Displaying publications 621 - 640 of 841 in total

Abstract:
Sort:
  1. Wong SK, Mohamad NV, Jayusman PA, Shuid AN, Ima-Nirwana S, Chin KY
    Aging Male, 2019 Jun;22(2):89-101.
    PMID: 29508640 DOI: 10.1080/13685538.2018.1448058
    Selective estrogen receptor modulators (SERMs) represent a class of drugs that act as agonist or antagonist for estrogen receptor in a tissue-specific manner. The SERMs drugs are initially used for the prevention and treatment of osteoporosis in postmenopausal women. Bone health in prostate cancer patients has become a significant concern, whereby patients undergo androgen deprivation therapy is often associated with deleterious effects on bone. Previous preclinical and epidemiological findings showed that estrogens play a dominant role in improving bone health as compared to testosterone in men. Therefore, this evidence-based review aims to assess the available evidence derived from animal and human studies on the effects of SERMs on the male skeletal system. The effects of SERMs on bone mineral density (BMD)/content (BMC), bone histomorphometry, bone turnover, bone strength and fracture risk have been summarized in this review.
    Matched MeSH terms: Disease Models, Animal
  2. Cheong AM, Jessica Koh JX, Patrick NO, Tan CP, Nyam KL
    J Food Sci, 2018 Mar;83(3):854-863.
    PMID: 29412455 DOI: 10.1111/1750-3841.14038
    This study aimed to evaluate the effect of kenaf seed oil (KSO), kenaf seed oil-in-water macroemulsion (KSOM), kenaf seed oil-in-water nanoemulsions (KSON), and emulsifier mixtures (EM) on serum lipid profile, liver oxidative status, and histopathological changes in high-cholesterol fed rats. Stability and characteristic of KSOM and KSON were carried out prior to in vivo study. Forty-two Sprague-Dawley rats were divided into 7 groups (6 rats each) and induced hypercholesterolemia by feeding high cholesterol diet (HCD) for 14 days prior to treatments. Different treatments were introduced on day 15 to 29 while supplemented with HCD and removal of HCD during treatment on day 30 to 43, except for HCD group. Body weight and serum lipid profiles were measured at 3 different points: after hypercholesterolemia was induced, on day 29, and at the end of the experiment. Relative liver weight, atherogenic index, coronary risk index, and fecal total bile acids were also determined at the end of experiment. KSON showed significantly higher stability than KSOM and FTIR exhibited good encapsulation of KSO after 1.5 years of storage. Serum total cholesterol, low density lipoprotein cholesterol, lipid peroxidation levels in HCD group without treatment were significantly higher compared to normal control group and all treatment groups. All samples demonstrated hypocholesterolemic effect, but KSON exhibited higher efficiency in cholesterol-lowering properties, weight control and decreased liver fat as confirmed by histopathological evaluation. The overall results revealed that the efficacy of different treatments was in descending order of KSON, KSO, KSOM, and EM.

    PRACTICAL APPLICATION: Kenaf seed oil-in-water nanoemulsion (KSON) has the potential to be used as a natural alternative to the synthetic hypocholesterolemic drug in the future. However, larger sample size and clinical trial are needed to confirm on this potential application. In addition, treatment with KSON was suggested to prevent cardiovascular disease and fatty liver.

