Displaying publications 41 - 60 of 897 in total

Abstract:
Sort:
  1. Salleh WMNHW
    Z Naturforsch C J Biosci, 2021 Mar 26;76(3-4):93-102.
    PMID: 32960783 DOI: 10.1515/znc-2020-0116
    Hoja santa (Piper auritum) refers to an important presence in Mexican cuisine. The information of this review article was gathered from several electronic sources such as Scopus, Medline, Scielo, ScienceDirect, SciFinder, Web of Science, Google Scholar and Lilacs. Phytochemical studies have revealed the presence of benzoic acid derivatives, phenylpropanoids and triterpenoids, while the essential oils have shown its richness in safrole, hence it has several activities, such as antioxidant, toxicity, insecticidal, anti-diabetic and cytotoxic properties. This review is expected to draw the attention of medical professionals and the general public towards P. auritum as well as to open the door for detailed research in the future.
    Matched MeSH terms: Plant Extracts/chemistry
  2. Basma AA, Zuraini Z, Sasidharan S
    Asian Pac J Trop Biomed, 2011 Jan;1(1):20-2.
    PMID: 23569719 DOI: 10.1016/S2221-1691(11)60062-2
    To determine the major changes in the microstructure of Candida albicans (C. albicans) after treatment with Euphorbia hirta (E. hirta) L. leaf extract.
    Matched MeSH terms: Plant Extracts/chemistry
  3. Hanifah AL, Awang SH, Ho TM, Abidin SZ, Omar MH
    Asian Pac J Trop Biomed, 2011 Oct;1(5):365-9.
    PMID: 23569794 DOI: 10.1016/S2221-1691(11)60081-6
    To examine the acaricidal effects of the essential oil of Cymbopogon citratus leaf extract (lemongrass) and ethanolic Azadirachta indica leaf extract (neem) against house dust mites Dermatophagoides farinae (D. farinae) and Dermatophagoides pteronyssinus (D. pteronyssinus).
    Matched MeSH terms: Plant Extracts/chemistry
  4. Goh YS, Karunakaran T, Murugaiyah V, Santhanam R, Abu Bakar MH, Ramanathan S
    Molecules, 2021 Jun 17;26(12).
    PMID: 34204457 DOI: 10.3390/molecules26123704
    Mitragyna speciosa Korth (kratom) is known for its psychoactive and analgesic properties. Mitragynine is the primary constituent present in kratom leaves. This study highlights the utilisation of the green accelerated solvent extraction technique to produce a better, non-toxic and antinociceptive active botanical extract of kratom. ASE M. speciosa extract had a dry yield (0.53-2.91 g) and showed a constant mitragynine content (6.53-7.19%) when extracted with organic solvents of different polarities. It only requires a shorter extraction time (5 min) and a reduced amount of solvents (less than 100 mL). A substantial amount of total phenolic (407.83 ± 2.50 GAE mg/g and flavonoids (194.00 ± 5.00 QE mg/g) were found in ASE kratom ethanol extract. The MTT test indicated that the ASE kratom ethanolic leaf extract is non-cytotoxic towards HEK-293 and HeLa Chang liver cells. In mice, ASE kratom ethanolic extract (200 mg/kg) demonstrated a better antinociceptive effect compared to methanol and ethyl acetate leaf extracts. The presence of bioactive indole alkaloids and flavonols such as mitragynine, paynantheine, quercetin, and rutin in ASE kratom ethanolic leaf extract was detected using UHPLC-ESI-QTOF-MS/MS analysis supports its antinociceptive properties. ASE ethanolic leaf extract offers a better, safe, and cost-effective choice of test botanical extract for further preclinical studies.
    Matched MeSH terms: Plant Extracts/chemistry*
  5. Wernsdorfer WH, Ismail S, Chan KL, Congpuong K, Wernsdorfer G
    Wien Klin Wochenschr, 2009 Oct;121 Suppl 3:23-6.
    PMID: 19915812 DOI: 10.1007/s00508-009-1230-7
    The habitats of Eurycoma longifolia Jack, a slender tree, are jungles in Malaysia and Indonesia. It belongs to the family Simaroubaceae and is a source of quassinoids with anabolic, antimalarial and cytostatic activity. In this study, conducted during 2008 in Mae Sot, Thailand, a standardized extract of E. longifolia containing three major quassinoids, eurycomanone (1), 13,21-dihydroeurycomanone (2) and 13alpha(21)-epoxyeurycomanone (3) was evaluated for antiplasmodial activity against Plasmodium falciparum and its activity has been compared with that of artemisinin, using 38 fresh parasite isolates and assessment of inhibition of schizont maturation. The IC(50), IC(90) and IC(99) values for artemisinin were 4.30, 45.48 and 310.97 microg/l, and those for the root extract from E. longifolia 14.72, 139.65 and 874.15 microg/l respectively. The GMCOC for artemisinin was 337.81 mug/l, and for the plant extract it was 807.41 microg/l. The log-concentration probit regressions were parallel. The inhibitory activity of the E. longifolia extract was higher than that expected from the three quassinoids isolated from the plant, suggesting synergism between the quassinoids or the presence of other unidentified compounds.
