Displaying publications 41 - 60 of 191 in total

Abstract:
Sort:
  1. Dong L, Caruso F, Lin M, Liu M, Gong Z, Dong J, et al.
    J Acoust Soc Am, 2019 06;145(6):3289.
    PMID: 31255103 DOI: 10.1121/1.5110304
    Whistles emitted by Indo-Pacific humpback dolphins in Zhanjiang waters, China, were collected by using autonomous acoustic recorders. A total of 529 whistles with clear contours and signal-to-noise ratio higher than 10 dB were extracted for analysis. The fundamental frequencies and durations of analyzed whistles were in ranges of 1785-21 675 Hz and 30-1973 ms, respectively. Six tonal types were identified: constant, downsweep, upsweep, concave, convex, and sine whistles. Constant type was the most dominant tonal type, accounting for 32.51% of all whistles, followed by sine type, accounting for 19.66% of all whistles. This paper examined 17 whistle parameters, which showed significant differences among the six tonal types. Whistles without inflections, gaps, and stairs accounted for 62.6%, 80.6%, and 68.6% of all whistles, respectively. Significant intraspecific differences in all duration and frequency parameters of dolphin whistles were found between this study and the study in Malaysia. Except for start frequency, maximum frequency and the number of harmonics, all whistle parameters showed significant differences between this study and the study conducted in Sanniang Bay, China. The intraspecific differences in vocalizations for this species may be related to macro-geographic and/or environmental variations among waters, suggesting a potential geographic isolation among populations of Indo-Pacific humpback dolphins.
    Matched MeSH terms: Signal-To-Noise Ratio
  2. Shaffiq Said Rahmat SM, Abdul Karim MK, Che Isa IN, Abd Rahman MA, Noor NM, Hoong NK
    Comput Biol Med, 2020 08;123:103840.
    PMID: 32658782 DOI: 10.1016/j.compbiomed.2020.103840
    BACKGROUND: Unoptimized protocols, including a miscentered position, might affect the outcome of diagnostic in CT examinations. In this study, we investigate the effects of miscentering position during CT head examination on the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR).

    METHOD: We simulate the CT head examination using a water phantom with a standard protocol (120 kVp/180 mAs) and a low dose protocol (100 kVp/142 mAs). The table height was adjusted to simulate miscentering by 5 cm from the isocenter, where the height was miscentered superiorly (MCS) at 109, 114, 119, and 124 cm, and miscentered inferiorly (MCI) at 99, 94, 89, and 84 cm. Seven circular regions of interest were used, with one drawn at the center, four at the peripheral area of the phantom, and two at the background area of the image.

    RESULTS: For the standard protocol, the mean CNR decreased uniformly as table height increased and significantly differed (p 

