METHODS: Wistar rats employed for this study consisted of normoglycaemic and diabetic rats in nine experimental groups. The normoglycaemic and diabetic rats were either treated with metformin (500 mg/kg b.w.), quercetin (10 mg/kg b.w.), or ethanol extract of H. verticillata leaf (250 mg/kg b.w. and 500 mg/kg b.w.) administered orally for 28 days.
KEY FINDINGS: Results revealed that H. verticillata significantly lowered blood glucose level, attenuated dyslipidaemia, decreased atherogenic coefficient, atherogenic and coronary risk indices, and increased cardioprotective index in diabetic rats. Also, H. verticillata significantly decreased serum urea, creatinine, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and unconjugated bilirubin levels, relative to untreated diabetic rats. Further, H. verticillata increased serum superoxide dismutase, catalase and glutathione peroxidase activities and glutathione level, and decreased malondialdehyde level in diabetic rats in a manner similar to metformin and quercetin. Histopathological investigation of the liver and kidney revealed restored hepatocytes and amelioration of congested interstitial blood vessel of the Bowman's space of the kidneys upon intervention with H. verticillata.
SIGNIFICANCE: H. verticillata in addition to its anti-hyperglycaemic activity ameliorates oxidative stress, dyslipidaemia, atherogenicity and hepatorenal lesions in DM.
Methods: A systematic search using predefined search terms in three scholarly databases, ScienceDirect, Google Scholar, and PubMed, was conducted. Original research articles published in the English language between 2012 and 2020 that reported renal outcomes associated with the use of non-insulin AD pharmacotherapy were eligible for inclusion. Review articles, meta-analysis studies, and conference proceedings were excluded. A study-specific data extraction form was designed to extract the author's name, country, publication year, study design, study population, objectives, key findings, and conclusions. A narrative review of the key findings that focused on renal outcomes and renal safety issues was conducted.
Results: Of the 18,872 results identified through the initial search, a total of 32 articles were included in this review. Of these, 18 of the included articles reported the renal outcomes of newer antidiabetic medications, eg, SGLT2 inhibitors and GLP-1 agonists. Eight studies focussed on the well-established antidiabetic medications, eg, metformin and sulphonylureas. The review reported three main types of the clinical impact of the prescribed AD on the renal outcomes: "renoprotective effects", "no additional risk" and "associated with a decline in renal parameters". Seventeen studies reported the renoprotective effects of AD, including SGLT2i studies (n=8), GLP1 studies (n=6), and DPP4i studies (n=3). The reported renoprotective effects included slowing down the GFR decline, improving albuminuria, and reducing renal adverse events. The "no additional risk" impact was reported in eight studies, including DPP4i studies (n=3), two SGLT2i studies (n=2), metformin studies (n=2), and one study involving pioglitazone. Furthermore, seven studies highlighted the "associated with a decline in renal parameters" effect. Of these, three involved SGLT2i, two with metformin, and one for each DPP4i and sulphonylurea.
Conclusion: More than half of the studies included in this review supported the renoprotective effects associated with the use of AD medications, particularly GLP-1A, SGLT2i, and some of the DPP4i. Further studies involving patients with various stages of chronic kidney disease (CKD) are required to compare AD medications' renal effects, particularly the newer agents.
Methodology: A total of 205 patients who fit eligibility criteria were included in the study. A questionnaire was completed, and blood was drawn to study vitamin B12 levels. Vitamin B12 deficiency was defined as serum B12 level of ≤300 pg/mL (221 pmol/L).
Results: The prevalence of vitamin B12 deficiency among metformin-treated patients with type 2 DM patients was 28.3% (n=58). The median vitamin B12 level was 419 (±257) pg/mL. The non-Malay population was at a higher risk for metformin-associated vitamin B12 deficiency [adjusted odds ratio (OR) 3.86, 95% CI: 1.836 to 8.104, p<0.001]. Duration of metformin use of more than five years showed increased risk for metformin-associated vitamin B12 deficiency (adjusted OR 2.06, 95% CI: 1.003 to 4.227, p=0.049).
Conclusion: Our study suggests that the prevalence of vitamin B12 deficiency among patients with type 2 diabetes mellitus on metformin in our population is substantial. This is more frequent among the non-Malay population and those who have been on metformin for more than five years.
OBJECTIVES: The present study investigated the protective effect of Malaysian propolis on diabetes-induced subfertility/infertility. Additionally, its combined beneficial effects with metformin were investigated.
MATERIALS AND METHODS: Forty adult male Sprague Dawley rats were randomly assigned into five groups, namely normal control, diabetic control, diabetic + Malaysian propolis (300 mg/k.g. b.w.), diabetic + metformin (300 mg/kg b.w.) and diabetic + Malaysian propolis + metformin. Diabetes was induced using a single intraperitoneal injection of streptozotocin (60 mg/kg b.w.) and treatment lasted for 4 weeks. During the 4th week, mating behavioural experiments were performed using sexually receptive female rats. Thereafter, fertility parameters were assessed in the female rats.
RESULTS: Malaysian propolis increased serum and intratesticular free testosterone levels, up-regulated the mRNA levels of AR and luteinizing hormone receptor, up-regulated the mRNA and protein levels of StAR, CYP11A1, CYP17A1, 3β-HSD and 17β-HSD in the testes of diabetic rats. Furthermore, Malaysian propolis up-regulated testicular MCT2, MCT4 and lactate dehydrogenase type C mRNA levels, in addition to improving sperm parameters (count, motility, viability and normal morphology) and decreasing sperm nDNA fragmentation in diabetic rats. Malaysian propolis improved mating behaviour by increasing penile guanosine monophosphate levels. Malaysian propolis also improved fertility outcome as seen with decreases in pre- and post-implantation losses, increases in gravid uterine weight, litter size per dam and foetal weight. Malaysian propolis's effects were comparable to metformin. However, their combination yielded better results relative to the monotherapeutic interventions.
CONCLUSION: Malaysian propolis improves fertility potential in diabetic state by targeting steroidogenesis, testicular lactate metabolism, spermatogenesis and mating behaviour, with better effects when co-administered with metformin. Therefore, Malaysian propolis shows a promising complementary effect with metformin in mitigating Diabetes mellitus-induced subfertility/infertility.