    Matched MeSH terms: Plant Extracts/chemistry
  6. Muhammad N, Din LB, Sahidin I, Hashim SF, Ibrahim N, Zakaria Z, et al.
    Molecules, 2012 Jul 30;17(8):9043-55.
    PMID: 22847143 DOI: 10.3390/molecules17089043
    A new resveratrol dimer, acuminatol (1), was isolated along with five known compounds from the acetone extract of the stem bark of Shorea acuminata. Their structures and stereochemistry were determined by spectroscopic methods, which included the extensive use of 2D NMR techniques. All isolated compounds were evaluated for their antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (RSA) and the β-carotene-linoleic acid (BCLA) assays, and compared with those of the standards of ascorbic acid (AscA) and butylated hydroxytoluene (BHT). All compounds tested exhibited good to moderate antioxidant activity in the DPPH assay (IC₅₀s 0.84 to 10.06 mM) and displayed strong inhibition of β-carotene oxidation (IC₅₀s 0.10 to 0.22 mM). The isolated compounds were evaluated on the Vero cell line and were found to be non-cytotoxic with LC₅₀ values between 161 to 830 µM.
    Matched MeSH terms: Plant Extracts/chemistry
  7. Syahmi AR, Vijayarathna S, Sasidharan S, Latha LY, Kwan YP, Lau YL, et al.
    Molecules, 2010 Nov 10;15(11):8111-21.
    PMID: 21072022 DOI: 10.3390/molecules15118111
    Elaeis guineensis (Arecaceae) is widely used in West African traditional medicine for treating various ailments. An evaluation on the toxicity of extracts of this plant is crucial to support the therapeutic claims. The acute oral toxicity and brine shrimp lethality of a methanolic extract of this plant was tested. Oral administration of crude extract at the highest dose of 5,000 mg/kg resulted in no mortalities or evidence of adverse effects, implying that E. guineensis is nontoxic. Normal behavioral pattern, clinical signs and histology of vital organs confirm this evidence. The E. guineensis extracts screened for toxicity against brine shrimp had 50% lethal concentration (LC₅₀) values of more than 1.0 mg/mL (9.00 and 3.87 mg/mL, at 6 and 24 h, respectively), confirming that the extract was not toxic. Maximum mortalities occurred at 100 mg/mL concentration while the least mortalities happened to be at 0.195 mg/mL concentration. The results of both tests confirm that E. guineensis is nontoxic and hence safe for commercial utilization.
    Matched MeSH terms: Plant Extracts/chemistry*
  8. Alnajar ZA, Abdulla MA, Ali HM, Alshawsh MA, Hadi AH
    Molecules, 2012;17(3):3547-59.
    PMID: 22433579 DOI: 10.3390/molecules17033547
    Melastoma malabathricum (MM) is a well-known plant in Malaysian traditional medicine, locally known as senduduk. Its ethanol and aqueous extracts have been used in the present investigation to study the immunomodulatory role on human peripheral blood mononuclear cell (PBMC), and the DPPH, ABTS and FRAP free radical scavenging activities were also measured. Total flavonoids and total phenolic contents were assayed and the antibacterial effect was tested against four species of bacteria; two Gram-positive (Staphylococcus aureus and Streptococcus agalactiae) and two Gram-negative (Escherichia coli and Klebsilla pneumonia). The tests were carried out using the disc diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods. Moreover, the acute toxicity was evaluated in vivo on the ethanol extract of MM to establish its safety when administered orally. In our results, both extracts of MM showed abilities to scavenge DPPH and ABTS free radicals, IC(50) values: (11.599 ± 0.84, 10.573 ± 0.58 µmol/L) and (62.657 ± 0.78, 63.939 ± 0.48 µmol/L) for ethanol and aqueous extracts respectively. Indeed the ethanol extract evidenced high phenolic content (384.33 ± 0.005 mg/g), flavonoids contents (85.8 ± 0.009 mg/g) and ferric reducing antioxidant power (33,590 ± 0.038 mmol/g), with high activity against S. aureus and S. agalactiae (11 ± 0.3 and 12 ± 0.6 mm inhibition zones). Likewise, the percentage of peripheral blood mononuclear cells (PBMC) viability was increased in response to MM, IC(50) values (1.781 ± 1.2 and 6.545 ± 0.93 µg/mL) for ethanol and aqueous extracts, respectively. In addition, our results showed that the MM extract is safe even at a high dose of 5,000 mg/kg and has no oral toxicity. These findings suggest the excellent medicinal bioactivity of MM and explain the popularity of this plant in the folk medicine as a remedy for different illnesses.
