DA sensing with a linear range between 0.05 and 135 µM with a lowest detection limit of 30 nM (S/N = 3). Selectivity towards DA was high in the presence of high concentrations of the typical interferences ascorbic acid and uric acid. The stability and reproducibility of the electrode were good. The sensor accurately determined DA in human serum. The synergic effect of the multiple components of the fabricated nanocomposite were critical to the good DA sensing performance. rGO provided a conductive backbone, PEDOT directed the uniform growth of MnO2 and adsorbed DA via pi-pi and electrostatic interaction, while the negatively charged MnO2 provided adsorption and catalytic sites for protonated DA. This work produced a promising biosensor that sensitively and selectively detected DA.
    Matched MeSH terms: Manganese Compounds
  5. Foo PC, Nurul Najian AB, Muhamad NA, Ahamad M, Mohamed M, Yean Yean C, et al.
    BMC Biotechnol, 2020 Jun 22;20(1):34.
    PMID: 32571286 DOI: 10.1186/s12896-020-00629-8
    BACKGROUND: This study reports the analytical sensitivity and specificity of a Loop-mediated isothermal amplification (LAMP) and compares its amplification performance with conventional PCR, nested PCR (nPCR) and real-time PCR (qPCR). All the assays demonstrated in this study were developed based on Serine-rich Entamoeba histolytica protein (SREHP) gene as study model.

    RESULTS: A set of SREHP gene specific LAMP primers were designed for the specific detection of Entamoeba histolytica. This set of primers recorded 100% specificity when it was evaluated against 3 medically important Entamoeba species and 75 other pathogenic microorganisms. These primers were later modified for conventional PCR, nPCR and qPCR applications. Besides, 3 different post-LAMP analyses including agarose gel electrophoresis, nucleic acid lateral flow immunoassay and calcein-manganese dye techniques were used to compare their limit of detection (LoD). One E. histolytica trophozoite was recorded as the LoD for all the 3 post-LAMP analysis methods when tested with E. histolytica DNA extracted from spiked stool samples. In contrast, none of the PCR method outperformed LAMP as both qPCR and nPCR recorded LoD of 100 trophozoites while the LoD of conventional PCR was 1000 trophozoites.

    CONCLUSIONS: The analytical sensitivity comparison among the conventional PCR, nPCR, qPCR and LAMP reveals that the LAMP outperformed the others in terms of LoD and amplification time. Hence, LAMP is a relevant alternative DNA-based amplification platform for sensitive and specific detection of pathogens.

    Matched MeSH terms: Manganese
  6. Mokhtar MB, Praveena SM, Aris AZ, Yong OC, Lim AP
    Mar Pollut Bull, 2012 Nov;64(11):2556-63.
    PMID: 22901962 DOI: 10.1016/j.marpolbul.2012.07.030
    This study was designed as the first to assess the trace metal (Cd, Cu, Fe, Mn, Ni and Zn) in coral skeleton in relation to metal availabilities and sampling locations in Sabah. The study also aims to determine the differential abilities of Scleractinian coral species as a bioindicator of environmental conditions. Skeletons of Scleractinian coral (Hydnophora microconos, Favia speciosa and Porites lobata) showed concentrations of Fe, Mn and Ni relatively higher than Cd and Zn in the skeletons. Statistical analyses outputs showed significant relationships between trace metal concentrations in coral species and those in seawater and sediment. The highest bioaccumulation factors among three Scleractinian coral species investigated was for Zn followed by Mn, Ni, Fe, Cd and Cu can provide a sign about pollution levels. However, metal tolerance, coral structure and morphology as well as multispecies monitoring are factors that need to be a focus in future studies.
    Matched MeSH terms: Manganese/analysis
  7. Mamat, M., Abdullah, M.A.A., Jaafar, A.M., Soh, S.K.C., Lee, C.E.
    ASM Science Journal, 2018;11(101):105-113.
    MyJurnal
    As textile production flourishes nowadays, the amount of dyed wastewater entering the
    water body has also increased. Dyes could have serious negative impacts to the environment
    and also the human health, hence, they need to be removed from the water body. In this
    study, layered double hydroxide (LDH) of manganese/aluminium (MnAl) was synthesised
    to be used as a potential adsorbent to remove methyl orange (MO) dye due to its unique
    lamellar structure which provides LDH with high anion adsorption and exchange ability.
