Pogostemon cablin, originating in Malaysia and India, is cultivated in southern China including Guangdong and Hainan Province, which was called GuangHuoXiang to differentiate it from the HuoXiang of the north, the species Agastache rugosa, that it resembles. Essential oil of P. cablin mainly contributes to the pharmacological activities and the therapeutic properties of the essential oils are directly correlated with their qualitative and quantitative composition. For controlling the quality, standard fingerprint of P. cablin collected from different regions was developed by using GC-MS. Nine compounds including beta-patchoulene, caryophyllene, alpha-guaiene, seychellene, beta-guaiene, delta-guaiene, spathulenol, patchouli alcohol and pogostone were identified among 10 main peaks in P. cablin. Hierarchical clustering analysis based on characteristics of 10 investigated peaks in GC profiles showed that 18 samples were divided into three main clusters, patchouliol-type, pogostone-type and an interim-type, which was the one between the two chemotypes. The simulative mean chromatogram for the three types P. cablin was generated using the Computer Aided Similarity Evaluation System. The fingerprint can help to distinguish the substitute or adulterant, and further assess the differences of P. cablin grown in various areas of China.
Matched MeSH terms: Gas Chromatography-Mass Spectrometry
A comparison of dissipation of chlorothalonil, chlorpyrifos, and profenofos in a Malaysian agricultural soil between the field experiment and simulation by the PERSIST model was studied. A plot of sweet pea (Pisum sativum) from a farm in the Cameron Highlands was selected for the field experiment. The plot was treated with chlorothalonil, chlorpyrifos, and profenofos. Core soil collection was conducted according to the sampling schedule. Residues of the three pesticides were analyzed in the laboratory. Simulations of the three pesticides' persistency were also conducted using a computer-run software PERSIST. Generally, predicted data obtained using PERSIST were found to be high for the three pesticides except for one field measurement of chlorpyrifos. The predicted data for profenofos, which is the most mobile of the three pesticides tested, was not well matched with the observed data compared to chlorothalonil and chlorpyrifos.
Quorum sensing is a mechanism for regulating proteobacterial gene expression in response to changes in cell population. In proteobacteria, N-acyl homoserine lactone (AHL) appears to be the most widely used signalling molecules in mediating, among others, the production of extracellular virulence factors for survival. In this work, the genome of B. cepacia strain GG4, a plasmid-free strain capable of AHL synthesis was explored. In silico analysis of the 6.6 Mb complete genome revealed the presence of a LuxI homologue which correspond to Type I quorum sensing. Here, we report the molecular cloning and characterization of this LuxI homologue, designated as BurI. This 609 bp gene was cloned and overexpressed in Escherichia coli BL21(DE3). The purified protein was approximately 25 kDa and is highly similar to several autoinducer proteins of the LuxI family among Burkholderia species. To verify the AHL synthesis activity of this protein, high resolution liquid chromatography-mass spectrometry analysis revealed the production of 3-oxo-hexanoylhomoserine lactone, N-octanoylhomoserine lactone and 3-hydroxy-octanoylhomoserine lactone from induced E. coli BL21 harboring the recombinant BurI. Our data show, for the first time, the cloning and characterization of the LuxI homologue from B. cepacia strain GG4 and confirmation of its AHL synthesis activity.
The sweetpotato whitefly (WF), Bemisia tabaci, is a major pest that damages a wide range of vegetable crops in Malaysia. WF infestation is influenced by a variety of factors, including previous infestation of the host plant by other insect pests. This study investigated the effects of previous infestation of host chilli plants by the green peach aphid (Myzus persicae) on the olfactory behavioural response of B. tabaci, using free-choice bioassay with a Y-tube olfactometer. We analysed volatile organic compounds (VOCs) emitted by non-infested and M. persicae-infested chilli plants using solid-phase microextraction and gas chromatography-mass spectrometry. Our results showed that female WFs preferred non-infested to pre-infested plants. Collection and analysis of volatile compounds emitted by infested plants confirmed that there were significant increases in the production of monoterpenes (cymene; 1,8-cineole), sesquiterpenes (β-cadinene, α-copaene), and methyl salicylate (MeSA) compared to non-infested plants. Our results suggest that host plant infestation by aphids may induce production of secondary metabolites that deter B. tabaci from settling on its host plants. These results provide important information for understanding WF host selection and dispersal among crops, and also for manipulating WF behaviour to improve IPM in chilli.