    Matched MeSH terms: Signal-To-Noise Ratio
  3. Ibrahimzubil, A.R., Nor Hassim, I., Thaherah Nor
    MyJurnal
    Comparative cross sectional study was conducted to determine the prevalence of hearing impairment among workers in one of the airport in Malaysia and the factors associated with it. A total of 248 subjects comprising 175 from the exposed group and the remaining control group were sampled. The main tools used in this study were validated questionnaire on hearing assessment and pure tone audiometric test. Response rate was 94%. Both area and personal exposure monitoring have exceeded action level for 8 Hrs TWA in the exposed group but within normal limit in the control group. The prevalence of hearing impairment was 88% among the noise exposed group and 11% in the control group with prevalence odds ratio (POR) 3.569 (95%CI 1.210-10.53, p
    Matched MeSH terms: Noise
  4. Farah Elida Selamat, Rozli Zulkifli
    MyJurnal
    Acoustics issues such as noise in the workplace remains one of the most prevalence occupational hazard especially in
    the manufacturing industry with heavy machineries. Increasing mechanization in all industries and most trades has
    since proliferated the noise problem. In Malaysia, much has been studied and is known about the auditory effects of
    noise. However less attention has been given to the non-auditory effects of noise such as annoyance, stress, and work
    performance, and concern about such effects is a relatively recent phenomenon. In view of this, this study aims to
    determine the level of noise from different type of machines and tools in a manufacturing plant and also the effects
    of noise to the employees. A structured questionnaire was used to assess the effects of noise on the workers and
    sound level meter was used to measure the noise level at selected work areas. The results of this study showed that
    nearly all the identified work areas exceeded the action level of 85 dB(A) and four of these areas noise levels’ are
    more than 90 dB(A) which is the permissible exposure limit according to the Factories and Machinery (Noise
    Exposure) Regulations 1989. For the questionnaire, it was found that annoyance topped the noise effects list with
    51.4%, followed by stress with 40.0%, hearing deterioration (14.3%) and job performance deterioration (2.9%). As a
    conclusion, noise control or preventive measures are suggested in order to minimize the health risks from noise
    exposure.
    Matched MeSH terms: Noise
  5. Mohd Zahiruddin Zukfali, Haliza Abdul Rahman
    MyJurnal
    The objective of study is to determine traffic noise level and non-auditory effect among shop lot workers at Kajang Selangor. This cross sectional study was carried to study traffic noise exposure with annoyance and work performance level among shop lot workers in Jalan Mendaling, JalanTukang and Jalan Sulaiman at Kajang town, Selangor. This study involves 120 shop lot workers that exposed to the traffic noise during their working hours where they are randomly selected. Noise exposure was estimated using the Sound Level Meter for environmental noise. The traffic volume was recorded using video recorder and calculated using tally counter. One set questionnaire consist standard questionnaire was used to assess the annoyance level and work performance level among the respondents. Respondents were predominantly by male which are 94 and female, 26 respondents. The mean age of the respondent were ranged between 41 to 60 years old. Only 12.5% of respondent are ranged 21 until 30 years old. In total of 120 respondent, 54.2% of them are Chinese while Malay and India only 30% and 15.8% respectively. The result showed that the traffic noise level at study areas are exceeded the permissible sound limit of commercial and business area during daylight which is 70 dB(A). Regarding work performance, 94 respondents are having low work performance level and 82% of respondent high annoyance level during the exposure of traffic noise from four different sources which are noise from the traffic, speeding vehicle, high traffic volume and exhaust system. There is a significant relationship between traffic noise level with work performance level (p=0.001) and annoyance level (p=0.026). The average traffic noise (Laeq) level at Jalan Mendaling, Jalan Tukang and Jalan Sulaiman is 71.19 dB(A) which were high and exceeds permissible sound level from road traffic, commercial and business place at day time, 70 dB(A). The exposure from the traffic noise effect the annoyance level and work performance level among the shop lot worker. In order to reduce traffic noise exposure towards the shop lot workers, some recommendation are needed to control the traffic noise such as build a noise barrier, plant trees and also enforcement of legal requirement in noise level.
    Matched MeSH terms: Noise
  6. Anuar, I., Mohamad Jauhari, J., Mohd Riduan, A.
    MyJurnal
    Background: Level of comfort in working environment can contribute to increase level of health, emotion during working, level of safety, quality and productivity of work. A study of physical factors (heat, noise and lighting) is important to determine the level of comfort during working. This study was carried out to study those physical factors upon comfort level during working among Casting Shop workers in a car manufacturing factory.

    Methods: Instruments for the physical monitoring including Questemp°36 Thermal Environment Monitor, Sound Level Meter and Lux Meter were used at seven measured areas. The information about the level of comfort during working was collected using questionnaires among 65 respondents by random sampling method.

