Displaying publications 41 - 60 of 1120 in total

Abstract:
Sort:
  1. He S, Zhao K, Ma L, Yang J, Chang Y, Ashraf MA
    Saudi J Biol Sci, 2016 Mar;23(2):198-204.
    PMID: 26981000 DOI: 10.1016/j.sjbs.2015.10.007
    To discuss the cold resistance performance of different Herba Rhodiolae and successfully transplant Herba Rhodiolae to the Gansu plateau area for nursing, domestication and planting, this paper systematically studies six physiological and biochemical features of Rhodiola kirilowii, Rhodiola algida, Rhodiola crenulata and Herba Rhodiolae that are closely associated with cold resistance features and concludes with the cold resistance capability of Rhodiola kirilowii. In the selected six main indexes of the Herba Rhodiolae, the POD, SOD and CAT activity and MDA and Pro content in the leaf are the main physiological and biochemical indexes to indicate the cold resistance performance of four Herba Rhodiolae seedlings and can be regarded as the preliminary indexes to assess the winter performance of Herba Rhodiolae. The research work will provide the theoretical basis for the wild variants of Herba Rhodiolae and GAPJ base construction.
    Matched MeSH terms: Plant Leaves
  2. Kristiansen KA, Rasmussen FN, Rasmussen HN
    Am J Bot, 2001 May;88(5):956-9.
    PMID: 11353721
    Naturally occurring seedlings of Neuwiedia veratrifolia were found in three localities in Sabah, Borneo, Malaysia. Seedlings consisted of an irregular oblong protocorm and a terminal leafy rooted shoot. Protocorms contained mycotrophic tissue of the kind typical of orchid mycorrhiza (tolypophagy). This finding demonstrates an important synapomorphy between Neuwiedia and other orchids and strongly supports the monophyly of Orchidaceae in the broad sense, including apostasiod orchids.
    Matched MeSH terms: Plant Leaves
  3. Ab Muib, N. N., Mohsin, H. F., Abdul Wahab, I.
    MyJurnal
    Olive or Olea europaea is originated from Mediterranean and cultivated in different regions of the world.
    Each part of the plant has its own unique botanical description and gives a lot of benefits, either for
    biological or common uses. In this research, the pharmacological properties of O. europaea were studied
    via literature reviews. In the laboratory, the extraction of secondary metabolites from the dried leaves of O.
    europaea was followed by the chromatographic investigation. The biological uses of O. europaea and
    detection of the phenolics from olive leaves are highlighted. Specifically, oleuropein is the targeted
    compound worth to be further analyzed.
    Matched MeSH terms: Plant Leaves
  4. Mesjasz-Przybylowicz J, Przybylowicz W, Barnabas A, van der Ent A
    New Phytol, 2016 Mar;209(4):1513-26.
    PMID: 26508435 DOI: 10.1111/nph.13712
    Phyllanthus balgooyi (Phyllanthaceae), one of > 20 nickel (Ni) hyperaccumulator plant species known in Sabah (Malaysia) on the island of Borneo, is remarkable because it contains > 16 wt% Ni in its phloem sap, the second highest concentration of Ni in any living material in the world (after Pycnandra acuminata (Sapotaceae) from New Caledonia with 25 wt% Ni in latex). This study focused on the tissue-level distribution of Ni and other elements in the leaves, petioles and stem of P. balgooyi using nuclear microprobe imaging (micro-PIXE). The results show that in the stems and petioles of P. balgooyi Ni concentrations were very high in the phloem, while in the leaves there was significant enrichment of this element in the major vascular bundles. In the leaves, cobalt (Co) was codistributed with Ni, while the distribution of manganese (Mn) was different. The highest enrichment of calcium (Ca) in the stems was in the periderm, the epidermis and subepidermis of the petiole, and in the palisade mesophyll of the leaf. Preferential accumulation of Ni in the vascular tracts suggests that Ni is present in a metabolically active form. The elemental distribution of P. balgooyi differs from those of many other Ni hyperaccumulator plant species from around the world where Ni is preferentially accumulated in leaf epidermal cells.
    Matched MeSH terms: Plant Leaves/anatomy & histology; Plant Leaves/cytology; Plant Leaves/metabolism
  5. Kobayashi MJ, Ng KKS, Lee SL, Muhammad N, Tani N
    Am J Bot, 2020 11;107(11):1491-1503.
    PMID: 33190268 DOI: 10.1002/ajb2.1557
    PREMISE: Leaf phenology is an essential developmental process in trees and an important component in understanding climate change. However, little is known about the regulation of leaf phenology in tropical trees.