Matched MeSH terms: Gas Chromatography-Mass Spectrometry
A new species of Pseudo-nitzschia (Bacillariophyceae) is described from plankton samples collected from Port Dickson (Malacca Strait, Malaysia) and Manzanillo Bay (Colima, Mexico). The species possesses a distinctive falcate cell valve, from which they form sickle-like colonies in both environmental samples and cultured strains. Detailed observation of frustules under TEM revealed ultrastructure that closely resembles P. decipiens, yet the new species differs by the valve shape and greater ranges of striae and poroid densities. The species is readily distinguished from the curve-shaped P. subcurvata by the presence of a central interspace. The morphological distinction is further supported by phylogenetic discrimination. We sequenced and analyzed the nuclear ribosomal RNA genes in the LSU and the second internal transcribed spacer, including its secondary structure, to infer the phylogenetic relationship of the new species with its closest relatives. The results revealed a distinct lineage of the new species, forming a sister cluster with its related species, P. decipiens and P. galaxiae, but not with P. subcurvata. We examined the domoic acid (DA) production of five cultured strains from Malaysia by Liquid chromatography-mass spectrometry (LC-MS), but they showed no detectable DA. Here, we present the taxonomic description of the vegetative cells, document the sexual reproduction, and detail the molecular phylogenetics of Pseudo-nitzschia sabit sp. nov.
Presently, plant oils which contain high percentage of linoleic acid 1 are perceived to be a viable alternative to mineral oil for biolubricant applications due to their biodegradability and technical properties. In order to get biodegradable lubricant, triester derivatives compounds (1-5) were synthesized and characterized. The processes involved were monoepoxidation of linoleic acid 2, oxirane ring opening 3, esterification 4 and acylation 5. The structures of the products were confirmed by FTIR, 1H and 13C-NMR and LC-MS. The results that showed lowest temperature properties were obtained for triester 5, with a pour point value (PP) of -73°C, highest onset temperature (260°C) and lowest volatility at 0.30%. Viscosity index (VI) increased for the ester's synthetic compounds (2, 3, 4, 5), while the PP decreased. This behavior is the result of the increase of the chain length of the branching agents. Triester based linoleic acid has improved properties such as low-temperature and tribological properties. These results will make it feasible for plant oil to be used for biolubricants, fuels in chain saws, transmission oil and brake fluid.
Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is the commonest cause of neonatal jaundice in Malaysia. Recently, OSMMR2000-D G6PD Assay Kit has been introduced to quantitate the level of G6PD activity in newborns delivered in Universiti Kebangsaan Malaysia Medical Centre (UKMMC). As duration of sample storage prior to analysis is one of the matters of concern, this study was conducted to identify the stability of G6PD enzyme during storage. A total of 188 cord blood samples from normal term newborns delivered at UKMMC were selected for this study. The cord bloods samples were collected in ethylene-diamine-tetra-acetic acid (EDTA) tubes and refrigerated at 2-8 °C. In addition, 32 out of 188 cord blood samples were spotted on chromatography paper, air-dried and stored at room temperature. G6PD enzyme activities were measured daily for 7 days using the OSMMR2000-D G6PD Assay Kit on both the EDTA blood and dried blood samples. The mean value for G6PD activity was compared between days of analysis using Student Paired T-Test. In this study, 172 out of 188 cord blood samples showed normal enzyme levels while 16 had levels corresponding to severe enzyme deficiency. The daily mean G6PD activity for EDTA blood samples of newborns with normal G6PD activity showed a significant drop on the fourth day of storage (p < 0.005) while for samples with severely deficient G6PD activity, significant drop was seen on third day of storage (p = 0.002). Analysis of dried cord blood showed a significant reduction in enzyme activity as early as the second day of storage (p = 0.001). It was also noted that mean G6PD activity for spotted blood samples were lower compared to those in EDTA tubes for all days (p = 0.001). Thus, EDTA blood samples stored at 2-8 °C appeared to have better stability in terms of their G6PD enzyme level as compared to dried blood samples on filter paper, giving a storage time of up to 3 days.
