Displaying publications 681 - 700 of 1781 in total

Abstract:
Sort:
  1. Permeen AM, Sam CK, Pathmanathan R, Prasad U, Wolf H
    J Virol Methods, 1990 Mar;27(3):261-7.
    PMID: 2157729
    The presence of Epstein Barr virus (EBV) DNA in biopsies from the post-nasal space (PNS) of patients suspected of nasopharyngeal carcinoma (NPC) was detected by in situ cytohybridization with an EBV DNA probe labelled with the novel labelling compound digoxigenin. The digoxigenin probe was hybridised to cryostat sections of NPC biopsies and subsequently detected by an enzyme immunoassay procedure. It was found that in situ cytohybridization using the digoxigenin probe was much more rapid and sensitive (96 h compared to five weeks) than the current method of using 3H-labelled probe. Using the digoxigenin EBV probe, it was found that in all the eighteen NPC biopsies tested, EBV DNA was detected in malignant epithelial cells and infiltrating lymphocytes. EBV DNA was also detected in some normal epithelial cells in these NPC biopsies. EBV DNA was not detected in epithelial cells of non-malignant biopsies.
    Matched MeSH terms: Cell Line
  2. Zhang Z, Zhang H, Zhang Z, Sandai D, Lu P, Zhang H, et al.
    Front Immunol, 2024;15:1483498.
    PMID: 39555060 DOI: 10.3389/fimmu.2024.1483498
    BACKGROUND: Cell death mechanisms are integral to the pathogenesis of breast cancer (BC), with ATP-induced cell death (AICD) attracting increasing attention due to its distinctive specificity and potential therapeutic applications.

    METHODS: This study employed genomic methodologies to investigate the correlation between drug sensitivity and types of AICD in BC. Initially, data from TCGA were utilized to construct a prognostic model and classification system for AICD. Subsequently, a series of bioinformatics analyses assessed the prognostic and clinical significance of this model within the context of BC.

    RESULTS: Analysis revealed a cohort of 18 genes associated with AICD, exhibiting prognostic relevance. Survival analyses indicated that overall survival rates were significantly lower in high-risk populations compared to their low-risk counterparts. Furthermore, prognostic indicators linked to AICD demonstrated high accuracy in predicting survival outcomes in BC. Immunological assessments indicated heightened expression of anti-tumor infiltrating immune cells and immune checkpoint molecules in low-risk populations, correlating with various anti-tumor immune functions. Ultimately, a comprehensive prognostic model related to AICD was developed through univariate analysis, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analysis. As Adenosine triphosphate (ATP) concentration increased, the viability of BC cells exhibited a general decline at each time point. Notably, ATP diminished the mitochondrial membrane potential in BC cells while enhancing it in normal breast epithelial cells. Additionally, ATP inhibited the migration of BC cells and promoted their apoptosis. ATP also stimulated reactive oxygen species (ROS) production in MCF-10A cells, with implications for the immune response in BC cells. Compared to the control group, expression levels of CLIC6, SLC1A1, and CEMIP were significantly reduced in the ATP intervention group, whereas ANO6 expression was elevated. ANO6, CEMIP, and CLIC6 share genetic variants with BC, while SLC1A1 does not exhibit genetic causal variation with the disease.

    CONCLUSION: A valuable prognostic model associated with AICD has been established, capable of accurately predicting BC prognosis. The induction of cell death by ATP appears to play a protective role in BC progression. These findings carry significant implications for the implementation of personalized and tailored treatment strategies for BC patients.

