METHODS: Core flow rate, chitosan coating, and flaxseed mucilage concentration were optimised for the microencapsulation of L. rhamnosus. The microbeads were characterised and evaluated on microencapsulation efficiency and cell released after 6 h of sequential digestion.
RESULTS: The optimised parameters for the L. rhamnosus microencapsulation were 1.0 mL/min core flow rate, 0.4% (w/v) chitosan coating, and 0.4% (w/v) flaxseed mucilage. The L. rhamnosus microbeads with flaxseed mucilage in core and wall materials had a smooth surface with 781.3 µm diameter, the highest microencapsulation efficiency (98.8% w/w), lowest swelling (5196.7% w/w) and erosion ratio (515.5% w/w), and least cell release (<40% w/w) with 9.31 log10 CFU mL-1 after sequential digestion.
CONCLUSIONS: This study showed the protective capacity of flaxseed mucilage towards the L. rhamnosus GG during microencapsulation and gastrointestinal environment.
OBJECTIVE: Less is understood about the role of CYP2E1 in the central nervous system, therefore the purpose of the study was to investigate the relationship between the expression and activity of CYP2E1 enzyme relevant to Parkinson's disease and to identify whether an increase in the expression of CYP2E1 is associated with neurodegeneration.
METHODS: The objectives of the study were achieved by implicating an unsystematic integrative literature review approach in which the literature was qualitatively analysed, critically evaluated and a new theory with an overall view of the mechanism was presented.
RESULTS: The contribution of CYP2E1 in the development of Parkinson's disease was found to be significant as the negative effects of CYP2E1 overshadowed its protective detoxifying role.
CONCLUSION: Overexpression of CYP2E1 seems detrimental to dopaminergic neurons, therefore, to overcome this, a synthetic biochemical is required, which paves the way for further research and development of valuable biomolecules.
METHODS AND RESULTS: This study aimed to isolate and characterize the full-length cDNA encoding ERG11 from G. boninense. The G. boninense ERG11 gene expression during interaction with oil palm was also studied. A full-length 1860 bp cDNA encoding ERG11 was successfully isolated from G. boninense. The G. boninense ERG11 shared 91% similarity to ERG11 from other basidiomycete fungi. The protein structure homology modeling of GbERG11 was analyzed using the SWISS-MODEL workspace. Southern blot and genome data analyses showed that there is only a single copy of ERG11 gene in the G. boninense genome. Based on the in-vitro inoculation study, the ERG11 gene expression in G. boninense has shown almost 2-fold upregulation with the presence of oil palm.
CONCLUSION: This study provided molecular information and characterization study on the G. boninense ERG11 and this knowledge could be used to design effective control measures to tackle the BSR disease of oil palm.