As a novel oral drug delivery system, proliposome was applied to improve the solubility of active components of Ginkgo biloba extract (GbE). There are currently few reports focusing on the pharmacokinetic characteristics of proliposome of GbE (GbP). A rapid and sensitive ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous quantification of active components of GbP and a commercial tablet product (Ginaton) in rat plasma was developed and successfully validated. The method was applied to the comparative pharmacokinetic evaluation of GbP and Ginaton in rat plasma. The results indicated that GbP has a significant effect on absorption, elimination and bioavailability of flavonoids and terpenoid lactones in comparison with Ginaton. The obtained results would be helpful for evaluating the absorption mechanism in the gastrointestinal tract in pharmacokinetic level and guiding the development of the novel oral drug delivery system.
Novel series of 2-(4,6-dimethoxy,1,3,5-triazin-2-yl) amino acid ester derivatives were synthesized using simple one pot method in methanol. The products were obtained in high yields and purities as observed from their spectral data, elemental analyses, GC-MS and X-ray crystallographic analysis. The B3LYP/6-311G(d,p) calculated molecular structures are well correlated with the geometrical parameters obtained from the X-ray analyses. The spectroscopic properties such as IR vibrational modes, NMR chemical shifts and UV-Vis electronic transitions were discussed both experimentally and theoretically. The IR vibrational frequencies showed good correlations with the experimental data (R(2)=0.9961-0.9995). The electronic spectra were assigned based on the TD-DFT results. Intense electronic transition band is calculated at 198.1nm (f=0.1389), 204.2nm (f=0.2053), 205.0 (f=0.1704) and 205.7 (0.2971) for compounds 6a-i, respectively. The molecular orbital energy levels contributed in the longest wavelength transition band were explained. For all compounds, the experimental wavelengths showed red shifts compared to the calculations due to the solvent effect. The NMR chemical shifts were calculated using GIAO method. The NBO analyses were performed to predict the stabilization energies due to the electron delocalization processes occur in the studied systems.
Matched MeSH terms: Gas Chromatography-Mass Spectrometry
Selective separation and sensitive detection of dissolved silicon and boron (DSi and DB) in aqueous solution was achieved by combining an electrodialytic ion isolation device (EID) as a salt remover, an ion-exclusion chromatography (IEC) column, and a corona charged aerosol detector (CCAD) in sequence. DSi and DB were separated by IEC on the H(+)-form of a cation exchange resin column using pure water eluent. DSi and DB were detected after IEC separation by the CCAD with much greater sensitivity than by conductimetric detection. The five-channel EID, which consisted of anion and cation acceptors, cathode and anode isolators, and a sample channel, removed salt from the sample prior to the IEC-CCAD. DSi and DB were scarcely attracted to the anion accepter in the EID and passed almost quantitatively through the sample channel. Thus, the coupled EID-IEC-CCAD device can isolate DSi and DB from artificial seawater and hot spring water by efficiently removing high concentrations of Cl(-) and SO4(2-) (e.g., 98% and 80% at 0.10molL(-1) each, respectively). The detection limits at a signal-to-noise ratio of 3 were 0.52μmolL(-1) for DSi and 7.1μmolL(-1) for DB. The relative standard deviations (RSD, n=5) of peak areas were 0.12% for DSi and 4.3% for DB.
The purpose of this study is to investigate the changes occured on phenolic compounds between two Malaysian varieties of pummelo fruit juice: Ledang (PO55) and Tambun (PO52) post-enzymatic clarification. The changes in polyphenols composition were monitored using High Performance Liquid Chromatography Diode Array Detection and Folin Ciocalteu's method. Clarification treatment of pummelo fruit juice with a commercial pectinase was optimized based on incubation temperature, time and enzyme concentration. Both varieties of pummelo fruit juice were treated with different optimized variables which produced the highest clarities with the least effect to the juice physical quality. Tambun variety was found to have significantly more total phenolic compounds (p <0.05) in comparison to Ledang variety, possibly due to the amount of naringin. Three types of hydroxycinnamic acids (chlorogenic, caffeic and coumaric acid) and three compounds of flavanones (naringin, hesperidin and narirutin) were found in both fruit juices, where naringin and chlorogenic acid were the major contributor to the total phenolic content. Naringin, which gave out bitter aftertaste to the juice, was found to decrease, 1.6 and 0.59 % reduction in Ledang and Tambun respectively, post-enzymatic treatment. The decrease in naringin, albeit nominal, could be a potential benefit to the juice production in reducing the bitterness of the juice. Post-enzymatic analysis furthermore resulted in no significance differences (p <0.05) on the total phenolic compounds of both varieties. This study in summary provides a compositional database for Malaysian pummelo fruit juice of various phenolic compounds, which can provide useful information for evaluating the authenticity and the health benefits from the juice.