    Matched MeSH terms: Cell Line, Tumor
  3. Chong YP, Peter EP, Lee FJM, Chan CM, Chai S, Ling LPC, et al.
    Sci Rep, 2022 Jul 19;12(1):12315.
    PMID: 35853996 DOI: 10.1038/s41598-022-16671-9
    As pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs) are the two major cell types that comprise the immunosuppressive tumor microenvironment of pancreatic cancer, we aimed to investigate the role of conditioned medium derived from PCCs and PSCs co-culture on the viability of lymphocytes. The conditioned medium (CM) collected from PCCs and/or PSCs was used to treat peripheral blood mononuclear cells (PBMCs) to determine CM ability in reducing lymphocytes population. A proteomic analysis has been done on the CM to investigate the differentially expressed protein (DEP) expressed by two PCC lines established from different stages of tumor. Subsequently, we investigated if the reduction of lymphocytes was directly caused by CM or indirectly via CM-induced MDSCs. This was achieved by isolating lymphocyte subtypes and treating them with CM and CM-induced MDSCs. Both PCCs and PSCs were important in suppressing lymphocytes, and the PCCs derived from a metastatic tumor appeared to have a stronger suppressive effect than the PCCs derived from a primary tumor. According to the proteomic profiles of CM, 416 secreted proteins were detected, and 13 DEPs were identified between PANC10.05 and SW1990. However, CM was found unable to reduce lymphocytes viability through a direct pathway. In contrast, CM that contains proteins secreted by PCC and/or PSC appear immunogenic as they increase the viability of lymphocytes subtypes. Lymphocyte subtype treated with CM-induced MDSCs showed reduced viability in T helper 1 (Th1), T helper 2 (Th2), and T regulatory (Treg) cells, but not in CD8+ T cells, and B cells. As a conclusion, the interplay between PCCs and PSCs is important as their co-culture displays a different trend in lymphocytes suppression, hence, their co-culture should be included in future studies to better mimic the tumor microenvironment.
    Matched MeSH terms: Cell Line, Tumor
  4. Mansor NI, Ling KH, Rosli R, Hassan Z, Adenan MI, Nordin N
    J Alzheimers Dis, 2023;94(s1):S21-S44.
    PMID: 37334592 DOI: 10.3233/JAD-221233
    BACKGROUND: Centella asiatica (L.) (C. asiatica) is commonly known in South East and South East Asia communities for its nutritional and medicinal benefits. Besides being traditionally used to enhance memory and accelerate wound healing, its phytochemicals have been extensively documented for their neuroprotective, neuroregenerative, and antioxidant properties.

    OBJECTIVE: The present study aims to investigate the effects of a standardized raw extract of C. asiatica (RECA) on hydrogen peroxide (H2O2)-induced oxidative stress and apoptotic death in neural-like cells derived from mouse embryonic stem (ES) cell line.

    METHODS: A transgenic mouse ES cell (46C) was differentiated into neural-like cells using 4-/4+ protocol with addition of all-trans retinoic acid. These cells were then exposed to H2O2 for 24 h. The effects of RECA on H2O2-induced neural-like cells were assessed through cell viability, apoptosis, and reactive oxygen species (ROS) assays, as well as neurite length measurement. The gene expression levels of neuronal-specific and antioxidant markers were assessed by RT-qPCR analysis.

    RESULTS: Pre-treatment with H2O2 for 24 hours, in a dose-dependent manner, damaged neural-like cells as marked by a decrease in cell viability, substantial increase in intracellular ROS accumulation, and increase in apoptotic rate compared to untreated cells. These cells were used to treat with RECA. Treatment with RECA for 48 h remarkably restored cell survival and promoted neurite outgrowth in the H2O2- damaged neurons by increasing cell viability and decreasing ROS activity. RT-qPCR analysis revealed that RECA upregulated the level of antioxidant genes such as thioredoxin-1 (Trx-1) and heme oxygenase-1 (HO-1) of treated cells, as well as the expression level of neuronal-specific markers such as Tuj1 and MAP2 genes, suggesting their contribution in neuritogenic effect.

    CONCLUSION: Our findings indicate that RECA promotes neuroregenerative effects and exhibits antioxidant properties, suggesting a valuable synergistic activity of its phytochemical constituents, thus, making the extract a promising candidate in preventing or treating oxidative stress-associated Alzheimer's disease.