    MnAl was synthesized by using co-precipitation method and characterized by powder X-ray
    diffraction (PXRD), Fourier-Transform Infrared Spectroscopy (FTIR), Inductively coupled
    plasma atomic emission spectroscopy (ICP-AES) and Carbon, Hydrogen, Nitrogen, Sulphur
    (CHNS) elemental analysers, and Accelerated Surface Area and Porosity Analyzer (ASAP).
    Adsorption studies were conducted at different contact times and dosages of MnAl to evaluate
    the performance of MnAl in removing MO from water. Kinetic and isotherm models were
    tested using pseudo-first order, pseudo-second order, Langmuir isotherm and Freundlich
    isotherm. MnAl LDH was found to be perfectly fitted into pseudo-second order and Langmuir
    isotherm.
    Matched MeSH terms: Manganese
  8. Kasim MF, Darman AKAB, Yaakob MK, Badar N, Kamarulzaman N
    Phys Chem Chem Phys, 2019 Sep 11;21(35):19126-19146.
    PMID: 31432825 DOI: 10.1039/c9cp01664c
    In this study, nano- and microsized zinc oxide (ZnO) materials were doped with different manganese (Mn) contents (1-5 mol%) via a simple sol-gel method. The structural, morphological, optical and chemical environments of the materials were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), UV-visible spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS). XRD results revealed that all synthesised materials were pure and single phased with a hexagonal wurtzite structure of ZnO. However, at a low annealing temperature, a nanorod-like shape can be obtained for all Zn(1-x)MnxO materials. In addition, EDX spectra confirmed the presence of Mn in the ZnO lattice and the atomic percentage was nearly equal to the calculated stoichiometry. UV-vis spectroscopy further revealed that materials in nano size exhibited band gap widening with an increase of the Mn content in the ZnO lattice. In contrast, micron state materials exhibited band gap narrowing with increasing Mn content up to 3% and then begin to widen when Mn > 3%. This is because the band gaps of these materials are affected by the dimensions of the crystals and the Mn content in the materials. Furthermore, XPS results revealed the existence of multiple states of Mn in all synthesised materials. By combining the information obtained from UV-vis and the XPS valence band, shifting in the valence band maximum (VBM) and conduction band minimum (CBM) was observed. Based on XPS results, the calculation of density functional theory studies revealed that the presence of Mn2+, Mn3+, and Mn4+ ions in the materials influences the band gap changes. It was also revealed that the nanosized Zn0.99Mn0.01O exhibited a higher photocatalytic activity than the other samples for degrading methylene blue (MB) dyes, owing to its smallest crystallite size.
    Matched MeSH terms: Manganese
  9. Hasan HA, Abdullah SR, Kofli NT, Kamarudin SK
    J Environ Manage, 2012 Nov 30;111:34-43.
    PMID: 22813857 DOI: 10.1016/j.jenvman.2012.06.027
    Manganese (Mn(2+)) is one of the inorganic contaminant that causes problem to water treatment and water distribution due to the accumulation on water piping systems. In this study, Bacillus sp. and sewage activated sludge (SAS) were investigated as biosorbents in laboratory-scale experiments. The study showed that Bacillus sp. was a more effective biosorbent than SAS. The experimental data were fitted to the Langmuir (Langmuir-1 & Langmuir-2), Freundlich, Temkin, Dubinin-Radushkevich (D-R) and Redlich-Peterson (R-P) isotherms to obtain the characteristic parameters of each model. Mn(2+) biosorption by Bacillus sp. was found to be significantly better fitted to the Langmuir-1 isotherm than the other isotherms, while the D-R isotherm was the best fit for SAS; i.e., the χ(2) value was smaller than that for the Freundlich, Temkin, and R-P isotherms. According to the evaluation using the Langmuir-1 isotherm, the maximum biosorption capacities of Mn(2+) onto Bacillus sp. and SAS were 43.5 mg Mn(2+)/g biomass and 12.7 mg Mn(2+)/g biomass, respectively. The data fitted using the D-R isotherm showed that the Mn(2+) biosorption processes by both Bacillus sp. and SAS occurred via the chemical ion-exchange mechanism between the functional groups and Mn(2+) ion.