Matched MeSH terms: Chromatography, High Pressure Liquid
Staphylococcus aureus is well known for its biofilm formation with rapid emergence of new clones circulating worldwide. The main objectives of the study were (1) to identify possible differences in protein expression among various and closely related clonal types of S. aureus, (2) to establish the differences in protein expression in terms of size of protein spots and its intensities between bacteria which are grown statically (biofilm formation) with that of under aeration and agitation, and (3) to compare the differences in protein expression as a function of time (in hours). In this study, we selected six clinical isolates comprising two similar (MRSA-527 and MRSA-524) and four different (MRSA-139, MSSA-12E, MSSA-22d, and MSSA-10E) types identified by spa typing, MLST and SCCmec typing. We performed 2D gel migration comparison. Also, two MRSA isolates (527 and 139) were selected to determine quantitative changes in the level of extracellular proteins at different biofilm growth time points of 12, 24, and 48 h. The study was done using a strategy that combines 2-DGE and LC-MS/MS analysis for absolute quantification and identification of the extracellular proteins. The 2DGE revealed that the proteomic profiles for the isolates belonging to the similar spa, MLST, and SCCmec types were still quite different. Among the extracellular proteins secreted at different time points of biofilm formation, significant changes in protein expression were observed at 48 h incubation as compared to the exponential growth at 12 h incubation. The main conclusion of the work is that the authors do observe differences among isolates, and growth conditions do influence the protein content at different time points of biofilm formation.
A new, rapid and sensitive microextraction technique named vortex-assisted liquid-liquid-liquid microextraction (VALLLME) is proposed. The complete extraction process involves two steps. First, a vortex-assisted liquid-liquid microextraction (VALLME) procedure was used to extract the analytes from a relatively large volume of sample (donor phase) to a small volume of organic solvent (intermediate phase). Next, a micro-vortex-assisted liquid-liquid extraction (µ-VALLE) was used to extract the target analytes from the intermediate phase to a smaller volume of aqueous solution (acceptor phase). The final extract (acceptor phase) can be directly injected into the high performance liquid chromatography or capillary electrophoresis units without any further treatments. The selection of the intermediate phase and the manipulation of pH are key parameters that ensure good extraction efficiency of the technique. The proposed technique has been successfully applied for the determination of carvedilol (used as model analyte) in biological fluid samples. The optimum extraction conditions were: toluene as intermediate phase (150 μL); pH of the donor phase, 9.5; vortex time of the VALLME, 45 s (maximum speed, 2500 rpm); 0.1M HCl (15 μL) as acceptor phase; vortexing time of the µ-VALLME, 75 s (maximum stirring speed, 2500 rpm) and salt concentration in the donor phase, 5% (w/v). Under these conditions, enrichment factors of 51- and 418-fold for VALLME step and VALLLME procedure, respectively, were achieved.
Matched MeSH terms: Chromatography, High Pressure Liquid
The study explored on the commonly available weed plant Commelina nudiflora which has potential in-vitro antioxidant and antimicrobial activity. The different polar solvents such as ethanol, chloroform, dichloromethane, hexane and aqueous were used for the soxhlet extraction. The extracts were identified pharmacologically as important bioactive compounds and their potential free radical scavenging activities, and antimicrobial properties were studied. C. nudiflora extracts were monitored on their in-vitro antioxidant ability by DPPH and ABTS radical scavenging assay. Aqueous extract shows significant free radical scavenging activity of 63.4 mg/GAE and 49.10 mg/g in DPPH and ABTS respectively. Furthermore, the aqueous crude extract was used in antibacterial studies, which shows the highest inhibitory activity against Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi. Among all the extracts, aqueous extract of C. nudiflora has significant control over free radical scavenging activity and inhibition of the growth of food pathogenic bacteria. Also, the aqueous extract contains abundance of phenolics and flavonoids higher than other extracts. This study explored weed plant C. nudiflora as a potential source of antioxidant and antibacterial efficacy and identified various therapeutic value bioactive compounds from GC-MS analysis.