    METHODS: To understand the regulation by temperature of leaf phenology in tropical trees, we performed daily observations of leaf production under rainfall-independent conditions using saplings of Shorea leprosula and Neobalanocarpus heimii, both species of Dipterocarpaceae, a dominant tree family of Southeast Asia. We analyzed the time-series data obtained using empirical dynamic modeling (EDM) and conducted growth chamber experiments.

    RESULTS: Leaf production by dipterocarps fluctuated in the absence of fluctuation in rainfall, and the peaks of leaf production were more frequent than those of day length, suggesting that leaf production cannot be fully explained by these environmental factors, although they have been proposed as regulators of leaf phenology in dipterocarps. Instead, EDM suggested a causal relationship between temperature and leaf production in dipterocarps. Leaf production by N. heimii saplings in chambers significantly increased when temperature was increased after long-term low-temperature treatment. This increase in leaf production was observed even when only nighttime temperature was elevated, suggesting that the effect of temperature on development is not mediated by photosynthesis.

    CONCLUSIONS: Because seasonal variation in temperature in the tropics is small, effects on leaf phenology have been overlooked. However, our results suggest that temperature is a regulator of leaf phenology in dipterocarps. This information will contribute to better understanding of the effects of climate change in the tropics.

    Matched MeSH terms: Plant Leaves
  6. Kiew R, Lau KH
    PhytoKeys, 2019.
    PMID: 30774505 DOI: 10.3897/phytokeys.117.31560
    The genus Senyumia was previously known from a single species, S.minutiflora (Ridl.) Kiew, A.Weber & B.L.Burtt, from a limestone karst, Gunung Senyum, in Pahang, Malaysia. Senyumiagranitica Kiew, here described and illustrated, is the second species of the genus. It differs from S.minutiflora, not only in its habitat, but also in its shorter leaves, larger, non-resupinate or only partially resupinate flowers and smaller seeds. It is known from a small, fragmented population from a low range of hills. Therefore, under the IUCN Red List Categories & Criteria, it is assessed as Critically Endangered.
    Matched MeSH terms: Plant Leaves
  7. Maluin FN, Hussein MZ, Yusof NA, Fakurazi S, Maznah Z, Idris AS, et al.
    Sci Rep, 2020 12 18;10(1):22323.
    PMID: 33339951 DOI: 10.1038/s41598-020-79335-6
    The nanoformulations of pesticides have shown great interest from many parties due to their slow release capability and site-specific delivery. Hence, in this work, a new nanoformulation of a fungicide, namely chitosan-hexaconazole nanoparticles with a mean diameter size of 18 nm was subjected to the residual analysis on oil palm tissue, leaf and palm oil (crude palm oil and crude palm kernel oil) using a quick, easy, cheap, effective, rugged and safe (QuEChERS) method coupled with the gas chromatography-micro electron capture detector (GC-µECD). The chitosan-hexaconazole nanoparticles were applied using the trunk injection method at 4.5 g a.i./palm (standard single dose) and 9.0 g a.i./palm (double dose). The fungicide residue was analyzed at 0 (6 h after application), 1, 3, 7, 14, 30, 60, 90, and 120 days after treatment. The palm oil matrices; the crude palm oil (CPO) and crude palm kernel oil (CPKO) were found to be residue-free. However, it was observed that high accumulation of the fungicide in the stem tissue and leaf after the treatment using the chitosan-hexaconazole nanoparticles, which is good for better bioavailability for the treatment of the fungi, Ganoderma boninense. The dissipation kinetic at double dose treatment in the tissue and leaf was found to govern by the second-order kinetic with half-lives (t1/2) of 383 and 515 days, respectively.
    Matched MeSH terms: Plant Leaves/drug effects; Plant Leaves/microbiology; Plant Leaves/chemistry
  8. Pradisty NA, Amir AA, Zimmer M
    Oecologia, 2021 Apr;195(4):843-858.