    Matched MeSH terms: Plant Extracts/chemistry
  9. Low BS, Das PK, Chan KL
    Phytother Res, 2014 Jul;28(7):1022-9.
    PMID: 24318772 DOI: 10.1002/ptr.5094
    The roots of Eurycoma longifolia Jack are popularly sought as herbal medicinal supplements to improve libido and general health amongst the local ethnic population. The major quassinoids of E. longifolia improved spermatogenesis and fertility but toxicity studies have not been well documented. The reproductive toxicity, two generation of foetus teratology and the up-and-down acute toxicity were investigated in Sprague-Dawley rats orally treated with quassinoid-rich E. longifolia extract (TAF273). The results showed that the median lethal dose (LD50 ) of TAF273 for female and male rats was 1293 and >2000 mg/kg, respectively. Fertility index and litter size of the TAF273 treated were significantly increased when compared with those of the non-treated animals. The TAF273-treated dams decreased in percentage of pre-implantation loss, post-implantation loss and late resorption. No toxic symptoms were observed on the TAF273-treated pregnant female rats and their foetuses were normal. The no-observed adverse effect level (NOAEL) obtained from reproductive toxicity and teratology studies of TAF273 in rats was 100 mg/kg body weight/day, being more than 10-fold lower than the LD50 value. Thus, any human dose derived from converting the rat doses of 100 mg/kg and below may be considered as safe for further clinical studies.
    Matched MeSH terms: Plant Extracts/chemistry
  10. Yang Y, Liang Q, Zhang B, Zhang J, Fan L, Kang J, et al.
    J Chromatogr A, 2024 Jan 25;1715:464621.
    PMID: 38198876 DOI: 10.1016/j.chroma.2023.464621
    White tea contains the highest flavonoids compared to other teas. While there have been numerous studies on the components of different tea varieties, research explicitly focusing on the flavonoid content of white tea remains scarce, making the need for a good flavonoid purification process for white tea even more important. This study compared the adsorption and desorption performance of five types of macroporous resins: D101, HP20, HPD500, DM301, and AB-8. Among the tested resins, AB-8 was selected based on its best adsorption and desorption performance to investigate the static adsorption kinetics and dynamic adsorption-desorption purification of white tea flavonoids. The optimal purification process was determined: adsorption temperature 25 °C, crude tea flavonoid extract pH 3, ethanol concentration 80 %, sample loading flow rate and eluent flow rate 1.5 BV/min, and eluent dosage 40 BV. The results indicated that the adsorption process followed pseudo-second-order kinetics. Under the above purification conditions, the purity of the total flavonoids in the purified white tea flavonoid increased from approximately 17.69 to 46.23 %, achieving a 2.61-fold improvement, indicating good purification results. The purified white tea flavonoid can be further used for nutraceutical and pharmaceutical applications.
    Matched MeSH terms: Plant Extracts/chemistry
  11. Kam TS, Choo YM
    Phytochemistry, 2004 Mar;65(5):603-8.
    PMID: 15003424
    Six new alkaloids, viz., alstolactone, affinisine oxindole, lagumicine, N(4)-demethylalstonerine, N(4)-demethylalstonerinal, and 10-methoxycathafoline N(4)-oxide, in addition to 36 other known alkaloids, were obtained from the leaf extract of Alstonia angustifolia var. latifolia. The structures of the new alkaloids were determined using NMR and MS analysis.
    Matched MeSH terms: Plant Extracts/chemistry
  12. Tan FHP, Ting ACJ, Leow BG, Najimudin N, Watanabe N, Azzam G
    J Ethnopharmacol, 2021 Oct 28;279:114389.
    PMID: 34217797 DOI: 10.1016/j.jep.2021.114389
    ETHNOPHARMACOLOGICAL RELEVANCE: Danshen water extract (DWE), obtained from the Salvia miltiorrhiza Bunge (Family Lamiaceae) root, is usually employed in Chinese traditional medicine as treatment to cardiovascular ailments and cerebrovascular diseases. Intriguingly, the extract was also found to contain vast beneficial properties in Alzheimer's disease (AD) treatment.