    Matched MeSH terms: Disease Models, Animal
  3. Gurjar AS, Darekar MN, Yeong KY, Ooi L
    Bioorg Med Chem, 2018 05 01;26(8):1511-1522.
    PMID: 29429576 DOI: 10.1016/j.bmc.2018.01.029
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder with multiple factors associated with its pathogenesis. Our strategy against AD involves design of multi-targeted 2-substituted-4,5-diphenyl-1H-imidazole analogues which can interact and inhibit AChE, thereby, increasing the synaptic availability of ACh, inhibit BuChE, relieve induced oxidative stress and confer a neuroprotective role. Molecular docking was employed to study interactions within the AChE active site. In silico ADME study was performed to estimate pharmacokinetic parameters. Based on computational studies, some analogues were synthesized and subjected to pharmacological evaluation involving antioxidant activity, toxicity and memory model studies in animals followed by detailed mechanistic in vitro cholinesterase inhibition study. Amongst the series, analogue 13 and 20 are the most promising multi-targeted candidates which can potentially increase memory, decrease free radical levels and protect neurons against cognitive deficit.
    Matched MeSH terms: Disease Models, Animal
  4. Omar H, Nordin N, Hassandarvish P, Hajrezaie M, Azizan AHS, Fadaeinasab M, et al.
    Drug Des Devel Ther, 2017;11:1353-1365.
    PMID: 28496305 DOI: 10.2147/DDDT.S120564
    Actinodaphne sesquipedalis
    Hook. F. Var. Glabra (Kochummen), also known as "Medang payung" by the Malay people, belongs to the Lauraceae family. In this study, methanol leaf extract ofA. sesquipedaliswas investigated for their acute toxicity and gastroprotective effects to reduce ulcers in rat stomachs induced by ethanol. The rats were assigned to one of five groups: normal group (group 1), ulcer group (group 2), control positive drug group (group 3) and two experimental groups treated with 150 mg/kg (group 4) and 300 mg/kg (group 5) of leaf extract. The rats were sacrificed an hour after pretreatment with extracts, and their stomach homogenates and tissues were collected for further evaluation. Macroscopic and histological analyses showed that gastric ulcers in rats pretreated with the extract were significantly reduced to an extent that it allowed leukocytes penetration of the gastric walls compared with the ulcer group. In addition, an ulcer inhibition rate of >70% was detected in rats treated with both doses ofA. sesquipedalisextract, showing a notable protection of gastric layer. Severe destruction of gastric mucosa was prevented with a high production of mucus and pH gastric contents in both omeprazole-treated and extract-treated groups. Meanwhile, an increase in glycoprotein uptake was observed in pretreated rats through accumulation of magenta color in Periodic Acid Schiff staining assay. Analysis of gastric homogenate from pretreated rats showed a reduction of malondialdehyde and elevation of nitric oxide, glutathione, prostaglandin E2, superoxide dismutase and protein concentration levels in comparison with group 2. Suppression of apoptosis in gastric tissues by upregulation of Hsp70 protein and downregulation of Bax protein was also observed in rats pretreated with extract. Consistent results of a reduction of gastric ulcer and the protection of gastric wall were obtained for rats pretreated withA. sesquipedalisextract, which showed its prominent gastroprotective potential in rats' stomach against ethanol-induced ulcer.
    Matched MeSH terms: Disease Models, Animal
  5. Azemi AK, Abd Rahim MH, Mamat SS, Mat Jais AM, Zakaria ZA
    Pak J Pharm Sci, 2018 Jan;31(1):143-151.
    PMID: 29348096
    Channa striatus (Haruan) is Malaysian freshwater fish that is traditionally used to treat ailments related to wound and also ulcers. The aimed of the present study was to determine the mechanisms of anti-ulcer activity of chloroform: methanol extract of C. striatus fillet (CMCS) in rats. The antiulcer profile of CMCS, given orally in the doses of 50, 250 and 500mg/kg, was assessed using the ethanol- and indomethacin-induced gastric ulcer models. The mechanisms of antiulcer of CMCS were determined as follows; i) the antisecretory activity of CMCS was measured using the pyloric ligation rat model, and; ii) the role of nitric oxide (NO) and sulfhydryl compounds in the modulation of CMCS antiulcer activity were determined by pre-treating the rats with L-NAME or NEM, respectively, followed by the pre-treatment of rats with CMCS before subjecting the animals to the ethanol-induced gastric ulcer model. From the results obtained, CMCS exerted significant (P<0.05) antiulcer activity in both models of gastric ulcer wherein the macroscopic and microscopic analysis of the stomach supported the antiulcer claim. With regard to its antisecretory effect, CMCS did not change the volume and pH, but reduce the total acidity only at the lower doses of the gastric juice. Moreover, CMCS demonstrated antiulcer activity was reversed by NEM, but not affected by L-NAME. In conclusion, CMCS shows antiulcer activity that is modulated via its cytoprotective, but not antisecretory effect, and in the presence of sulfhysryl compounds, but not NO.
    Matched MeSH terms: Disease Models, Animal
  6. Lo TS, Lin YH, Chu HC, Cortes EF, Pue LB, Tan YL, et al.
    J Obstet Gynaecol Res, 2017 Jan;43(1):173-178.
    PMID: 27762470 DOI: 10.1111/jog.13158
    AIM: By investigating the association of urodynamics and urogenital nerve growth factor (NGF) levels in vaginal mesh surgery, we may be able to associate the likelihood of postoperative lower urinary tract symptoms developing as a result of synthetic mesh implanted for pelvic floor reconstructive surgery.