    Matched MeSH terms: Manganese/metabolism*
  10. Abu Hasan H, Abdullah SR, Kofli NT, Kamarudin SK
    Bioresour Technol, 2012 Nov;124:355-63.
    PMID: 22995166 DOI: 10.1016/j.biortech.2012.08.055
    This study determined the most effective microbes acting as ammonia-oxidising (AOB) and manganese-oxidising bacteria (MnOB) for the simultaneous removal of ammonia (NH(4)(+)-N) and manganese (Mn(2+)) from water. Two conditions of mixed culture of bacteria: an acclimatised mixed culture (mixed culture: MC) in a 5-L bioreactor and biofilm attached on a plastic medium (stages of mixed culture: SMC) in a biological aerated filter were isolated and identified using Biolog MicroSystem and 16S rRNA sequencing. A screening test for determining the most effective microbe in the removal of NH(4)(+)-N and Mn(2+) was initially performed using SMC and MC, respectively, and found that Bacillus cereus was the most effective microbe for the removal of NH(4)(+)-N and Mn(2+). Moreover, the simultaneous NH(4)(+)-N and Mn(2+) removal (above 95% removal for both NH(4)(+)-N and Mn(2+)) was achieved using a biological aerated filter under various operating conditions. Thus, the strain could act as an effective microbe of AOB and a MnOB for the simultaneous removal of NH(4)(+)-N and Mn(2+).
    Matched MeSH terms: Manganese/metabolism*
  11. Tariq FS, Samsuri AW, Karam DS, Aris AZ, Jamilu G
    Environ Monit Assess, 2019 Mar 21;191(4):232.
    PMID: 30900076 DOI: 10.1007/s10661-019-7359-6
    This study was conducted to determine the effects of rice husk ash (RHA) and Fe-coated rice husk ash (Fe-RHA) on the bioavailability and mobility of As, Cd, and Mn in mine tailings. The amendments were added to the tailings at 0, 5, 10, or 20% (w/w) and the mixtures were incubated for 0, 7, 15, 30, 45, and 60 days. The CaCl2 extractable As, Cd, and Mn in the amended tailings were determined at each interval of incubation period. In addition, the tailings mixture was leached with simulated rain water (SRW) every week from 0 day (D 0) until day 60 (D 60). The results showed that both RHA and Fe-RHA application significantly decreased the CaCl2-extractable Cd and Mn but increased that of As in the tailings throughout the incubation period. Consequently, addition of both RHA and Fe-RHA leached out higher amount of As from the tailings but decreased Cd and Mn concentration compared to the controls. The amount of As leached from the Fe-RHA-amended tailings was less than that from RHA-amended tailings. Application of both RHA and Fe-RHA could be an effective way in decreasing the availability of cationic heavy metals (Cd and Mn) in the tailings but these amendments could result in increasing the availability of anionic metalloid (As). Therefore, selection of organic amendments to remediate metal-contaminated tailings must be done with great care because the outcomes might be different among the elements.
    Matched MeSH terms: Manganese/analysis; Manganese/chemistry
  12. Ali MSM, Zainal Z, Hussein MZ, Wahid MH, Bahrudin NN, Muzakir MM, et al.
    Int J Biol Macromol, 2021 Jun 01;180:654-666.