    Results: Measured data showed there were four measured areas which Wet Bulb Globe Temperature indoor (WBGTi) value are above the standard limit recommended by ACGIH, three measured areas recorded noise level above the standard limit recommended by Factories and Machineries (Noise Exposure) 1989, while there was no measured area recorded lighting reading below the standard limit recommended by MS ISO 8995:2005. Result from questionnaire found that the majority of the workers did not feel comfortable towards the heat and noise level in their workplace while most of the respondents felt comfortable towards lighting level in their workplace. Mean of WBGTi reading and lighting reading have a significant difference (p
    Matched MeSH terms: Noise
  7. Mohamad, M., Yusoff, A.N., Mukari, S.Z.M., Abdullah, A., Abd Hamid, A.I.
    MyJurnal
    This study was carried out to investigate the effects of noisy background on brain activation during a working memory task. Fourteen healthy male subjects underwent silent functional Magnetic Resonance Imaging (fMRI) scans while listening to words presented verbally against quiet (WIS) and noisy (WIN) backgrounds. The stimuli were binaurally presented to the subjects at 70 dB sound pressure level (SPL) in both conditions. Group results indicated significant (p < 0.001) bilateral widespread of brain activations in the primary auditory cortex, superior temporal gyrus, inferior frontal gyrus, supramarginal gyrus and inferior parietal lobes during WIS. Additional significant activation was observed in the middle cingulate cortex and anterior cingulate cortex during WIN, suggesting the involvement of cingulate cortex in working memory processing against a noisy background. The mean percentage of signal change in all regions was higher during WIN as compared to WIS. Right hemispheric predominance was observed for both conditions in primary auditory cortex and middle frontal gyrus and this could be attributed to the increased difficulty of the tasks. The results obtained from this study demonstrated that background noise increased task demand and difficulty. Task demand was found to play an important role in determining the activation magnitude in the brain areas during working memory task.
    Matched MeSH terms: Noise
  8. Ng, Sok Bee, Ahmad Nazlim Yusoff, Teng, Xin Ling, Aini Ismafairus Abd. Hamid
    MyJurnal
    Knowledge about the hemodynamic model that mediates synaptic activity and measured magnetic resonance signal is essential in understanding brain activation. Neural efficacy is a hemodynamic parameter that would change the evoked hemodynamic responses. In this work, brain activation and neural efficacy of the activated brain areas during simple addition task in two different backgrounds were studied using fMRI. The objectives were to determine the activated areas during the performance of arithmetic addition in quiet (AIQ) and noisy (AIN) background and to investigate the relationship between neural efficacy and height extent of activation for the respective areas. Eighteen healthy male participants performed simple arithmetic addition in quiet and in noise. Bilateral cerebellum, superior temporal gyrus (STG), temporal pole (TP) and supplementary motor area (SMA) were significantly (p < 0.05) activated during AIQ and AIN. Left middle frontal gyrus (L-MFG), right superior frontal gyrus (R-SFG), right superior orbital gyrus (R-SOG) and bilateral insula were more active in quiet as compared to in noise while the left middle cingulate cortex (L-MCC), left amygdala (L-AMG), right temporal pole (R-TP) and left cerebellum (L-CER) were more active in noise as compared to in quiet. The t value for most of the activated regions was found to be inversely proportional to the neural efficacy. Significant (p < 0.05) negative relationship between t value and neural efficacy were found for R-STG and bilateral cerebellum during AIQ, while for AIN, similar relationships were found in R-CER, R-STG and R-TP. This study suggests that while being significantly activated, the hemodynamic responses of these brain regions could have been suppressed by the stimulus resulting in an intensity decrease with increasing neural efficacy.
    Matched MeSH terms: Noise
  9. Sofia Jaffer, Mohd Shakil Razi
    MyJurnal
    This retrospective study was conducted at the audiology clinic of UKM in the year 2000. It was intended to detect the effect of walkman on the hearing system of its users and to investigate whether distortion product otoacoustic emission test can provide an early and reliable sign of cochlear damage or not. Distortion product otoacoustic emission test helps to determine the function of outer hair cell. Outer hair cells get damaged with exposure to loud sound, drugs and aging. Thirty subjects (20 in the study group and 10 in the control group), between the ages of 19-25 years, who fulfilled all the criteria of selection, were investigated. There were two sets of criteria (general and specific). Anyone, in the control or study group, failing in any of these criteria was excluded from the study. According to the general criteria, it was essential for all the subjects to have clean ear canals, normal hearing at all the frequencies (250Hz- 8000Hz), normal middle ear function (Type A tympanogram), no middle ear problem, not used/using any ototoxic medicine, no family history of hearing loss, no history of ear surgery, not exposed to any form of loud noise like disco, concert, F1 racing or gun shooting. According to the special criteria it was essential for the subjects in the control group to have never used a walkman and those in the study group must have been using a walkman for at least 6 months. Comparison of distortion product emission levels between control and study groups revealed that emissions were significantly lower in the study group, across all the frequencies, suggesting outer hair cell damage in the walkman users. These differences reached level of statistical significance (p<0.05) at 2, 4, 6 and 8kHz. Using walkman at an intensity unsafe for hearing and a duration longer than recommended is suspected for the outer hair cell damage in our study group. Those using walkman for longer duration and higher intensity manifested much lower emission levels. Our study supports the literature that distortion product emission test is a much sensitive test than pure-tone audiometry, as it can detect cochlear damage long before it appears in an audiogram. It is recommended that people who are exposed to loud noise regularly should be monitored with distortion product emission test. It is suggested that the use of walkman.