    METHODS: Thirty-eight female Sprague-Dawley rats were divided into three groups: mesh, sham (no mesh), and control. Urodynamic study and NGF analysis of the urogenital tissues were done and results were compared among all groups. The urodynamic studies of the mesh and sham groups were further divided into the 4th and 10th days. A P-value 

    Matched MeSH terms: Disease Models, Animal
  7. Ablat A, Halabi MF, Mohamad J, Hasnan MH, Hazni H, Teh SH, et al.
    BMC Complement Altern Med, 2017 Feb 06;17(1):94.
    PMID: 28166749 DOI: 10.1186/s12906-017-1610-x
    Brucea javanica (B. javanica) seeds, also known as "Melada pahit" in Indo-Malay region are traditionally used to treat diabetes. The objective of this study was to determine antidiabetic, antioxidant and anti-inflammatory effects of B. javanica seeds on nicotinamide (NA)-streptozotocin (STZ) induced type 2 diabetic (T2D) rats and to analyze its chemical composition that correlate with their pharmacological activities.
    Matched MeSH terms: Disease Models, Animal
  8. Mohamad NV, Che Zulkepli MAA, May Theseira K, Zulkifli N, Shahrom NQ, Ridzuan NAM, et al.
    Int J Med Sci, 2018;15(4):300-308.
    PMID: 29511366 DOI: 10.7150/ijms.22732
    Introduction: Orchidectomy is currently the preferred method to induce bone loss in preclinical male osteoporosis model. Gonadotropin-releasing hormone (GnRH) agonists used in prostate cancer treatment can induce testosterone deficiency but its effects on bone in preclinical male osteoporosis model are less studied. Objective: This study aimed to evaluate the skeletal effect of buserelin (a GnRH agonist) in male rats and compare it with orchidectomy. Methods: Forty-six three-month-old male Sprague-Dawley rats were divided into three experimental arms. The baseline arm (n=6) was sacrificed at the onset of the study. In the buserelin arm, the rats received a daily subcutaneous injection of either normal saline (n=8), buserelin acetate at 25 µg/kg (n=8) or 75 µg/kg (n=8). In the orchidectomy arm, the rats were either sham-operated (n=8) or orchidectomized (n=8). All groups underwent in-vivo X-ray micro-computed tomography scanning at the left proximal tibia every month. Blood was collected at the beginning and the end of the study for testosterone level evaluation. The rats were euthanized after the three-month treatment. The femurs were harvested for biomechanical strength and bone calcium determination. Results: The results showed that buserelin at both doses caused a significant decline in testosterone level and deterioration in bone microstructure (p<0.05), but did not affect bone calcium content (p>0.05). Buserelin at 25 µg/kg decreased displacement and strain of the femur significantly (p<0.05). Similar changes were observed in the orchidectomized group compared to the sham-operated group but without any significant changes in biomechanical strength (p>0.05). Conclusion: Buserelin can induce testosterone deficiency and the associated deterioration of bone microarchitecture similar to orchidectomy in three months. However, it may require a longer time to show significant effects on bone strength and mineral content.
    Matched MeSH terms: Disease Models, Animal
  9. Leon AJ, Borisevich V, Boroumand N, Seymour R, Nusbaum R, Escaffre O, et al.
    PLoS Negl Trop Dis, 2018 03;12(3):e0006343.
    PMID: 29538374 DOI: 10.1371/journal.pntd.0006343
    Henipavirus infection causes severe respiratory and neurological disease in humans that can be fatal. To characterize the pathogenic mechanisms of henipavirus infection in vivo, we performed experimental infections in ferrets followed by genome-wide gene expression analysis of lung and brain tissues. The Hendra, Nipah-Bangladesh, and Nipah-Malaysia strains caused severe respiratory and neurological disease with animals succumbing around 7 days post infection. Despite the presence of abundant viral shedding, animal-to-animal transmission did not occur. The host gene expression profiles of the lung tissue showed early activation of interferon responses and subsequent expression of inflammation-related genes that coincided with the clinical deterioration. Additionally, the lung tissue showed unchanged levels of lymphocyte markers and progressive downregulation of cell cycle genes and extracellular matrix components. Infection in the brain resulted in a limited breadth of the host responses, which is in accordance with the immunoprivileged status of this organ. Finally, we propose a model of the pathogenic mechanisms of henipavirus infection that integrates multiple components of the host responses.
    Matched MeSH terms: Disease Models, Animal
  10. Murugesu K, Murugaiyah V, Saghir SAM, Asmawi MZ, Sadikun A
    Curr Pharm Biotechnol, 2017;18(14):1132-1140.
    PMID: 29564975 DOI: 10.2174/1389201019666180322111800
    BACKGROUND: Ethanolic extract of G. procumbens leaves has been previously shown to possess antihyperlipidemic effects.