    AIM OF THE STUDY: Alzheimer's disease is the most significant type of neurodegenerative disorder plaguing societies globally. Its pathogenesis encompasses the hallmark aggregation of amyloid-beta (Aβ). Of all the Aβ oligomers formed in the brain, Aβ42 is the most toxic and aggressive. Despite this, the mechanism behind this disease remains elusive. In this study, DWE, and its major components, Salvianolic acid A (SalA) and Salvianolic acid B (SalB) were tested for their abilities to attenuate Aβ42's toxic effects.

    METHODS: The composition of DWE was determined via Ultra-Performance Liquid Chromatography (UPLC). DWE, SalA and SalB were first verified for their capability to diminish Aβ42 fibrillation using an in vitro activity assay. Since Aβ42 aggregation results in neuronal degeneration, the potential Aβ42 inhibitors were next evaluated on Aβ42-exposed PC12 neuronal cells. The Drosophila melanogaster AD model was then employed to determine the effects of DWE, SalA and SalB.

    RESULTS: DWE, SalA and SalB were shown to be able to reduce fibrillation of Aβ42. When tested on PC12 neuronal cells, DWE, SalA and SalB ameliorated cells from cell death associated with Aβ42 exposure. Next, DWE and its components were tested on the Drosophila melanogaster AD model and their rescue effects were further characterized. The UPLC analysis showed that SalA and SalB were present in the brains and bodies of Drosophila after DWE feeding. When human Aβ42 was expressed, the AD Drosophila exhibited degenerated eye structures known as the rough eye phenotype (REP), reduced lifespan and deteriorated locomotor ability. Administration of DWE, SalA and SalB partially reverted the REP, increased the age of AD Drosophila and improved most of the mobility of AD Drosophila.

    CONCLUSION: Collectively, DWE and its components may have therapeutic potential for AD patients and possibly other forms of brain diseases.