    Matched MeSH terms: Cell Line
  5. El Omari N, Bakrim S, Khalid A, Albratty M, Abdalla AN, Lee LH, et al.
    Biomed Pharmacother, 2023 Sep;165:115212.
    PMID: 37541175 DOI: 10.1016/j.biopha.2023.115212
    Cancer progression is strongly affected by epigenetic events in addition to genetic modifications. One of the key elements in the epigenetic control of gene expression is histone modification through acetylation, which is regulated by the synergy between histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs are thought to offer considerable potential for the development of anticancer medications, particularly when used in conjunction with other anticancer medications and/or radiotherapy. Belinostat (Beleodaq, PXD101) is a pan-HDAC unsaturated hydroxamate inhibitor with a sulfonamide group that has been approved by the U.S. Food and Drug Administration (FDA) for the treatment of refractory or relapsed peripheral T-cell lymphoma (PTCL) and solid malignancies or and other hematological tissues. This drug modifies histones and epigenetic pathways. Because HDAC and HAT imbalance can lead to downregulation of regulatory genes, resulting in tumorigenesis. Inhibition of HDACs by belinostat indirectly promotes anti-cancer therapeutic effect by provoking acetylated histone accumulation, re-establishing normal gene expressions in cancer cells and stimulating other routes such as the immune response, p27 signaling cascades, caspase 3 activation, nuclear protein poly (ADP-ribose) polymerase-1 (PARP-1) degradation, cyclin A (G2/M phase), cyclin E1 (G1/S phase) and other events. In addition, belinostat has already been discovered to increase p21WAF1 in a number of cell lines (melanoma, prostate, breast, lung, colon, and ovary). This cyclin-dependent kinase inhibitor actually has a role in processes that cause cell cycle arrest and apoptosis. Belinostat's clinical effectiveness, comprising Phase I and II studies within the areas of solid and hematological cancers, has been evidenced through several investigative trials that have supported its potential to be a valuable anti-cancer drug. The purpose of this research was to provide insight on the specific molecular processes through which belinostat inhibits HDAC. The ability to investigate new therapeutic options employing targeted therapy and acquire a deeper understanding of cancer cell abnormalities may result from a better understanding of these particular routes.
    Matched MeSH terms: Cell Line, Tumor
  6. Yehya AHS, Subramaniam AV, Asif M, Kaur G, Abdul Majid AMS, Oon CE
    World J Gastroenterol, 2022 Aug 28;28(32):4620-4634.
    PMID: 36157930 DOI: 10.3748/wjg.v28.i32.4620
    BACKGROUND: Pancreatic cancer is the most aggressive cancer type. Gemcitabine is the first line chemo-drug used for pancreatic cancer but exerts a broad spectrum of organ toxicities and adverse effects in patients.

    AIM: To evaluate the anti-tumour activity and toxicological effects of Orthosiphon stamineus extract formulation (ID: C5EOSEW5050ESA trademarked as Nuva-staticTM), and gemcitabine combination on pancreatic xenograft model.

    METHODS: Mice were randomly divided into six groups of 6 mice each (n = 6) and given different treatments for 28 d. The study design consisted of a 2 x 3 factorial treatment structure, with gemcitabine (yes/no) by oral (at 1200 and 400 mg/kg per day). Human pancreatic cancer cells were injected subcutaneously into the flanks of athymic nude mice. C5EOSEW5050ESA (200 or 400 mg/kg per day) was administered orally, while gemcitabine (10 mg/kg per 3 d) was given intraperitoneally either alone or in combination treatment. Histopathological analyses of vital organs, tumour tissues, and incidence of lethality were analysed. Analyses of tumour necrosis and proliferation were determined by haematoxylin-eosin staining and immunohistochemistry for Ki-67, respectively.

    RESULTS: No signs of toxicity or damage to vital organs were observed in all treatment groups compared to the untreated group. C5EOSEW5050ESA at 200 mg/kg and gemcitabine combination had no additive antitumor effects compared to a single treatment. Remarkably, a comparably greater response in a reduction in tumour growth, Ki-67 protein expression, and necrosis was demonstrated by 400 mg/kg of C5EOSEW5050ESA and gemcitabine combination than that of the individual agents.

    CONCLUSION: These results highlighted the synergistic activity of C5EOSEW5050ESA with gemcitabine to reduce pancreatic tumour growth in mice compared to a single treatment. Thus, this study provides valuable insights into using C5EOSEW5050ESA as a complementary treatment with gemcitabine for pancreatic cancer.