    OBJECTIVE: This study was designed to prepare caffeoylquinic acids rich and poor fractions of the ethanolic extract using resin column technology and compare their antihyperlipidemic and antioxidant potentials.

    RESULTS: Among the treatment groups, caffeoylquinic acids rich fraction (F2) and chlorogenic acid (CA, one of the major caffeoylquinic acids) showed potent antihyperlipidemic effects, with significant reductions in total cholesterol (TC), triglycerides (TG), low-density lipoprotein-cholesterol (LDL-C), very low-density lipoprotein-cholesterol (VLDL-C), atherogenic index (AI) and coronary risk index (CRI) (p<0.01 or better) compared to the hyperlipidemic control at the 58 h. The effect was better than that of ethanolic extract. In addition, only F2 significantly increased the high-density lipoproteincholesterol (HDL-C) level (p<0.05). F2 showed better effect than CA alone (60 mg) despite the fact that it only contained 9.81 mg CA/1000 mg dose. The findings suggest that the di-caffeoylquinic acids (86.61 mg/g dose) may also in part be responsible for the potent antihyperlipidemic effect shown by the F2. Likewise, F2 showed the highest antioxidant activity. Thus, simple fractionation of ethanolic extract using the Amberlite XAD-2 resin technique had successfully enriched the caffeoylquinic acids into F2 with improved antihyperlipidemic and antioxidant capacities than that of the ethanolic extract.

    CONCLUSION: The resin separation technology may find application in caffeoylquinic acids enrichment of plant extracts for pre-clinical studies. The F2 has potential for development into phytopharmaceuticals as adjunct therapy for management of hyperlipidemia.

    Matched MeSH terms: Disease Models, Animal
  11. Haw TJ, Starkey MR, Nair PM, Pavlidis S, Liu G, Nguyen DH, et al.
    Mucosal Immunol, 2016 Jul;9(4):859-72.
    PMID: 26555706 DOI: 10.1038/mi.2015.111
    Chronic obstructive pulmonary disease (COPD) is a life-threatening inflammatory respiratory disorder, often induced by cigarette smoke (CS) exposure. The development of effective therapies is impaired by a lack of understanding of the underlining mechanisms. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with inflammatory and apoptotic properties. We interrogated a mouse model of CS-induced experimental COPD and human tissues to identify a novel role for TRAIL in COPD pathogenesis. CS exposure of wild-type mice increased TRAIL and its receptor messenger RNA (mRNA) expression and protein levels, as well as the number of TRAIL(+)CD11b(+) monocytes in the lung. TRAIL and its receptor mRNA were also increased in human COPD. CS-exposed TRAIL-deficient mice had decreased pulmonary inflammation, pro-inflammatory mediators, emphysema-like alveolar enlargement, and improved lung function. TRAIL-deficient mice also developed spontaneous small airway changes with increased epithelial cell thickness and collagen deposition, independent of CS exposure. Importantly, therapeutic neutralization of TRAIL, after the establishment of early-stage experimental COPD, reduced pulmonary inflammation, emphysema-like alveolar enlargement, and small airway changes. These data provide further evidence for TRAIL being a pivotal inflammatory factor in respiratory diseases, and the first preclinical evidence to suggest that therapeutic agents that target TRAIL may be effective in COPD therapy.
    Matched MeSH terms: Disease Models, Animal
  12. Volak A, LeRoy SG, Natasan JS, Park DJ, Cheah PS, Maus A, et al.
    J Neurooncol, 2018 Sep;139(2):293-305.
    PMID: 29767307 DOI: 10.1007/s11060-018-2889-2
    The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.
    Matched MeSH terms: Disease Models, Animal
  13. Zakaria MA, Rajab NF, Chua EW, Selvarajah GT, Masre SF
    Sci Rep, 2021 Nov 18;11(1):22500.
    PMID: 34795360 DOI: 10.1038/s41598-021-01988-8
    Mice have served as an excellent model to understand the etiology of lung cancer for years. However, data regarding dual-stage carcinogenesis of lung squamous cell carcinoma (SCC) remain elusive. Therefore, we aim to develop pre-malignant (PM) and malignant (M) lung SCC in vivo using N-nitroso-tris-chloroethylurea (NTCU). BALB/C mice were allotted into two main groups; PM and M groups which received treatment for 15 and 30 weeks, respectively. Then, the mice in each main group were allotted into three groups; control, vehicle, and cancer (n = 6), which received normal saline, 70% acetone, and 0.04 M NTCU by skin painting, respectively. Histopathologically, we discovered a mix of hyperplasia, metaplasia, and dysplasia lesions in the PM group and intracellular bridge; an SCC feature in the M group. The M group was positive for cytokeratin 5/6 protein which confirmed the lung SCC subtype. We also found significantly higher (P 
    Matched MeSH terms: Disease Models, Animal
  14. Iqbal M, Gnanaraj C
    Environ Health Prev Med, 2012 Jul;17(4):307-15.
    PMID: 22207570 DOI: 10.1007/s12199-011-0255-5
    OBJECTIVES: The purpose of this study was to evaluate the ability of aqueous extract of Eleusine indica to protect against carbon tetrachloride (CCl₄)-induced hepatic injury in rats.