    Study site: Audiology clinic, Pusat Perubatan Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
    Matched MeSH terms: Noise
  10. Loh SH, Nur Iryani Mohd Yusof, How ML
    A method for the determination of aflatoxins B1 and B2 in peanuts and corn based products is described. The samples were extracted with a mixture of acetonitrile-water (84:16), followed by multifunctional clean-up and liquid chromatography with fluorescence detection. Both calibration curves showed good correlation from 4.0 to 32.0 ppb for aflatoxin B1 (r=0.9999) and 1.2 to 9.6 ppb for aflatoxin B2 (r=0.9997). The detection limit of aflatoxins B1 and B2 were established at 0.1 and 0.03 ppb, respectively, based on signal-to-noise ratio of 3:1. Average recoveries for the determination of aflatoxins B1 and B2 at 10 and 3 ppb spiking levels, respectively ranged from 94.2 to 107.6%. A total of 20 peanut samples and corn based products were obtained from retail shop and local market around Kuala Terengganu and analyzed for aflatoxins B1 and B2 contents, using the proposed method. Aflatoxins B1 and B2 were detected in 5 out of the 9 peanuts samples and 5 out of the 11 corn based products, at levels ranging from 0.2 to 101.8 ppb.
    Matched MeSH terms: Signal-To-Noise Ratio
  11. Chan KL, Choo CY, Morita H, Itokawa H
    Planta Med, 1998 Dec;64(8):741-5.
    PMID: 17253320 DOI: 10.1055/s-2006-957570
    An analytical method using HPLC with UV detection was developed to investigate the quassinoid content of Eurycoma longifolia Jack (Simaroubaceae) collected from various sources. Eurycomanone (1), longilactone (2), 14,15beta-dihydroxyklaineanone (3), 15beta-acetyl-14-hydroxyklaineanone (4), 6alpha-hydroxyeurycomalactone (5), and eurycomalactone (7) were isolated as reference standards and together with the synthesized 1beta,12alpha,15beta-triacetyleurycomanone (6, internal standard), were identified by NMR, MS, UV and IR spectroscopies. Their coefficient of variation values for 0.50-35 microg ml(-1) concentrations of quassinoids and their retention times measured within- and between-day were small. The recoveries of the spiked quassinoids in E. longifolia samples and their detection limits at 8.5 times signal to noise ratio were 99.75-109.13% and 0.01 microg ml(-1), respectively. From the root samples analysed, 1 had the highest concentration, being about 16.8-39.6 fold higher than the other quassinoids 2, 3, 5, 7 but 145.3 fold higher than 4 which showed the lowest concentration.
    Matched MeSH terms: Signal-To-Noise Ratio
  12. Waeleh N, Saripan MI, Musarudin M, Mashohor S, Ahmad Saad FF
    Appl Radiat Isot, 2021 Oct;176:109885.
    PMID: 34385090 DOI: 10.1016/j.apradiso.2021.109885
    The present study was conducted to determine quantitatively the correlation between injected radiotracer and signal-to-noise ratio (SNR) based on differences in physiques and stages of cancer. Eight different activities were evaluated with modelled National Electrical Manufacturers Association (NEMA) of the International Electrotechnical Commission (IEC) PET's phantom with nine different tumour-to-background ratio (TBR). The findings suggest that the optimal value of dosage is required for all categories of patients in the early stages of cancer diagnosis.
    Matched MeSH terms: Signal-To-Noise Ratio
  13. Kamaruddin NH, Bakar AAA, Mobarak NN, Zan MSD, Arsad N
    Sensors (Basel), 2017 Oct 06;17(10).
    PMID: 28984826 DOI: 10.3390/s17102277
    The study of binding affinity is essential in surface plasmon resonance (SPR) sensing because it allows researchers to quantify the affinity between the analyte and immobilised ligands of an SPR sensor. In this study, we demonstrate the derivation of the binding affinity constant, K, for Pb2+and Hg2+ions according to their SPR response using a gold/silver/gold/chitosan-graphene oxide (Au/Ag/Au/CS-GO) sensor for the concentration range of 0.1-5 ppm. The higher affinity of Pb2+to binding with the CS-GO sensor explains the outstanding sensitivity of 2.05 °ppm-1against 1.66 °ppm-1of Hg2+. The maximum signal-to-noise ratio (SNR) upon detection of Pb2+is 1.53, and exceeds the suggested logical criterion of an SNR. The Au/Ag/Au/CS-GO SPR sensor also exhibits excellent repeatability in Pb2+due to the strong bond between its functional groups and this cation. The adsorption data of Pb2+and Hg2+on the CS-GO sensor fits well with the Langmuir isotherm model where the affinity constant, K, of Pb2+and Hg2+ions is computed. The affinity of Pb2+ions to the Au/Ag/Au/CS-GO sensor is significantly higher than that of Hg2+based on the value of K, 7 × 10⁵ M-1and 4 × 10⁵ M-1, respectively. The higher shift in SPR angles due to Pb2+and Hg2+compared to Cr3+, Cu2+and Zn2+ions also reveals the greater affinity of the CS-GO SPR sensor to them, thus supporting the rationale for obtaining K for these two heavy metals. This study provides a better understanding on the sensing performance of such sensors in detecting heavy metal ions.
    Matched MeSH terms: Signal-To-Noise Ratio
  14. Alsaih K, Lemaitre G, Rastgoo M, Massich J, Sidibé D, Meriaudeau F
    Biomed Eng Online, 2017 Jun 07;16(1):68.
    PMID: 28592309 DOI: 10.1186/s12938-017-0352-9
    BACKGROUND: Spectral domain optical coherence tomography (OCT) (SD-OCT) is most widely imaging equipment used in ophthalmology to detect diabetic macular edema (DME). Indeed, it offers an accurate visualization of the morphology of the retina as well as the retina layers.