    Matched MeSH terms: Cell Line, Tumor
  7. Tiong YL, Ng KY, Koh RY, Ponnudurai G, Chye SM
    Exp Ther Med, 2020 Nov;20(5):16.
    PMID: 32934681 DOI: 10.3892/etm.2020.9143
    Upon peripheral nerve injury (PNI), continuous proliferation of Schwann cells is critical for axon regeneration and tubular reconstruction for nerve regeneration. Melatonin is a hormone that is able to induce proliferation in various cell types. In the present study, the effects of melatonin on promoting Schwann cell proliferation and the molecular mechanism involved were investigated. The present results showed that melatonin enhanced the melatonin receptors (MT1 and MT2) expression in Schwann cells. Melatonin induced Schwann cell dedifferentiation into progenitor-like Schwann cells, as observed by immunofluorescence staining, which showed Sox2 marker expression. In addition, melatonin enhanced Schwann cell proliferation, mediated by the upregulation of glial cell-derived neurotropic factor (GNDF) and protein kinase C (PKC). Furthermore, the Ras/Raf/ERK and MAPK signaling pathways were also involved in Schwann cell dedifferentiation and proliferation. In conclusion, melatonin induced Schwann cell dedifferentiation and proliferation via the Ras/Raf/ERK, MAPK and GDNF/PKC pathways. The present results suggested that melatonin could be used to enhance the recovery of PNI.
    Matched MeSH terms: Glial Cell Line-Derived Neurotrophic Factor
  8. Ahmad Mulyadi Lai HI, Chou SJ, Chien Y, Tsai PH, Chien CS, Hsu CC, et al.
    Int J Mol Sci, 2021 Jan 28;22(3).
    PMID: 33525682 DOI: 10.3390/ijms22031320
    Angiotensin-converting enzyme 2 (ACE2) was identified as the main host cell receptor for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its subsequent infection. In some coronavirus disease 2019 (COVID-19) patients, it has been reported that the nervous tissues and the eyes were also affected. However, evidence supporting that the retina is a target tissue for SARS-CoV-2 infection is still lacking. This present study aimed to investigate whether ACE2 expression plays a role in human retinal neurons during SARS-CoV-2 infection. Human induced pluripotent stem cell (hiPSC)-derived retinal organoids and monolayer cultures derived from dissociated retinal organoids were generated. To validate the potential entry of SARS-CoV-2 infection in the retina, we showed that hiPSC-derived retinal organoids and monolayer cultures endogenously express ACE2 and transmembrane serine protease 2 (TMPRSS2) on the mRNA level. Immunofluorescence staining confirmed the protein expression of ACE2 and TMPRSS2 in retinal organoids and monolayer cultures. Furthermore, using the SARS-CoV-2 pseudovirus spike protein with GFP expression system, we found that retinal organoids and monolayer cultures can potentially be infected by the SARS-CoV-2 pseudovirus. Collectively, our findings highlighted the potential of iPSC-derived retinal organoids as the models for ACE2 receptor-based SARS-CoV-2 infection.
    Matched MeSH terms: Cell Line
  9. Rajan DS, Rajkumar M, Srinivasan R, Harikumar RP, Suresh S, Kumar S
    Pak J Biol Sci, 2013 Nov 01;16(21):1336-41.
    PMID: 24511743
    Seaweeds have been used by mankind as medicine and food for more than 13,000 years. Marine algae are considered to produce a valuable phytoconstituents characterized by a broad spectrum of antitumor activities. The aim of the present study was to explore the effect of different solvent extracts of Sargassum wightii, Greville against Dalton's Ascitic Lymphoma (DAL) in Swiss male albino mice. DAL cells were injected intraperitoneally 1 x10(6) cell to the mice. Two days after cells injection the animals were treated with different solvent extracts of Sargassum wightii at dose of 200 mg kg(-1) for 14 days. 5-fluorouracil (20 mg kg(-1)) was used as reference drug. On day 11, cancer cell number, packed cell volume, decrease in tumour weight of the mice, increase in life span and hematological parameters were evaluated and compared with the same parameters in control. A significant increase in the life span and a decrease in the cancer cell number and tumour weight were noted in the tumour-induced mice after treatment with the extract. The haematological parameters were also normalized by the ethanolic and chloroform extracts in tumour-induced mice. These observations are suggestive of the protective effect of ethanolic extract of Sargassum wightii is comparatively better than other two tested extracts against Dalton's Ascitic Lymphoma (DAL).
    Matched MeSH terms: Cell Line, Tumor
  10. Li X, Peng B, Li J, Tian M, He L
    Protein Pept Lett, 2023;30(12):992-1000.
    PMID: 38013437 DOI: 10.2174/0109298665245603231106050224
    OBJECTIVES: We aim to investigate the regulatory mechanisms of miR-455-5p/SOCS3 pathway that underlie the proliferation, migration, and invasion of triple-negative breast cancer (TNBC) cells.

    METHODS: Reverse transcription-quantitative PCR (RT-qPCR) was used to detect miR-455-5p expression in breast cancer tissues and cell lines. CCK8 and Transwell assays were conducted to assess the effects of miR-455-5p on breast cancer line proliferation, migration, and invasion. SOCS3 expression level in breast cancer tissues and cell lines was determined by qPCR and western blotting. The targeting relationship between miR-455-5p and SOCS3 was determined by dual luciferase reporter gene assay in different breast cancer cell lines. Finally, the upstream and downstream regulatory association between miR-455-5p and SOCS3 was confirmed in breast cancer cells by CCK8, western blot, and Transwell assays.