    PMID: 33559746 DOI: 10.1007/s00442-021-04865-3
    Leaf litter and its breakdown products represent an important input of organic matter and nutrients to mangrove sediments and adjacent coastal ecosystems. It is commonly assumed that old-grown stands with mature trees contribute more to the permanent sediment organic matter pool than younger stands. However, neither are interspecific differences in leaf decay rates taken into account in this assumption nor is our understanding of the underlying mechanisms or drivers of differences in leaf chemistry sufficient. This study examines the influence of different plant species and ontogenetic stage on the microbial decay of mangrove leaf litter. A litterbag experiment was conducted in the Matang Mangrove Forest Reserve, Malaysia, to monitor leaf litter mass loss, and changes in leaf litter chemistry and microbial enzyme activity. Four mangrove species of different morphologies were selected, namely the trees Rhizophora apiculata and Bruguiera parviflora, the fern Acrostichum aureum and the shrub Acanthus ilicifolius. Decay rates of mangrove leaf litter decreased from A. ilicifolius to R. apiculata to B. parviflora to A. aureum. Leaf litter mass, total phenolic content, protein precipitation capacity and phenol oxidase activity were found to decline rapidly during the early stage of decay. Leaf litter from immature plants differed from that of mature plants in total phenolic content, phenolic signature, protein precipitating capacity and protease activity. For R. apiculata, but not of the other species, leaf litter from immature plants decayed faster than the litter of mature plants. The findings of this study advance our understanding of the organic matter dynamics in mangrove stands of different compositions and ages and will, thus, prove useful in mangrove forest management.
    Matched MeSH terms: Plant Leaves
  9. Quazi Nasim Ahmed, PMD Zainudin Hussain, Ahmad Sofiman Othman
    Trop Life Sci Res, 2012;23(2):17-25.
    MyJurnal
    This study was conducted to examine the variabilities in the chronology of vegetative and reproductive development of weedy rice (Oryza spp.) in comparison with commercial varieties. Data at different growth stages of 14 weedy rice morphotypes and 4 commercial rice varieties were recorded and analysed. Plant height of all weedy rice morphotypes were observed to be significantly higher compared to the commercial varieties at every growth stages; increase in height was between 10–37 cm for weedy rice morphotype, for every 2 weeks. Initial tillering ability at 14 days after planting (DAP) was higher in weedy morphotypes, however all the commercial rice varieties produced significantly higher number of tillers throughout the rest of the vegetative phases. Correlation between plant height and tiller number detected that taller plants produce fewer tillers than shorter plants. Higher leaf area index (LAI) of all weedy morphotypes except PWR01 at early growth stages indicated the vigorous growth of the morphotypes. Weedy rice morphotypes showed a wide range of anthesis and maturity duration. Accessions from the same weedy rice morphotypes were more heterogeneous in the flowering, anthesis and maturity period than the commercial varieties. These traits enables identification of weedy rice morphotypes at their different growth stages in the field.
    Matched MeSH terms: Plant Leaves
  10. Ghim, Hock Ong, Chee, Kong Yap, Maziah Mahmood, Soon, Guan Tan, Suhaimi Hamzah
    Trop Life Sci Res, 2013;24(1):55-70.
    MyJurnal
    In this study, Centella asiatica and surface soils were collected from 12 sampling sites in Peninsular Malaysia, and the barium (Ba) concentrations were determined. The Ba concentration [µg/g dry weight (dw)] was 63.72 to 382.01 µg/g in soils while in C. asiatica, Ba concentrations ranged from 5.05 to 21.88 µg/g for roots, 3.31 to 11.22 µg/g for leaves and 2.37 to 6.14 µg/g for stems. In C. asiatica, Ba accumulation was found to be the highest in roots followed by leaves and stems. The correlation coefficients (r) of Ba between plants and soils were found to be significantly positively correlated, with the highest correlation being between roots-soils (r=0.922, p
    Matched MeSH terms: Plant Leaves
  11. Ab Hamid S, Md Rawi CS
    Trop Life Sci Res, 2017 Jul;28(2):89-105.
    PMID: 28890763 MyJurnal DOI: 10.21315/tlsr2017.28.2.7
    Leaf litter decomposition in a tropical stream was examined in two types of leaf packs; single species leaf packs of Pometia pinnata and two species leaf packs of equal combination of Pometia pinnata and Dolichandrone spathacea leaves. Both leaf packs were immersed in a river and weekly examined for remains of decomposed leaves and presence of EPT. In the control leaf packs, leaves in the two species leaf packs treatments decomposed within 35 days, faster than in single species leaf packs which decomposed after 42 days. In the presence of EPT, the leaf breakdown took 28 days in two species and 35 days for single species leaf packs. Higher abundance of EPT was observed in single species leaf packs but its diversity was higher in two species leaf packs. Litter breakdown in the stream was faster in the presence of EPT and softer leaves of D. spathacea with higher nitrogen content underwent faster decomposition and sustained higher numbers of EPT.
    Matched MeSH terms: Plant Leaves
  12. Setyawan YP, Wakhid, Suhadi
    Trop Life Sci Res, 2020 Oct;31(3):77-90.