    METHODS: The dataset used in this study has been acquired by the Singapore Eye Research Institute (SERI), using CIRRUS TM (Carl Zeiss Meditec, Inc., Dublin, CA, USA) SD-OCT device. The dataset consists of 32 OCT volumes (16 DME and 16 normal cases). Each volume contains 128 B-scans with resolution of 1024 px × 512 px, resulting in more than 3800 images being processed. All SD-OCT volumes are read and assessed by trained graders and identified as normal or DME cases based on evaluation of retinal thickening, hard exudates, intraretinal cystoid space formation, and subretinal fluid. Within the DME sub-set, a large number of lesions has been selected to create a rather complete and diverse DME dataset. This paper presents an automatic classification framework for SD-OCT volumes in order to identify DME versus normal volumes. In this regard, a generic pipeline including pre-processing, feature detection, feature representation, and classification was investigated. More precisely, extraction of histogram of oriented gradients and local binary pattern (LBP) features within a multiresolution approach is used as well as principal component analysis (PCA) and bag of words (BoW) representations.

    RESULTS AND CONCLUSION: Besides comparing individual and combined features, different representation approaches and different classifiers are evaluated. The best results are obtained for LBP[Formula: see text] vectors while represented and classified using PCA and a linear-support vector machine (SVM), leading to a sensitivity(SE) and specificity (SP) of 87.5 and 87.5%, respectively.