    RESULTS: MiR-455-5p expression was up-regulated in breast cancer tissues; miR-455-5p regulates TNBC proliferation, migration, and invasion of TNBC. SOCS3 was the direct target of miR-455-5p and was down-regulated in breast cancer. Interference with SOCS3 reversed the inhibitory effect of the miR-455-5p inhibitor on breast cancer cells' malignant potential.

    CONCLUSION: MiR-455-5p promotes breast cancer progression by targeting the SOCS3 pathway and may be a potential therapeutic target for breast cancer.

    Matched MeSH terms: Cell Line, Tumor
  11. Chan HY, Ramasamy TS, Chung FF, Teow SY
    Cell Biochem Biophys, 2024 Jun;82(2):959-968.
    PMID: 38466472 DOI: 10.1007/s12013-024-01247-3
    Hepatocellular carcinoma (HCC) remains a major global health problem with high incidence and mortality. Diagnosis of HCC at late stages and tumour heterogeneity in patients with different genetic profiles are known factors that complicate the disease treatment. HCC therapy becomes even more challenging in patients with drug resistance such as resistance to sorafenib, which is a common drug used in HCC patients. Sorafenib resistance can further aggravate HCC by regulating various oncogenic pathways such as autophagy and nuclear factor-kappa Beta (NF-ĸβ) signalling. Sirtuin 1 (SIRT1), is a nicotinamide adenosine dinucleotide (NAD)-dependent histone deacetylases that regulates various metabolic and oncogenic events such as cell survival, apoptosis, autophagy, tumourigenesis, metastasis and drug resistance in various cancers, but its role in HCC, particularly in sorafenib resistance is underexplored. In this study, we generated sorafenib-resistant HepG2 and Huh-7 liver cancer cell models to investigate the role of SIRT1 and its effect on autophagy and nuclear factor-kappa Beta (NF-ĸβ) signalling pathways. Western blot analysis showed increased SIRT1, altered autophagy pathway and activated NF-ĸβ signalling in sorafenib-resistant cells. SIRT1-silenced HCC cells demonstrated down-regulated autophagy in both parental and chemoresistant cells. This may occur through the deacetylation of key autophagy molecules such as FOXO3, beclin 1, ATGs and LC3 by SIRT1, highlighting the role of SIRT1 in autophagy induction. Silencing of SIRT1 also resulted in activated NF-ĸβ signalling. This is because SIRT1 failed to deacetylate p65 subunit of NF-κB, translocate the NF-κB from nucleus to cytoplasm, and suppress NF-κB activity due to the silencing. Hence, the NF-κB transcriptional activity was restored. These findings summarize the role of SIRT1 in autophagy/NF-ĸβ regulatory axis, with a similar trend observed in both parental and sorafenib-resistant cells. The present work promotes a better understanding of the role of SIRT1 in autophagy and NF-ĸβ signalling in HCC and sorafenib-resistant HCC. As some key proteins in these pathways are potential therapeutic targets, a better understanding of SIRT1/autophagy/NF-ĸβ axis could further improve the therapeutic strategies against HCC.
    Matched MeSH terms: Cell Line, Tumor
  12. Pan Y, Ong EC
    Xenobiotica, 2017 Oct;47(10):923-932.
    PMID: 27690753 DOI: 10.1080/00498254.2016.1244370
    1. This article aims to evaluate the potentials of using cytochrome P450 2W1 (CYP2W1) as a biomarker and a drug target of cancer because of its characteristic cancer-specific expression. 2. Discrepant findings comparing the expression levels of CYP2W1 in cancer and non-cancer samples were reported. In general, the expression followed a developmental pattern. The demethylation status of CpG island and the expression levels of CYP2W1 genes was positively correlated. 3. CYP2W1 was able to activate several procarcinogens, anticancer pro-drugs and to metabolise many endogenous substances including fatty acids and lysophospholipids. 4. CYP2W1 expression level was suggested to serve as an independent prognostic biomarker in colorectal cancer and hepatocellular carcinoma. The correlation of genetic polymorphisms of CYP2W1 and cancer risk was uncertain. 5. Further characterisation of CYP2W1 structure is suggested to link to its functions. More studies are warranted to reveal the true status and the regulation of CYP2W1 expression across normal and cancer tissues. Catalytic activity of CYP2W1 should be tested on a wider spectrum of endogenous and exogenous substances before its use as the drug target. Larger size of clinical samples can be included to verify the potential of CYP2W1 as the prognostic or cancer risk biomarker.