    METHODS: The antioxidant activity of E. indica was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay. The total phenolic content of E. indica was also determined. Biochemical parameters [e.g. alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), glutathione (GSH), catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase and quinone reductase] were used to evaluate hepatic damage in animals pretreated with E. indica and intoxicated with CCl₄. CCl₄-mediated hepatic damage was also evaluated by histopathologically.

    RESULTS: E. indica extract was able to reduce the stable DPPH level in a dose-dependent manner. The half maximal inhibitory concentration (IC₅₀) value was 2350 μg/ml. Total phenolic content was found to be 14.9 ± 0.002 mg/g total phenolic expressed as gallic acid equivalent per gram of extract. Groups pretreated with E. indica showed significantly increased activity of antioxidant enzymes compared to the CCl₄-intoxicated group (p < 0.05). The increased levels of serum ALT and AST were significantly prevented by E. indica pretreatment (p < 0.05). The extent of MDA formation due to lipid peroxidation was significantly reduced (p < 0.05), and reduced GSH was significantly increased in a dose-dependently manner (p < 0.05) in the E. indica-pretreated groups as compared to the CCl₄-intoxicated group. The protective effect of E. indica was further evident through decreased histopathological alterations in the liver.

    CONCLUSION: The results of our study indicate that the hepatoprotective effects of E. indica might be ascribable to its antioxidant and free radical scavenging property.

    Matched MeSH terms: Disease Models, Animal
  15. Othman AS, Lin JW, Franke-Fayard BM, Kroeze H, van Pul FJA, Chevalley-Maurel S, et al.
    Mol Biochem Parasitol, 2018 Sep;224:44-49.
    PMID: 30053393 DOI: 10.1016/j.molbiopara.2018.07.009
    The transmission-blocking vaccine candidate Pfs48/45 from the human malaria parasite Plasmodium falciparum is known to be difficult to express in heterologous systems, either as full-length protein or as correctly folded protein fragments that retain conformational epitopes. In this study we express full-length Pfs48/45 in the rodent parasite P. berghei. Pfs48/45 is expressed as a transgene under control of the strong P. berghei schizont-specific msp1 gene promoter (Pfs48/45@PbMSP1). Pfs48/45@PbMSP1 schizont-infected red blood cells produced full-length Pfs48/45 and the structural integrity of Pfs48/45 was confirmed using a panel of conformation-specific monoclonal antibodies that bind to different Pfs48/45 epitopes. Sera from mice immunized with transgenic Pfs48/45@PbMSP1 schizonts showed strong transmission-reducing activity in mosquitoes infected with P. falciparum using standard membrane feeding. These results demonstrate that transgenic rodent malaria parasites expressing human malaria antigens may be used as means to evaluate immunogenicity and functionality of difficult to express malaria vaccine candidate antigens.
    Matched MeSH terms: Disease Models, Animal
  16. Raihan J, Ahmad U, Yong YK, Eshak Z, Othman F, Ideris A
    BMC Cancer, 2019 Apr 04;19(1):315.
    PMID: 30947706 DOI: 10.1186/s12885-019-5516-5
    BACKGROUND: Different strains of Newcastle disease virus (NDV) worldwide proved to have tumouricidal activity in several types of cancer cells. However, the possible anti-cancer activity of Malaysian NDV AF2240 strain and its mechanism of action remains unknown. The ability of cytokine-related apoptosis-inducing NDV AF2240 to treat breast cancer was investigated in the current study.