    PMID: 33214857 DOI: 10.21315/tlsr2020.31.3.6
    Mangrove restoration in Trenggalek, East Java has resulted an age variation of mangrove ecosystem. Diverse species of insects predominantly found in mangroves were collected using yellow pan traps, swipe nets and by direct picking from three different sites. This research was conducted from April until August 2015. There are 9,181 individual insects associated with mangroves comprised of 42 species from 31 families and eight orders. The first site or the 15 years old mangrove (66.22% canopy cover) indicated the highest Shannon diversity index at 2.54, Evenness index of 0.32 and Margalef richness index of 4.84. The lowest diversity was recorded in the third site or the five years old mangrove (19.65% canopy cover), with the Shannon diversity index at 2.28, Evenness index at 0.26 and Margalef richness index at 4.59. The most abundant species located was the Eristena mangalis, with 1,724 individuals (relative abundance of 18.78%), followed by Monolepta sp. with 1,649 individuals (relative abundance of 17.96%). These are the phytophagous insects associated with mangrove leaves. This study concluded that the older mangrove ecosystem have a denser canopy that supports insect life.
    Matched MeSH terms: Plant Leaves
  13. Ghazalli MN, Md Sah MS, Mat M, Awang K, Jaafar MA, Mirad R, et al.
    Trop Life Sci Res, 2021 Mar;32(1):107-117.
    PMID: 33936554 DOI: 10.21315/tlsr2021.32.1.7
    Mitragyna speciosa (Korth.) Havil. or locally known as ketum/daun sebiak/biak-biak belongs to Rubiaceae family and generally occurs in secondary forest or disturbed areas in tropical and subtropical region. This research enumerated the characterisation of Mitragyna speciosa leaf anatomy and micromorphology features which is still not well documented. This medium to large sized tree species characterised with opposite arrangement, ovate-acuminate leaf and with 12-17 pairs of veins. Transverse sections of petioles showed that this species has petiole outlines with slightly convex at the middle of the adaxial part and 'U'-shaped on abaxial side. Results also showed that this species has paracytic and hypostomatic stomata, combination of non-glandular (majority) and glandular trichomes (minority), with observation on the secretory cells present in petiole and midrib parenchyma cells. Cuticle on the abaxial and adaxial epidermal surfaces showed the presence granule and wax films with periclinal and anticlinal walls can be differentiated clearly. The results obtained in this study can be used to providing additional systematics information of Mitragyna speciosa with the documentation of the leaf anatomy and micromorphology characters.
    Matched MeSH terms: Plant Leaves
  14. Meor Yusoff, M.S., Muhd Asshar Khalid, Ideris Abu Seman
    MyJurnal
    The paper describes the uses of microfocus XRF to identify infected Basal Stem Rot (BSR) disease in Malaysian palm oil plants. Among symptoms of BSR are wilting of the leaves and plant malnutrition. The study involves determining the inorganic element content of normal and infected leaves. Si, Mo, Cl, K, Ca and Mn had been identified as the major elements. Their distribution was determined by constructing an elemental map of each of this element on the leaves. Line scan was also performed to look into changes on the element composition on a defined region. Quantitative analysis of Cl, Ca and K on the normal and infected leaves show that the infected leaves have lower Cl content and a higher Ca/K ratio than the normal leaves.
    Matched MeSH terms: Plant Leaves
  15. Ganeswari, I., Khairul Bariah, S., Amizi, M.A., Sim, K.Y.
    MyJurnal
    The influence of different fermentation methods and turning of cocoa beans on the cocoa bean’s quality was studied. Both shallow box covered with banana leaves (SBBL) and shallow box without banana leaves (SBWL) were used throughout fermentation (120 hours). The initial microbial load for SBBL and SBWL was 5.35±0.18 and 5.19±0.21 log CFU/g before increased to 6.27±0.08 and 6.17±0.03 log CFU/g, respectively at the end of fermentation (120 hours). The titratable acidity of the cocoa beans increased steadily until 72 hours before decreased slightly to 1.34±0.07 (SBBL) and 0.75±0.15 (SBWL) at the latter stage of fermentation. The cocoa beans fermented under SBBL were less acidic than those found in SBWL. Turned cocoa beans produced better quality of cocoa with less acidic compared to the one without turning. Cocoa beans with periodical turning recorded higher percentage of brown beans for both SBBL (73%) and SBWL (69%); percentage of purple beans decreased to about 7-8% for cocoa fermented in respective methods mentioned above. No slaty beans were recorded throughout the study. This study suggests that the use of shallow box with banana leaves can produce cocoa beans with superior quality.