    Matched MeSH terms: Plant Extracts/chemistry
  13. Nipun TS, Khatib A, Ahmed QU, Redzwan IE, Ibrahim Z, Khan AYF, et al.
    Molecules, 2020 Sep 11;25(18).
    PMID: 32932994 DOI: 10.3390/molecules25184161
    The plant Psychotria malayana Jack belongs to the Rubiaceae family and is known in Malaysia as "meroyan sakat/salung". A rapid analytical technique to facilitate the evaluation of the P. malayana leaves' quality has not been well-established yet. This work aimed therefore to develop a validated analytical technique in order to predict the alpha-glucosidase inhibitory action (AGI) of P. malayana leaves, applying a Fourier Transform Infrared Spectroscopy (FTIR) fingerprint and utilizing an orthogonal partial least square (OPLS). The dried leaf extracts were prepared by sonication of different ratios of methanol-water solvent (0, 25, 50, 75, and 100% v/v) prior to the assessment of alpha-glucosidase inhibition (AGI) and the following infrared spectroscopy. The correlation between the biological activity and the spectral data was evaluated using multivariate data analysis (MVDA). The 100% methanol extract possessed the highest inhibitory activity against the alpha-glucosidase (IC50 2.83 ± 0.32 μg/mL). Different bioactive functional groups, including hydroxyl (O-H), alkenyl (C=C), methylene (C-H), carbonyl (C=O), and secondary amine (N-H) groups, were detected by the multivariate analysis. These functional groups actively induced the alpha-glucosidase inhibition effect. This finding demonstrated the spectrum profile of the FTIR for the natural herb P. malayana Jack, further confirming its medicinal value. The developed validated model can be used to predict the AGI of P. malayana, which will be useful as a tool in the plant's quality control.
    Matched MeSH terms: Plant Extracts/chemistry*
  14. Ghasemzadeh A, Jaafar HZE, Baghdadi A, Tayebi-Meigooni A
    Molecules, 2018 Jul 25;23(8).
    PMID: 30044450 DOI: 10.3390/molecules23081852
    Since α-mangostin in mangosteen fruits was reported to be the main compound able to provide natural antioxidants, the microwave-assisted extraction process to obtain high-quality α-mangostin from mangosteen pericarp (Garcinia mangostana L.) was optimized using a central composite design and response surface methodology. The parameters examined included extraction time, microwave power, and solvent percentage. The antioxidant and antimicrobial activity of optimized and non-optimized extracts was evaluated. Ethyl acetate as a green solvent exhibited the highest concentration of α-mangostin, followed by dichloromethane, ethanol, and water. The highest α-mangostin concentration in mangosteen pericarp of 121.01 mg/g dry matter (DM) was predicted at 3.16 min, 189.20 W, and 72.40% (v/v). The verification of experimental results under these optimized conditions showed that the α-mangostin value for the mangosteen pericarp was 120.68 mg/g DM. The predicted models were successfully developed to extract α-mangostin from the mangosteen pericarp. No significant differences were observed between the predicted and the experimental α-mangostin values, indicating that the developed models are accurate. The analysis of the extracts for secondary metabolites showed that the total phenolic content (TPC) and total flavonoid content (TFC) increased significantly in the optimized extracts (OE) compared to the non-optimized extracts (NOE). Additionally, trans-ferulic acid and catechin were abundant among the compounds identified. In addition, the optimized extract of mangosteen pericarp with its higher α-mangostin and secondary metabolite concentrations exhibited higher antioxidant activities with half maximal inhibitory concentration (IC50) values of 20.64 µg/mL compared to those of the NOE (28.50 µg/mL). The OE exhibited the highest antibacterial activity, particularly against Gram-positive bacteria. In this study, the microwave-assisted extraction process of α-mangostin from mangosteen pericarp was successfully optimized, indicating the accuracy of the models developed, which will be usable in a larger-scale extraction process.
    Matched MeSH terms: Plant Extracts/chemistry*
  15. Zahra MH, Salem TAR, El-Aarag B, Yosri N, El-Ghlban S, Zaki K, et al.
    Molecules, 2019 Jul 08;24(13).
    PMID: 31288458 DOI: 10.3390/molecules24132495
    BACKGROUND/AIM: Plants play an important role in anti-cancer drug discovery, therefore, the current study aimed to evaluate the biological activity of Alpinia zerumbet (A. zerumbet) flowers.

    METHODS: The phytochemical and biological criteria of A. zerumbet were in vitro investigated as well as in mouse xenograft model.