    PMID: 33722623 DOI: 10.1016/j.ijbiomac.2021.03.054
    The present work developed porous carboxymethyl cellulose (CMC) carbon film from lignocellulosic based materials as supercapacitor electrode. Porous CMC carbon films of bamboo (B) and oil palm empty fruit bunch (O) were prepared through simple incipient wetness impregnation method followed by calcination process before incorporation with manganese oxide (Mn2O3). The carbonization produced porous CMC carbon whereby CMCB exhibited higher surface area than CMCO. After Mn2O3 incorporation, the crystallite size of CMCB and CMCO were calculated as 50.09 nm and 42.76 nm, respectively whereas Mn2O3/CMCB and Mn2O3/CMCO composite films were revealed to be 26.71 nm and 35.60 nm in size, respectively. Comparatively, the Mn2O3/CMCB composite film exhibited higher electrochemical performance which was 31.98 mF cm-2 as compared to 24.15 mF cm-2 by Mn2O3/CMCO composite film and both CMC carbon films with fairly stable cycling stability after 1000 charge-discharge cycles. Therefore, it can be highlighted that Mn2O3/CMC composite film as prepared from bamboo and oil palm fruit can potentially become the new electrode materials for supercapacitor application.
    Matched MeSH terms: Manganese Compounds
  13. Alimon AR, Ivan M, Jalaludin S
    Br J Nutr, 2011 Oct;106(8):1224-30.
    PMID: 21492494 DOI: 10.1017/S0007114511001462
    A 6-month experiment with nine dietary treatments was conducted to determine amounts of S plus Mo supplements required to maintain normal hepatic concentrations of Cu and Mo and to prevent chronic Cu toxicity in lambs fed palm kernel cake (PKC) diets. All diets consisted of PKC supplemented with minerals and vitamins, and with appropriate amounts per kg DM of S (level 0 or level 1 = 1 g) as sodium sulfate and/or Mo (level 0; level 1 = 4 mg; level 2 = 8 mg; level 3 = 16 mg; level 4 = 32 mg) as ammonium molybdate to form treatments S0Mo1, S0Mo2, S0Mo3, S0Mo4, S1Mo0, S1Mo1, S1Mo2, S1Mo3 and S1Mo4.There was no effect (P>0·05) of dietary treatments on the growth performance of the lambs. The dietary supplement of 1 g S plus 8 mg Mo per kg dietary DM (treatment S1Mo2) prevented accumulation of Cu in the liver without elevation of the concentration of Mo (P>0·05). The treatments S0Mo1, S0Mo2 and S0Mo3 increased (P 
    Matched MeSH terms: Manganese/metabolism
  14. Abdollahi Y, Zakaria A, Sairi NA, Matori KA, Masoumi HR, Sadrolhosseini AR, et al.
    ScientificWorldJournal, 2014;2014:726101.
    PMID: 25538962 DOI: 10.1155/2014/726101
    The artificial neural network (ANN) modeling of m-cresol photodegradation was carried out for determination of the optimum and importance values of the effective variables to achieve the maximum efficiency. The photodegradation was carried out in the suspension of synthesized manganese doped ZnO nanoparticles under visible-light irradiation. The input considered effective variables of the photodegradation were irradiation time, pH, photocatalyst amount, and concentration of m-cresol while the efficiency was the only response as output. The performed experiments were designed into three data sets such as training, testing, and validation that were randomly splitted by the software's option. To obtain the optimum topologies, ANN was trained by quick propagation (QP), Incremental Back Propagation (IBP), Batch Back Propagation (BBP), and Levenberg-Marquardt (LM) algorithms for testing data set. The topologies were determined by the indicator of minimized root mean squared error (RMSE) for each algorithm. According to the indicator, the QP-4-8-1, IBP-4-15-1, BBP-4-6-1, and LM-4-10-1 were selected as the optimized topologies. Among the topologies, QP-4-8-1 has presented the minimum RMSE and absolute average deviation as well as maximum R-squared. Therefore, QP-4-8-1 was selected as final model for validation test and navigation of the process. The model was used for determination of the optimum values of the effective variables by a few three-dimensional plots. The optimum points of the variables were confirmed by further validated experiments. Moreover, the model predicted the relative importance of the variables which showed none of them was neglectable in this work.
    Matched MeSH terms: Manganese/chemistry*
  15. Razak MR, Aris AZ, Zakaria NAC, Wee SY, Ismail NAH
    Ecotoxicol Environ Saf, 2021 Mar 15;211:111905.