    Matched MeSH terms: Cell Line, Tumor
  13. Chang LY, Ali AR, Hassan SS, AbuBakar S
    J Med Virol, 2006 Aug;78(8):1105-12.
    PMID: 16789019
    Nipah virus infection of porcine stable kidney cells (PS), human neuronal cells (SK-N-MC), human lung fibroblasts cells (MRC-5), and human monocytes (THP-1) were examined. Rapid progression of cytopathic effects (CPE) and cell death were noted in PS cell cultures treated with Nipah virus, followed by MRC-5, SK-N-MC, and THP-1 cell cultures, in descending order of rapidity. Significant increase in the intracellular Nipah virus RNA occurred beginning at 24 hr PI in all the infected cells. Whereas, the extracellular release of Nipah virus RNA increased significantly beginning at 48 and 72 hr PI for the infected MRC-5 cells and PS cells, respectively. No significant release of extracellular Nipah virus RNA was detected from the Nipah virus-infected SK-N-MC and THP-1 cells. At its peak, approximately 6.6 log PFU/microl of extracellular Nipah virus RNA was released from the Nipah virus-infected PS cells, with at least a 100-fold less virus RNA was recorded in the Nipah virus-infected SK-N-MC and THP-1. Approximately 15.2% (+/-0.1%) of the released virus from the infected PS cell cultures was infectious in contrast to approximately 5.5% (+/-0.7%) from the infected SK-N-MC cells. The findings suggest that there are no differences in the capacity to support Nipah virus replication between pigs and humans in fully susceptible PS and MRC-5 cells. However, there are differences between these cells and human neuronal cells and monocytes in the ability to support Nipah virus replication and virus release.
    Matched MeSH terms: Cell Line
  14. Apparoo Y, Phan CW, Kuppusamy UR, Wei Chiang EC
    Neuroscience, 2025 Jan 26;565:277-291.
    PMID: 39643233 DOI: 10.1016/j.neuroscience.2024.11.082
    A decline in mitochondrial functions associated with ageing is the key factor of free radical generation which contributes to age-related pathologies. Protecting healthy functional mitochondrial networks with antioxidants is critical in promoting healthy ageing. This study aimed to investigate the protective effect of ergothioneine (EGT)-rich Lentinula edodes extract (LE-ETH) against tert-butyl hydroperoxide (t-BHP) assaulted senescent HT22 cells. Mitochondrial function was evaluated by measuring mitochondrial membrane potential (MMP), ATP levels and mitochondrial toxicity. The protective mechanisms were elucidated via the exploration of antioxidant and mitochondrial biogenesis signalling pathways. Our results revealed that a low dose of t-BHP increases mitochondrial toxicity. The pretreatment with 100 µg/mL of LE-ETH and the equimolar concentration of EGT for 8 h significantly improve the mitochondrial function and reduced inflammation. Through gene expression studies, we demonstrated that pretreatment of LE-ETH significantly improves the antioxidant and mitochondrial biogenesis pathway via Nrf2 signaling axis. However, the downstream genes of the mitochondrial biogenesis pathway were unaffected by equimolar EGT concentration. Gas chromatography-mass spectrum (GC-MS) analysis was carried out to identify the bioactive compounds that are present in LE-ETH extract which contributed to its efficacy in improving the mitochondrial functions. A total of 23 compounds consisting of phenols, fatty acids, and sterols were identified in the ethanolic extract. Pentanoic acid was the major compound identified in LE-ETH. These findings demonstrated that EGT-rich L.edodes mushroom is a potential neuroprotective agent which could serve as a potential therapeutic strategy for the preservation of mitochondrial functions in healthy ageing explorations.
    Matched MeSH terms: Cell Line
  15. Hsieh CC, Hou CY, Lei HY, Khumsupan D, Chai HJ, Lim PK, et al.
    J Food Drug Anal, 2024 Dec 15;32(4):532-543.
    PMID: 39752867 DOI: 10.38212/2224-6614.3509
    This study reveals the anti-tyrosinase activity of Ganoderma formosanum extracts, pinpointing compounds including gluconic acid, mesalamine, L-pyroglutamic acid, esculetin, 5-hydroxyindole, and salicylic acid, as effective melanin production inhibitors in melanoma cells and zebrafish embryos. Furthermore, multiple molecular docking simulations provided insights into interactions between the identified compounds and tyrosinase, increasing binding affinity up to -16.36 kcal/mol. The enhanced binding of identified compounds to tyrosinase facilitated synergistic inhibitory effects on melanin production. This study highlights the potential of GFE-EA as a source of natural tyrosinase inhibitors and contributes to understanding the role of active compounds extracted from G. formosanum.