    RESULTS: A. zerumbet extracts, specially CH2Cl2 and MeOH extracts, exhibited the highest potent anti-tumor activity against Ehrlich ascites carcinoma (EAC) cells. The most active CH2Cl2 extract was subjected to bioassay-guided fractionation leading to isolatation of the naturally occurring 5,6-dehydrokawain (DK) which was characterized by IR, MS, 1H-NMR and 13C-NMR. A. zerumbet extracts, specially MeOH and CH2Cl2 extracts, exhibited significant inhibitory activity towards tumor volume (TV). Furthermore, A. zerumbet extracts declined the high level of malonaldehyde (MDA) as well as elevated the levels of superoxide dismutase (SOD) and catalase (CAT) in liver tissue homogenate. Moreover, DK showed anti-proliferative action on different human cancer cell lines. The recorded IC50 values against breast carcinoma (MCF-7), liver carcinoma (Hep-G2) and larynx carcinoma cells (HEP-2) were 3.08, 6.8, and 8.7 µg/mL, respectively.

    CONCLUSION: Taken together, these findings open the door for further investigations in order to explore the potential medicinal properties of A. zerumbet.

    Matched MeSH terms: Plant Extracts/chemistry*
  16. Yu L, Lu M, Zhang W, Alarfaj AA, Hirad AH, Zhang H
    Microb Pathog, 2020 Apr;141:103960.
    PMID: 31953224 DOI: 10.1016/j.micpath.2019.103960
    BACKGROUND: Mycoplasma pneumoniae (MP) is a common cause of community-acquired pneumonia (CAP) among the children and adults that results upper and lower respiratory tract infections.

    OBJECTIVE: This study was aimed to inspect the ameliorative action of A. chinensis synthesized ZnONPs against M. pneumoniae infected pneumonia mice model.

    MATERIALS AND METHODS: ZnO NPs was synthesized from Albizia chinensis bark extract and characterized by UV-Vis spectroscopy, Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), energy dispersive X-ray (EDX) and atomic force microscope (AFM) analyses. The antibacterial effectual of synthesized ZnONPs were examined against clinical pathogens. The pneumonia was induced to BALB/c mice via injecting the M. pneumoniae and treated with synthesized ZnONPs, followed by the total protein content, total cell counts and inflammatory mediators level was assessed in the BALF of experimental animals. The Histopathological investigation was done in the lung tissues of test animals.

    RESULTS: The outcomes of this work revealed that the formulated ZnONPs was quasi-spherical, radial and cylindrical; the size was identified as 116.5 ± 27.45 nm in diameter. The in vitro antimicrobial potential of formulated ZnO-NPs displayed noticeable inhibitory capacity against the tested fungal and bacterial strains. The administration of synthesized ZnO-NPs in MP infected mice model has significantly reduced the levels of total protein, inflammatory cells, inflammatory cytokines such as IL-1, IL-6, IL-8, tumour necrosis factor-alpha (TNF-a) and transforming growth factor (TGF). Besides, the histopathological examination of MP infected mice lung tissue showed the cellular arrangements were effectively retained after administration of synthesized ZnO-NPs.

    CONCLUSION: In conclusion, synthesized ZnO-NPs alleviate pneumonia progression via reducing the level of inflammatory cytokines and inflammatory cells in MP infected mice model.