    Matched MeSH terms: Plant Leaves
  16. Hismath, I., Wan Aida, W. M., Ho, C.W.
    MyJurnal
    The objective of this study was to optimise the extraction conditions for phenolic compounds from neem (Azadirachta indica) leaves using response surface methodology (RSM). A central composite rotatable design (CCRD) was applied to determine the effects of acetone concentration (%), extraction time (mins), and extraction temperature ( o C) on total phenolic content (TPC) from neem (Azadirachta indica) leaves. The independent variables were coded at five levels and their actual values were selected based on the results of single factor experiments. Results showed that acetone concentration and extraction time were the most significant (p
    Matched MeSH terms: Plant Leaves
  17. Sophia Jamila Zahra, Riza Sulaiman, Anton Satria Prabuwono, Seyed Mostafa Mousavi Kahaki
    MyJurnal
    Feature descriptor for image retrieval has emerged as an important part of computer vision and image analysis application. In the last decades, researchers have used algorithms to generate effective, efficient and steady methods in image processing, particularly shape representation, matching and leaf retrieval. Existing leaf retrieval methods are insufficient to achieve an adequate retrieval rate due to the inherent difficulties related to available shape descriptors of different leaf images. Shape analysis and comparison for plant leaf retrieval are investigated in this study. Different image features may result in different significance interpretation of images, even though they come from almost similarly shaped of images. A new image transform, known as harmonic mean projection transform (HMPT), is proposed in this study as a feature descriptor method to extract leaf features. By using harmonic mean function, the signal carries information of greater importance is considered in signal acquisition. The selected image is extracted from the whole region where all the pixels are considered to get a set of features. Results indicate better classification rates when compared with other classification methods.
    Matched MeSH terms: Plant Leaves
  18. Lim, S.F., Pah, P.Y.L., David Chua, S.N., Nicholas Kuan, H.T.
    MyJurnal
    Lemongrass leaves are often under-utilised and unexploited. In this study, lemongrass leaves were used to produce water soluble essential oil using a steam distillation system. Water steam was passed through the lemongrass leaves which were placed and supported on a grid above the water in a distiller. The steam distillation system was fabricated and optimised using Response Surface Methodology (RSM). The maximum oil yield with optimal relative citral content is obtained at 6.69 of plant-to-water ratio, 26.68 minutes of distillation time using air-dried lemongrass leaves left under the shade for two days. At the optimum conditions, the predicted oil yield was 0.6719% of lemongrass (C. citratus) oil which contains 71.79% of citral content.
    Matched MeSH terms: Plant Leaves
  19. Li Y, Ren S, Yan B, Zainal Abidin IM, Wang Y
    Sensors (Basel), 2017 Jul 31;17(8).
    PMID: 28758985 DOI: 10.3390/s17081747
    A corrosive environment leaves in-service conductive structures prone to subsurface corrosion which poses a severe threat to the structural integrity. It is indispensable to detect and quantitatively evaluate subsurface corrosion via non-destructive evaluation techniques. Although the gradient-field pulsed eddy current technique (GPEC) has been found to be superior in the evaluation of corrosion in conductors, it suffers from a technical drawback resulting from the non-uniform field excited by the conventional pancake coil. In light of this, a new GPEC probe with uniform field excitation for the imaging of subsurface corrosion is proposed in this paper. The excited uniform field makes the GPEC signal correspond only to the field perturbation due to the presence of subsurface corrosion, which benefits the corrosion profiling and sizing. A 3D analytical model of GPEC is established to analyze the characteristics of the uniform field induced within a conductor. Following this, experiments regarding the imaging of subsurface corrosion via GPEC have been carried out. It has been found from the results that the proposed GPEC probe with uniform field excitation not only applies to the imaging of subsurface corrosion in conductive structures, but provides high-sensitivity imaging results regarding the corrosion profile and opening size.
    Matched MeSH terms: Plant Leaves
  20. Yuan YM, Xue XF
    Zootaxa, 2019 Jun 04;4613(1):zootaxa.4613.1.8.
    PMID: 31716430 DOI: 10.11646/zootaxa.4613.1.8
    Two new species of the family Eriophyidae (Acari: Eriophyoidea) from Mount Trusmadi, Malaysia, are described and illustrated. They are Neodicrothrix grandcaputus sp. nov. on Stachyurus himalaicus (Stachyuraceae) and Latitudo asiaticis sp. nov. on Psychotria asiatica (Rubiaceae). Both of the two new species are vagrant on the lower leaf surface. No damage to the host was observed. In addition to the description, a key to species of Neodicrothrix is provided.
    Matched MeSH terms: Plant Leaves
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links