    Matched MeSH terms: Cell Line, Tumor
  16. Su Q, Chen K, Ren J, Zhang Y, Han X, Leong SW, et al.
    J Mol Med (Berl), 2024 Dec;102(12):1471-1484.
    PMID: 39420137 DOI: 10.1007/s00109-024-02496-8
    Non-small cell lung cancer (NSCLC) is a highly malignant tumor with a poor prognosis. Hypoxia conditions affect multiple cellular processes promoting the adaptation and progression of cancer cells via the activation of hypoxia-inducible factors (HIF) and subsequent transcription activation of their target genes. Preliminary studies have suggested that estrogen receptor β (ERβ) might play a promoting role in the progression of NSCLC. However, the precise mechanisms, particularly its connection to HIF-1α-mediated modulation under hypoxia, remain unclear. Our findings demonstrated that the overexpression of ERβ, not ERα, increased cell proliferation and inhibition of apoptosis in NSCLC cells and xenografts. Tissue microarray staining revealed a strong correlation between the protein expression of HIF-1α and ERβ. HIF-1α induced ERβ gene transcription and protein expression in CoCl2-induced hypoxia, 1% O2 incubation, or HIF-1α overexpressing cells. ChIP identified HIF-1α binding to a hypoxia response element in the ESR2 promoter. The suppression of HIF-1α and ERβ both in vitro and in vivo effectively reduced the tumor growth, thus emphasizing the promising prospects of targeting HIF-1α and ERβ as a therapeutic approach for the treatment of NSCLC. KEY MESSAGES: ERβ, not ERα, increases cell proliferation and inhibition of apoptosis in NSCLC cells and xenografts. A strong correlation exists between the protein expression of HIF-1α and ERβ. HIF-1α induced ERβ gene transcription and protein expression in hypoxic cells via binding to HRE in the ESR2 promoter. The suppression of HIF-1α and ERβ both in vitro and in vivo effectively reduced the NSCLC tumor growth.
    Matched MeSH terms: Cell Line, Tumor
  17. Bharadwaj KK, Rabha B, Ahmad I, Mathew SP, Bhattacharjee CK, Jaganathan BG, et al.
    J Biomol Struct Dyn, 2024;42(24):13421-13436.
    PMID: 38014451 DOI: 10.1080/07391102.2023.2275187
    Overexpression of HDAC 2 promotes cell proliferation in ovarian cancer. HDAC 2 is involved in chromatin remodeling, transcriptional repression, and the formation of condensed chromatin structures. Targeting HDAC 2 presents a promising therapeutic approach for correcting cancer-associated epigenetic abnormalities. Consequently, HDAC 2 inhibitors have evolved as an attractive class of anti-cancer agents. This work intended to investigate the anti-cancer abilities and underlying molecular mechanisms of Rhamnetin in human epithelial ovarian carcinoma cells (SKOV3), which remain largely unexplored. We employed various in vitro methods, including MTT, apoptosis study, cell cycle analysis, fluorescence microscopy imaging, and in vitro enzymatic HDAC 2 protein inhibition, to examine the chemotherapeutic sensitivity of Rhamnetin in SKOV3 cells. Additionally, we conducted in silico studies using molecular docking, MD simulation, MM-GBSA, DFT, and pharmacokinetic analysis to investigate the binding interaction mechanism within Rhamnetin and HDAC 2, alongside the compound's prospective as a lead candidate. The in vitro assay confirmed the cytotoxic effects of Rhamnetin on SKOV3 cells, through its inhibition of HDAC 2 activity. Rhamnetin, a nutraceutical flavonoid, halted at the G1 phase of the cell cycle and triggered apoptosis in SKOV3 cells. Furthermore, computational studies provided additional evidence of its stable binding to the HDAC 2 protein's binding site cavity. Based on our findings, we conclude that Rhamnetin effectively promotes apoptosis and mitigates the proliferation of SKOV3 cells through HDAC 2 inhibition. These results highlight Rhamnetin as a potential lead compound, opening a new therapeutic strategy for human epithelial ovarian cancer.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Cell Line, Tumor
  18. Wang ZJ, Zhan XY, Ma LY, Yao K, Dai HY, Kumar Santhanam R, et al.
    Biochem Pharmacol, 2024 Dec;230(Pt 2):116577.