    PMID: 33453636 DOI: 10.1016/j.ecoenv.2021.111905
    The constant increase of heavy metals into the aqueous environment has become a contemporary global issue of concern to government authorities and the public. The study assesses the concentration, distribution, and risk assessment of heavy metals in freshwater from the Linggi River, Negeri Sembilan, Malaysia. Species sensitivity distribution (SSD) was utilised to calculate the cumulative probability distribution of toxicity from heavy metals. The aquatic organism's toxicity data obtained from the ECOTOXicology knowledgebase (ECOTOX) was used to estimate the predictive non-effects concentration (PNEC). The decreasing sequence of hazardous concentration (HC5) was manganese > aluminium > copper > lead > arsenic > cadmium > nickel > zinc > selenium, respectively. The highest heavy metal concentration was iron with a mean value of 45.77 μg L-1, followed by manganese (14.41 μg L-1) and aluminium (11.72 μg L-1). The mean heavy metal pollution index (HPI) value in this study is 11.52, implying low-level heavy metal pollutions in Linggi River. The risk quotient (RQ) approaches were applied to assess the potential risk of heavy metals. The RQ shows a medium risk of aluminium (RQm = 0.1125) and zinc (RQm = 0.1262); a low risk of arsenic (RQm = 0.0122) and manganese (RQm = 0.0687); and a negligible risk of cadmium (RQm = 0.0085), copper (RQm = 0.0054), nickel (RQm = 0.0054), lead (RQm = 0.0016) and selenium (RQm = 0.0012). The output of this study produces comprehensive pollution risk, thus provides insights for the legislators regarding exposure management and mitigation.
    Matched MeSH terms: Manganese
  16. Nasir AM, Goh PS, Ismail AF
    Chemosphere, 2018 Jun;200:504-512.
    PMID: 29501887 DOI: 10.1016/j.chemosphere.2018.02.126
    A novel hydrous iron-nickel-manganese (HINM) trimetal oxide was successfully fabricated using oxidation and coprecipitation method for metalloid arsenite removal. The atomic ratio of Fe:Ni:Mn for this adsorbent is 3:2:1. HINM adsorbent was identified as an amorphous nanosized adsorbent with particle size ranged from 30 nm to 60 nm meanwhile the total active surface area and pore diameter of HINM area of 195.78 m2/g and 2.43 nm, respectively. Experimental data of arsenite adsorption is best fitted into pseudo-second order and Freundlich isotherm model. The maximum adsorption capacity of arsenite onto HINM was 81.9 mg/g. Thermodynamic study showed that the adsorption of arsenite was a spontaneous and endothermic reaction with enthalpy change of 14.04 kJ/mol and Gibbs energy of -12 to -14 kJ/mol. Zeta potential, thermal gravimetric (TGA) and Fourier transform infrared (FTIR) analysis were applied to elucidate the mechanism of arsenite adsorption by HINM. Mechanism of arsenite adsorption by HINM involved both chemisorption and physisorption based on the electrostatic attraction between arsenite ions and surface charge of HINM. It also involved the hydroxyl substitution by arsenite ions through the formation of inner-sphere complex. Reusability of HINM trimetal oxide was up to 89% after three cycles of testing implied that HINM trimetal oxide is a promising and practical adsorbent for arsenite.
    Matched MeSH terms: Manganese Compounds/chemistry*
  17. Ahmad H, Haseen U, Umar K, Ansari MS, Ibrahim MNM
    Mikrochim Acta, 2019 08 27;186(9):649.
    PMID: 31456042 DOI: 10.1007/s00604-019-3753-6
    The authors describe a method for solvent-free mechano-chemical synthesis of a bioinspired sorbent. A 2D ultra-thin carbon sheet similar to graphene oxide was prepared using a natural waste (onion sheet). The formation of 2D carbon sheets was confirmed by Raman spectroscopy, X-ray photoelectron spectroscopy and ATR-IR. The surface morphology was characterized by field emission scanning electron microscopy and high-resolution tunneling electron microscopy. The carbon sheets were decorated with crystalline MnFe2O4 nanoparticles by solid-state reaction at room temperature. The presence of magnetic particles in the final product was confirmed by vibrating sample magnetometry and electron microscopy. The synergistic effect of carbon sheets and MnFe2O4 led to an enhanced sorption of arsenic species compared to bare carbon sheets or to MnFe2O4 nanoparticles. A column was prepared for the simultaneous preconcentration and determination of trace levels of As(III) and As(V) from water samples. The preconcentration factors are between 900 and 833 for As(III) and As(V) species, respectively. The linearity of the calibration plot ranges from 0.4-10 ng mL-1. The detection limits (at 3σ) for both As(III) and As(V) are 30 pg mL-1. The Student's t values for the analysis of spiked samples are lower than the critical Student's t values at a 95% confidence level. The recoveries from spiked water samples range between 99 and 102.8%. Graphical abstract Schematic representation of the preparation of carbon sheets similar to graphene oxide from onion sheaths after pyrolysis at 800 °C. The prepared carbon sheet-MnFe2O4 composite shows excellent arsenic sorption and preconcentration down to the pg mL-1 concentration.