    Matched MeSH terms: Plant Extracts/chemistry*
  17. Sirat HM, Susanti D, Ahmad F, Takayama H, Kitajima M
    J Nat Med, 2010 Oct;64(4):492-5.
    PMID: 20582481 DOI: 10.1007/s11418-010-0431-8
    Successive extraction of the dried leaves of Melastoma malabathricum, followed by purification using repeated chromatographic techniques, yielded six compounds, including two amides, auranamide and patriscabratine, a triterpene, alpha-amyrin, and three flavonoids, quercitrin, quercetin and kaempferol-3-O-(2'',6''-di-O-p-trans-coumaroyl)-beta-glucoside. Their structures were elucidated by spectroscopic means and also by direct comparison of their spectroscopic data with respective published data. These three phenolic constituents were found to be active as free radical scavengers, with quercetin being the strongest radical scavenger, having an IC(50) value of 0.69 microM in the UV method. Quercitrin and kaempferol-3-O-(2'',6''-di-O-p-trans-coumaroyl)-beta-glucoside showed moderate radical scavenging, with IC(50) values of 74.1 and 108.8 microM, respectively.
    Matched MeSH terms: Plant Extracts/chemistry
  18. Boonhok R, Sangkanu S, Norouzi R, Siyadatpanah A, Mirzaei F, Mitsuwan W, et al.
    Parasitology, 2021 Aug;148(9):1074-1082.
    PMID: 33966667 DOI: 10.1017/S0031182021000718
    Cassia angustifolia Vahl. plant is used for many therapeutic purposes, for example, in people with constipation, skin diseases, including helminthic and parasitic infections. In our study, we demonstrated an amoebicidal activity of C. angustifolia extract against Acanthamoeba triangularis trophozoite at a micromolar level. Scanning electron microscopy (SEM) images displayed morphological changes in the Acanthamoeba trophozoite, which included the formation of pores in cell membrane and the membrane rupture. In addition to the amoebicidal activity, effects of the extract on surviving trophozoites were observed, which included cyst formation and vacuolization by a microscope and transcriptional expression of Acanthamoeba autophagy in response to the stress by quantitative polymerase chain reaction. Our data showed that the surviving trophozoites were not transformed into cysts and the trophozoite number with enlarged vacuole was not significantly different from that of untreated control. Molecular analysis data demonstrated that the mRNA expression of AcATG genes was slightly changed. Interestingly, AcATG16 decreased significantly at 12 h post treatment, which may indicate a transcriptional regulation by the extract or a balance of intracellular signalling pathways in response to the stress, whereas AcATG3 and AcATG8b remained unchanged. Altogether, these data reveal the anti-Acanthamoeba activity of C. angustifolia extract and the autophagic response in the surviving trophozoites under the plant extract pressure, along with data on the formation of cysts. These represent a promising plant for future drug development. However, further isolation and purification of an active compound and cytotoxicity against human cells are needed, including a study on the autophagic response at the protein level.
    Matched MeSH terms: Plant Extracts/chemistry
  19. Alias Y, Awang K, Hadi AH, Thoison O, Sévenet T, Païs M
    J Nat Prod, 1995 Aug;58(8):1160-6.
    PMID: 7595585
    Bioassay-guided fractionation of an ethyl acetate extract of Fissistigma lanuginosum led to the isolation of the known chalcone pedicin [1], which inhibited tubulin assembly into microtubules (IC50 value of 300 microM). From the same EtOAc fraction, two new condensed chalcones, fissistin [2] and isofissistin [3], which showed cytotoxicity against KB cells, were also obtained, together with the inactive dihydropedicin [4] and 6,7-dimethoxy-5,8-dihydroxyflavone [5]. In addition, the aminoquinones 6, 8, and 9 were isolated from the alkaloid extract. These compounds were artifacts, prepared by treatment of 1, 4, and 2, respectively, with NH4OH. The structures of the new compounds were elucidated by spectral methods, especially 2D nmr.
    Matched MeSH terms: Plant Extracts/chemistry
  20. Rahmawati R, Hartati YW, Latip JB, Herlina T
    J Sep Sci, 2023 Jun;46(12):e2200800.
    PMID: 36715692 DOI: 10.1002/jssc.202200800
    Plants in the genus Erythrina is a potential source of chemical constituents, one of which is flavonoids, which have diverse bioactivities. To date, literature on the flavonoids from the genus Erythrina has only highlighted the phytochemical aspects, so this review article will discuss isolation techniques and strategies for the first time. More than 420 flavonoids have been reported in the Erythrina genus, which are grouped into 17 categories. These flavonoid compounds were obtained through isolation techniques and strategies using polar, semi-polar, and non-polar solvents. Various chromatographic techniques have been developed to isolate flavonoids using column flash chromatography, quick column chromatography, centrifugally accelerated thin-layer chromatography, radial chromatography, medium-pressure column chromatography, semi-preparative high-performance liquid chromatography, and preparative high-performance liquid chromatography. Chromatographic processes for isolating flavonoids can be optimized using multivariate statistical applications such as response surface methodology with central composite design, Box-Behnken design, Doehlert design, and mixture design.
    Matched MeSH terms: Plant Extracts/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links