Matched MeSH terms: Gas Chromatography-Mass Spectrometry
Myriad proteobacteria use N-acyl homoserine lactone (AHL) molecules as quorum sensing (QS) signals to regulate different physiological functions, including virulence, antibiotic production, and biofilm formation. Many of these proteobacteria possess LuxI/LuxR system as the QS mechanism. Recently, we reported the 3.89 Mb genome of Acinetobacter sp. strain GG2. In this work, the genome of this long chain AHL-producing bacterium was unravelled which led to the molecular characterization of luxI homologue, designated as aciI. This 552 bp gene was cloned and overexpressed in Escherichia coli BL21(DE3). The purified protein was ∼20.5 kDa and is highly similar to several autoinducer proteins of LuxI family among Acinetobacter species. To verify the AHL synthesis activity of this protein, high-resolution liquid chromatography-mass spectrometry analysis revealed the production of 3-oxo-dodecanoyl-homoserine lactone and 3-hydroxy-dodecanoyl-homoserine lactone from induced E. coli harboring the recombinant AciI. Our data show for the first time, the cloning and characterization of the luxI homologue from Acinetobacter sp. strain GG2, and confirmation of its AHLs production. These data are of great significance as the annotated genome of strain GG2 has provided a valuable insight in the study of autoinducer molecules and its roles in QS mechanism of the bacterium.
Ghritas are ayurvedic lipid based preparations in which oil or ghee is boiled with prescribed kasaya (polyherbal decoction) and kalka (fine paste of herbs) until the evaporation of aqueous phase transfers the contents into oily phase. The polyherbal decoction used in the preparation predominantly contains water soluble Active Botanical Ingredients (ABIs).
Matched MeSH terms: Chromatography, High Pressure Liquid
Hermetia illucens larvae by nature are a decomposer which fed on organic wastes. This study explores the potential of producing biodiesel using lipids from H. illucens larvae. Three types of organic wastes (sewage sludge, fruit waste and palm decanter cake from oil palm mill) were selected based on considerable generation and disposal concern in the area of study as well as lack of investigations as feed for Hermetia illucens larvae in current literatures. Growth rate of the larvae was determined with studying the changes in the biomass per day. H. illucens larvae fed with fruit waste and palm decanter cake have shown growth rates of 0.52±0.02 and 0.23±0.09 g d(-1), respectively. No positive sign of growth were observed in the larvae fed with treated sewage sludge (-0.04±0.01 g d(-1)). Biodiesel as fatty acid methyl ester (FAME) was synthesized by transesterification of the larvae lipid using sulphuric acid as catalyst in methanol. FAME produced was ascertained using ATR-FTIR spectroscopy and GC-MS. The main compositions of fatty acid were found to be C12:0, C16:0 and C18:1n9c. Fatty acid composition of C12:0 fed with fruit waste, sewage sludge and palm decanter was found to be most abundant in the larvae lipid. The amount of C12:0 obtained was 76.13%, 58.31% and 48.06%, respectively. In addition, fatty acid of C16:0 was attained at 16.48% and 25.48% fed with sewage sludge and palm decanter, respectively. Based on the findings, FAME derived from larvae lipids is feasible to be used for biodiesel production.