    PMID: 39427919 DOI: 10.1016/j.bcp.2024.116577
    Triple-negative breast cancer (TNBC) is currently the only subtype lacking efficient targeted therapies. Taxol is the primary chemotherapeutic agent for TNBC. However, Taxol resistance often develops in the treatment of TNBC patients, which importantly contributes to high mortality and poor prognosis in TNBC patients. Recent preclinical studies have shown that the inhibition of Notch pathway by γ-secretase inhibitors can slow down the progression of TNBC. Our studies in bioinformatic analysis of breast cancer patients and TNBC/Taxol cells in vitro showed that there was high correlation between the activation of Notch pathway and Taxol resistance in TNBC. Increased γ-secretase activity (by the overexpression of catalytic core PSEN-1) significantly reduced Taxol sensitivity of TNBC cells, and enhanced biological characteristics of malignancy in vitro, and tumour growth in vivo. Mechanistically, increased γ-secretase activity led to the accumulation of NICD in the nucleus, promoting the interaction between NICD and PXR to activate PXR, which triggered the transcription of PXR downstream associated drug resistance genes. Furthermore, we showed that pharmacological inhibition of γ-secretase with γ-secretase inhibitors (Nirogacestat and DAPT) can reverse Taxol resistance in vivo and in vitro. Our results for the first time demonstrate that the activation of γ -secretase/NCD-PXR/Notch pathway is one of important mechanisms to cause Taxol resistance in TNBC, and the blockades of this pathway may represent a new therapeutic strategy for overcoming Taxol resistance in TNBC.
    Matched MeSH terms: Cell Line, Tumor
  19. Said NA, Simpson KJ, Williams ED
    Cells Tissues Organs, 2013;197(6):424-34.
    PMID: 23774256 DOI: 10.1159/000351717
    Enormous progress has been made towards understanding the role of specific factors in the process of epithelial-mesenchymal transition (EMT); however, the complex underlying pathways and the transient nature of the transition continues to present significant challenges. Targeting tumour cell plasticity underpinning EMT is an attractive strategy to combat metastasis. Global gene expression profiling and high-content analyses are among the strategies employed to identify novel EMT regulators. In this review, we highlight several approaches to systematically interrogate key pathways involved in EMT, with particular emphasis on the features of multiparametric, high-content imaging screening strategies that lend themselves to the systematic discovery of highly significant modulators of tumour cell plasticity.
    Matched MeSH terms: Cell Line, Tumor
  20. Lau BF, Abdullah N, Aminudin N, Lee HB, Yap KC, Sabaratnam V
    PLoS One, 2014;9(7):e102509.
    PMID: 25054862 DOI: 10.1371/journal.pone.0102509
    Previous studies on the nutritional and nutraceutical properties of Lignosus rhinocerotis focused mainly on the sclerotium; however, the supply of wild sclerotium is limited. In this investigation, the antioxidant capacity and cytotoxic effect of L. rhinocerotis cultured under different conditions of liquid fermentation (shaken and static) were compared to the sclerotium produced by solid-substrate fermentation. Aqueous methanol extracts of the mycelium (LR-MH, LR-MT) and culture broth (LR-BH, LR-BT) demonstrated either higher or comparable antioxidant capacities to the sclerotium extract (LR-SC) based on their radical scavenging abilities, reducing properties, metal chelating activities, and inhibitory effects on lipid peroxidation. All extracts exerted low cytotoxicity (IC50>200 µg/ml, 72 h) against selected mammalian cell lines. Several low-molecular-weight compounds, including sugars, fatty acids, methyl esters, sterols, amides, amino acids, phenolics, and triterpenoids, were identified using GC-MS and UHPLC-ESI-MS/MS. The presence of proteins (<40 kDa) in the extracts was confirmed by SDS-PAGE and SELDI-TOF-MS. Principal component analysis revealed that the chemical profiles of the mycelial extracts under shaken and static conditions were distinct from those of the sclerotium. Results from bioactivity evaluation and chemical profiling showed that L. rhinocerotis from liquid fermentation merits consideration as an alternative source of functional ingredients and potential substitute for the sclerotium.
    Matched MeSH terms: Cell Line; Cell Line, Tumor
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links