    Matched MeSH terms: Manganese Compounds
  18. Alkarkhi AFM, Alqaraghuli WAA, Mohamed Zam NR, Manan DMA, Mahmud MN, Huda N
    Data Brief, 2020 Jun;30:105414.
    PMID: 32258278 DOI: 10.1016/j.dib.2020.105414
    Data on the mineral composition and content of one heavy metal measured in three different fruit flours prepared from ripe and unripe fruits (pulp and peel) are presented. The mineral composition (sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), zinc (Zn), copper (Cu), iron (Fe) and manganese (Mn)) and content of one heavy metal (lead (Pb)) of the flours were analyzed by atomic absorption spectrophotometry. The analysis showed that the data can be used for differentiation between different fruits and stages of ripeness, as revealed by discriminant analysis and cluster analysis. The data provided can be used by researchers and scientists in the differentiation of fruits based on major and minor mineral elements.
    Matched MeSH terms: Manganese
  19. Rudi NN, Muhamad MS, Te Chuan L, Alipal J, Omar S, Hamidon N, et al.
    Heliyon, 2020 Sep;6(9):e05049.
    PMID: 33033772 DOI: 10.1016/j.heliyon.2020.e05049
    Manganese has recently been a topic of interest among researchers, particularly when 1,752 million tonnes of manganese are expected to be produced by the steel industry in 2020. Manganese discharges from industrial effluents have increased manganese contamination in water sources. Its concentrations of more than 0.2 mg/L in the water sources could have negative impacts on human health and the aquatic ecosystem. Thereby, the available water treatment processes face challenges in effectively removing manganese at low cost. In response to these challenges, adsorption has emerged as one of the most practical water treatment processes for manganese removal. In particular, agricultural waste adsorbents received a lot of attention owing to their low cost and high efficiency (99%) in the removal of manganese. Therefore, this paper reviews the removal of manganese by adsorption process using agricultural waste adsorbents. The factors affecting the adsorption process, the mechanisms, and the performances of the adsorbents are elucidated in detail.
    Matched MeSH terms: Manganese
  20. Rizwan Z, Zakaria A, Ghazali MS
    Int J Mol Sci, 2011;12(3):1625-32.
    PMID: 21673911 DOI: 10.3390/ijms12031625
    Photopyroelectric (PPE) spectroscopy is a nondestructive tool that is used to study the optical properties of the ceramics (ZnO + 0.4MnO(2) + 0.4Co(3)O(4) + xV(2)O(5)), x = 0-1 mol%. Wavelength of incident light, modulated at 10 Hz, was in the range of 300-800 nm. PPE spectrum with reference to the doping level and sintering temperature is discussed. Optical energy band-gap (E(g)) was 2.11 eV for 0.3 mol% V(2)O(5) at a sintering temperature of 1025 °C as determined from the plot (ρhυ)(2)versushυ. With a further increase in V(2)O(5), the value of E(g) was found to be 2.59 eV. Steepness factor 'σ(A)' and 'σ(B)', which characterize the slope of exponential optical absorption, is discussed with reference to the variation of E(g). XRD, SEM and EDAX are also used for characterization of the ceramic. For this ceramic, the maximum relative density and grain size was observed to be 91.8% and 9.5 μm, respectively.
    Matched MeSH terms: Manganese Compounds/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links