    METHODS: A total of 90 mice were used and divided into 15 groups, each group comprising of 6 mice. Tumour, body weight and mortality of the mice were determined throughout the experiment, to observe the effect of NDV and NDV + tamoxifen treatments on the mice. In addition, the toxic effect of the treatments was determined through liver function test. In order to elucidate the involvement of cytokine production induced by NDV, a total of six cytokines, i.e. IL-6, IFN-γ, MCP-1, IL-10, IL12p70 and TNF-α were measured using cytometric bead array assay (plasma) and enzyme-linked immunosorbent spot (isolated splenocytes).

    RESULTS: The results demonstrated that 4 T1 breast cancer cells in allotransplanted mice treated with AF2240 showed a noticeable inhibition of tumour growth and induce apoptotic-related cytokines.

    CONCLUSIONS: NDV AF2240 suppression of breast tumour growth is associated with induction of apoptotic-related cytokines. It would be important to further investigate the molecular mechanism underlaying cytokines production by Newcastle disease virus.

    Matched MeSH terms: Disease Models, Animal
  17. van Doremalen N, Lambe T, Sebastian S, Bushmaker T, Fischer R, Feldmann F, et al.
    PLoS Negl Trop Dis, 2019 Jun;13(6):e0007462.
    PMID: 31170144 DOI: 10.1371/journal.pntd.0007462
    Nipah virus (NiV) is a highly pathogenic re-emerging virus that causes outbreaks in South East Asia. Currently, no approved and licensed vaccine or antivirals exist. Here, we investigated the efficacy of ChAdOx1 NiVB, a simian adenovirus-based vaccine encoding NiV glycoprotein (G) Bangladesh, in Syrian hamsters. Prime-only as well as prime-boost vaccination resulted in uniform protection against a lethal challenge with NiV Bangladesh: all animals survived challenge and we were unable to find infectious virus either in oral swabs, lung or brain tissue. Furthermore, no pathological lung damage was observed. A single-dose of ChAdOx1 NiVB also prevented disease and lethality from heterologous challenge with NiV Malaysia. While we were unable to detect infectious virus in swabs or tissue of animals challenged with the heterologous strain, a very limited amount of viral RNA could be found in lung tissue by in situ hybridization. A single dose of ChAdOx1 NiVB also provided partial protection against Hendra virus and passive transfer of antibodies elicited by ChAdOx1 NiVB vaccination partially protected Syrian hamsters against NiV Bangladesh. From these data, we conclude that ChAdOx1 NiVB is a suitable candidate for further NiV vaccine pre-clinical development.
    Matched MeSH terms: Disease Models, Animal
  18. Zadeh-Ardabili PM, Rad SK, Rad SK, Movafagh A
    Sci Rep, 2019 Dec 27;9(1):19953.
    PMID: 31882885 DOI: 10.1038/s41598-019-56360-8
    Oxidative stress has significant role in pathophysiology of any kind of depression through actions of free radicals, non-radical molecules, and unbalancing antioxidant systems in body. In the current study, antidepressant responses of fish oil (FO), Neptune krill oil (NKO), vitamin B12 (Vit B12), and also imipramine (IMP) as the reference were studied. Natural light was employed to induce stress in the animals followed by oral administration of the drugs for 14 days. The antidepressant effect was assessed by tail suspension test (TST) and forced swimming test (FST), antioxidant enzymes and oxidative stress markers were then measured in the brain tissue of the animals. The administration of FO and NKO could significantly reduce the immobility of the animals; while, increasing climbing and swimming time compared to the normal saline in CUS-control group in TST and FST, similarly to IMP but not with Vit B12. Vit B12 could not effect on SOD activity and H2O2 level, but, cause decrease of the malondialdihydric (MDA) level and CAT activity, as well as increased the GPx and GSH activities. The rest treatments led to decrease of MDA, H2O2 levels and CAT activity and increase of GPx, SOD, GSH activities.