    Matched MeSH terms: Signal-To-Noise Ratio
  15. Habybabady RH, Mortazavi SB, Khavanin A, Mirzaei R, Arab MR, Mesbahzadeh B, et al.
    Malays J Med Sci, 2018 Sep;25(5):48-58.
    PMID: 30914862 DOI: 10.21315/mjms2018.25.5.5
    Background: Noise exposure causes loss of cochlea hair cells, leading to permanent sensorineural hearing loss, and initiates pathological changes to the bipolar primary auditory neurons (ANs). This study focuses on the effects of N-acetyl-l-cysteine (NAC) in protecting the density of spiral ganglion cells and in histological changes induced by continuous noise exposure in rats.

    Methods: Twenty-four male Wistar rats were randomly allocated into four experimental groups to receive NAC, saline, noise, or both noise and NAC. Noise exposure continued for ten days. Saline and NAC were injected daily during the noise exposure, and 2 days before and after the noise exposure. Evaluation of cochlear histopathology and the density of spiral ganglion cells was performed 21 days after exposure.

    Results: In the animals exposed to noise, a reduction in the density of spiral ganglion cells was evident in both the basal and middle turns of the cochlea. This improved on receiving NAC treatment (P = 0.046). In the histopathology evaluation, some histological changes, such as disorganised architecture of the outer hair and supporting cells and a slightly thickened basilar membrane, were found in the basal turns in the noise group.

    Conclusion: NAC offered partial protection against noise exposure by improving the density of spiral ganglion cells and reducing morphological changes.

    Matched MeSH terms: Noise
  16. Saffree Jeffree M, Ismail N, Awang Lukman K
    J Occup Health, 2016 Sep 30;58(5):434-443.
    PMID: 27488035
    INTRODUCTION: Hearing impairment remains the main occupational health problem in the manufacturing industry, and its contributing factors have not been well controlled.

    METHODS: Unmatched case control and comparative studies were carried out among fertilizer factory workers in Sarawak with the aim of determining contributing factors for hearing impairment. Respondents consisted of 49 cases that were diagnosed from 2005 to 2008 with 98 controls from the same work places. Chi-square test and Mann-Whitney test were used in a univariate analysis to determine the association between hearing impairment and the contributing risks being studied.

    RESULTS: The results of the univariate analysis showed that hearing impairment was significantly (p<0.05) associated with older age, lower education level, high smoking dose, high occupational daily noise dose, longer duration of service, infrequent used of hearing protection device (HPD), and low perception of sound on HPD usage. Multivariate logistic regression of hearing impairment after controlling for age found the following five variables: occupational daily noise dose ≥50% (OR 3.48, 95% CI 1.36-8.89), ≥15 years of services (OR 2.92, 95% CI 1.16-7.33), infrequent use of HPD (OR 2.79, 95% CI 1.15-6.77), low perception of sound on HPD (POR 2.77, 95% CI 1.09-6.97), and smoking more than 20 packs per year (OR 4.71, 95% CI 1.13-19.68).

    DISCUSSION: In conclusion, high occupational noise exposure level, longer duration of service, low perception of sound on HPD, infrequent used of HPD, and smoking more than 20 packs per year were the contributing factors to hearing impairment, and appropriate intervention measures should be proposed and taken into considerations.