Matched MeSH terms: Gas Chromatography-Mass Spectrometry
In a survey of starch-based foods sampled from retail outlets in Malaysia, fungal colonies were mostly detected in wheat flour (100%), followed by rice flour (74%), glutinous rice grains (72%), ordinary rice grains (60%), glutinous rice flour (48%) and corn flour (26%). All positive samples of ordinary rice and glutinous rice grains had total fungal counts below 10(3) cfu/g sample, while among the positive rice flour, glutinous rice flour and corn flour samples, the highest total fungal count was more than 10(3) but less than 10(4) cfu/g sample respectively. However, in wheat flour samples total fungal count ranged from 10(2) cfu/g sample to slightly more than 10(4) cfu/g sample. Aflatoxigenic colonies were mostly detected in wheat flour (20%), followed by ordinary rice grains (4%), glutinous rice grains (4%) and glutinous rice flour (2%). No aflatoxigenic colonies were isolated from rice flour and corn flour samples. Screening of aflatoxin B1, aflatoxin B2, aflatoxin G1 and aflatoxin G2 using reversed-phase HPLC were carried out on 84 samples of ordinary rice grains and 83 samples of wheat flour. Two point four percent (2.4%) of ordinary rice grains were positive for aflatoxin G1 and 3.6% were positive for aflatoxin G2. All the positive samples were collected from private homes at concentrations ranging from 3.69-77.50 micrograms/kg. One point two percent (1.2%) of wheat flour samples were positive for aflatoxin B1 at a concentration of 25.62 micrograms/kg, 4.8% were positive for aflatoxin B2 at concentrations ranging from 11.25-252.50 micrograms/kg, 3.6% were positive for aflatoxin G1 at concentrations ranging from 25.00-289.38 micrograms/kg and 13.25% were positive for aflatoxin G2 at concentrations ranging from 16.25-436.25 micrograms/kg. Similarly, positive wheat flour samples were mostly collected from private homes.
Matched MeSH terms: Chromatography, High Pressure Liquid
Fatty acid profile from crude extracts of local sea cucumber Stichopus chloronotus was determined using gas chromatography (GC) technique. The extracts were prepared separately in methanol, ethanol, phosphate buffer saline (PBS), and distilled water as part of our study to look at the affinity of these solvents in extracting the lipid from sea cucumber. The PBS and distilled water extractions indicate water-soluble components, while the organic fractions are extracted in methanol and ethanol as organic solvents. Furthermore, water extraction is the conventional method practiced in Malaysia. In our analysis the C14:0 (myristic), C16:0 (palmitic), C18:0 (stearic), C18:2 (linoleic), C20:0 (arachidic), and C20:5 (eicosapentaenoic, EPA) were significantly different (p < 0.01) in the four solvent extractions. However, the PBS extraction contained a much higher percentage of EPA (25.69%) compared to 18.89% in ethanol, 7.84% in distilled water, and only 5.83% in methanol, and variances were significantly different (p < 0.01 ). On the other hand, C22:6 (docosahexaenoic acid or DHA) is much higher in water extraction (57.55%), in comparison to the others where only 3.63% in PBS and 1.20% in methanol, and this difference is significant at p < 0.01. No DHA was detected in ethanol extractions. Subsequently, C18:1 (oleic acid) was only detected in PBS (21.98%) and water extraction (7.50%). It is interesting that palmitic acid, C16:() was higher in methanol (20.82%) and ethanol (2.18%), while 12.55% was detected in PBS and only 2.20% in water extraction: and again this was significantly different at p < 0.01. Although our results have shown that all four solvents were different in terms of their ability to extract fatty acids, the major component for tissue repair was well preserved. Probably this is one of the important precocious steps when working with a delicate sea cucumber, in both experimental and/or at the preparative stages. Freshness of the sea cucumber samples is important when undertaking this type of experiment. Finally, we believe that the local sea cucumber S. chloronotus contains all the fatty acids required to play a potential active role in tissue repair.
Laboratory studies utilizing radioisotopic techniques were conducted to determine the adsorption, desorption, and mobility of endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxanthiepin3-oxide) and methamidophos (O,S-dimethyl phosphorothioate) in sandy loam and clay soils of the Cameron Highlands and the Muda rice-growing area, respectively. High Freundlich adsorption distribution coefficients [Kads(f)] for endosulfan (6.74 and 18.75) and low values for methamidophos (0.40 and 0.98) were obtained in the sandy loam and clay soils, respectively. The observed Koc values for endosulfan were 350.85 (sandy loam) and 1143.19 (clay) while Koc values of 20.92 (sandy loam) and 59.63 (clay) were obtained for methamidophos. Log Kow of 0.40 and 1.25 were calculated for endosulfan as well as -1.96 and -1.21 for methamidophos in the sandy loam and clay soils, respectively. Desorption was common to both pesticides but the desorption capacity of methamidophos from each soil type far exceeded that of endosulfan. Soil thin layer chromatography (TLC) and column studies showed that while methamidophos was very mobile in both soils, endosulfan displayed zero mobility in clay soil.