    Matched MeSH terms: Disease Models, Animal
  19. Wong SK, Chin KY, Ima-Nirwana S
    PMID: 31505801 DOI: 10.3390/ijerph16183313
    A positive association between metabolic syndrome (MetS) and osteoporosis has been demonstrated in previous animal studies. The mechanisms of MetS in orchestrating the bone remodelling process have traditionally focused on the interactions between mature osteoblasts and osteoclasts, while the role of osteocytes is unexplored. Our earlier studies demonstrated the bone-promoting effects of tocotrienol using a rat model of osteoporosis induced by MetS. This study aimed to investigate the expression of osteocyte-derived peptides in the bone of rats with MetS-induced osteoporosis treated with tocotrienol. Age-matched male Wistar rats (12-week-old; n = 42) were divided into seven experimental groups. Two groups served as the baseline and normal group, respectively. The other five groups were fed with a high-carbohydrate high-fat (HCHF) diet to induce MetS. The five groups of HCHF animals were treated with tocopherol-stripped corn oil (vehicle), annatto tocotrienol (60 and 100 mg/kg), and palm tocotrienol (60 and 100 mg/kg) starting from week 8. At the end of the study, the rats were sacrificed and their right tibias were harvested. Protein was extracted from the metaphyseal region of the proximal right tibia and levels of bone peptides, including osteoprotegerin (OPG), soluble receptor activator of nuclear factor-kappa B ligand (sRANKL), sclerostin (SOST), Dickkopf-related protein 1 (DKK-1), fibroblast growth factor-23 (FGF-23), and parathyroid hormone (PTH), were measured. The vehicle-treated animals displayed higher levels of sRANKL, SOST, DKK-1, FGF-23, and PTH as compared to the normal animals. Oral supplementation of annatto and palm tocotrienol (60 and 100 mg/kg) reduced the levels of sRANKL and FGF-23 in the HCHF animals. Only 100 mg/kg annatto and palm tocotrienol lowered SOST and DKK-1 levels in the HCHF animals. In conclusion, tocotrienol exerts potential skeletal-promoting benefit by modulating the levels of osteocytes-derived bone-related peptides.
    Matched MeSH terms: Disease Models, Animal
  20. Ruslee SS, Zaid SSM, Bakrin IH, Goh YM, Mustapha NM
    BMC Complement Med Ther, 2020 May 29;20(1):160.
    PMID: 32471398 DOI: 10.1186/s12906-020-02960-1
    BACKGROUND: To investigate the protective effects of Tualang honey against the toxicity effects induced by cadmium (Cd) on the ovary.

    METHODS: A total of 32 female Sprague Dawley rats were taken and randomly divided into four groups (n = 8). Throughout the experimental period of 6 weeks, negative control-NC (vehicle deionized water), positive control-CD (Cd at 5 mg/kg), Tualang honey followed by Cd exposure-TH (Tualang honey at 200 mg/kg and Cd at 5 mg/kg) and Tualang honey control-THC (Tualang honey at 200 mg/kg) groups, were administered orally on a daily basis.

    RESULTS: Rats exposed to Cd were significantly higher in ovarian weight, number of antral and atretic follicles as compared to the NC group. The disruptive effects of Cd on ovarian follicles were associated with a disruption in gonadotropin hormones and decreases in follicular stimulating hormone (FSH) and luteinizing hormone (LH). Moreover, a significant formation of oxidative stress in ovarian Cd-exposed rats has been proven by increasing the level of lipid peroxidation products (malondialdehyde) and decreasing the levels of enzymatic antioxidant (catalase). Interestingly, a daily supplementation of high antioxidant agents such as Tualang honey in these animals, caused significant improvements in the histological changes. Additionally, less atretic follicles were observed, restoring the normal level of LH and FSH (P 

    Matched MeSH terms: Disease Models, Animal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links