    Matched MeSH terms: Hearing Loss, Noise-Induced/etiology*; Hearing Loss, Noise-Induced/prevention & control; Noise, Occupational/adverse effects*
  17. Sim KS, Kiani MA, Nia ME, Tso CP
    J Microsc, 2014 Jan;253(1):1-11.
    PMID: 24164248 DOI: 10.1111/jmi.12089
    A new technique based on cubic spline interpolation with Savitzky-Golay noise reduction filtering is designed to estimate signal-to-noise ratio of scanning electron microscopy (SEM) images. This approach is found to present better result when compared with two existing techniques: nearest neighbourhood and first-order interpolation. When applied to evaluate the quality of SEM images, noise can be eliminated efficiently with optimal choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time.
    Matched MeSH terms: Signal-To-Noise Ratio*
  18. Sulaiman AH, Husain R, Seluakumaran K
    Eur Arch Otorhinolaryngol, 2014 Jun;271(6):1463-70.
    PMID: 23812554 DOI: 10.1007/s00405-013-2612-z
    Although sound exposure from personal listening devices (PLDs) could potentially lead to noise-induced hearing loss (NIHL), the actual hearing risk associated with the use of these devices is still unclear. In this study, early hearing effects related to PLD usage were evaluated in 35 young adult PLD users (listening for >1 h/day, at >50% of the maximum volume setting of their devices) and their age- and sex-matched controls using a combination of conventional and extended high-frequency audiometry as well as transient-evoked otoacoustic emission (TEOAE) and distortion product of otoacoustic emission (DPOAE) measurements. The mean listening duration of the PLD users was 2.7 ± 1.0 h/day while their estimated average listening volume was 81.3 ± 9.0 dBA (free-field corrected). Typical signs of NIHL were not detected in the audiogram of PLD users and their audiometric thresholds at most of the conventional test frequencies (0.25-8 kHz) were comparable with those obtained from controls. However, compared with the controls, mean hearing thresholds of PLD users at many of the extended high-frequencies (9-16 kHz) were significantly higher. In addition, TEOAE and DPOAE amplitudes in users were reduced compared with controls. The deterioration of extended high-frequency thresholds and the decrease in DPOAE amplitudes were more evident in the users' right ears. These results indicate the presence of an early stage of hearing damage in the PLD user group. Preventive steps should be taken as the initial hearing damage in these users could eventually progress into permanent NIHL after many years of PLD use.
    Matched MeSH terms: Hearing Loss, Noise-Induced/diagnosis*
  19. Bin WS, Richardson S, Yeow PH
    Int J Occup Saf Ergon, 2010;16(3):345-56.
    PMID: 20828490
    The study aimed to conduct an ergonomic intervention on a conventional line (CL) in a semiconductor factory in Malaysia, an industrially developing country (IDC), to improve workers' occupational health and safety (OHS). Low-cost and simple (LCS) ergonomics methods were used (suitable for IDCs), e.g., subjective assessment, direct observation, use of archival data and assessment of noise. It was found that workers were facing noise irritation, neck and back pains and headache in the various processes in the CL. LCS ergonomic interventions to rectify the problems included installing noise insulating covers, providing earplugs, installing elevated platforms, slanting visual display terminals and installing extra exhaust fans. The interventions cost less than 3 000 USD but they significantly improved workers' OHS, which directly correlated with an improvement in working conditions and job satisfaction. The findings are useful in solving OHS problems in electronics industries in IDCs as they share similar manufacturing processes, problems and limitations.
    Matched MeSH terms: Noise, Occupational/prevention & control
  20. Sulaiman AH, Seluakumaran K, Husain R
    Public Health, 2013 Aug;127(8):710-5.
    PMID: 23474376 DOI: 10.1016/j.puhe.2013.01.007
    To investigate listening habits and hearing risks associated with the use of personal listening devices among urban high school students in Malaysia.
    Matched MeSH terms: Hearing Loss, Noise-Induced/etiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links