AIM OF THE STUDY: This study was carried out to investigate the antihypertensive and vasodilatory activity of four solvents extracts of P. niruri namely; petroleum ether (PEPN), chloroform (CLPN), methanol (MEPN) and water (WEPN), with the aim of elucidating the mechanism of action and identifying the phytochemical constituents.
MATERIALS AND METHODS: Male Spontaneous Hypertensive Rats (SHRs) were given oral gavage of P. niruri extract daily for two weeks and the blood pressure was recorded in vivo. We also determine the vasodilation effect of the extracts on rings of isolated thoracic aorta pre-contracted with phenylephrine (PE, 1 μM). Endothelium-intact or endothelium-denuded aorta rings were pre-incubated with various antagonists like 1H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, 10 μM) and Methylene blue (MB 10 μM), sGC inhibitors; Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 10 μM) a nitric oxide synthase (NOS) inhibitor; atropine (10 μM), a cholinergic receptor blocker; indomethacin (10 μM), a cyclooxygenase inhibitor and various K+ channel blockers such as glibenclamide (10 μM) and tetraethyl ammonium (TEA 10 μM) for mechanism study.
RESULTS: SHRs receiving P. niruri extracts showed a significant decrease in their blood pressure (BP) when compared to the baseline value, with PEPN being more potent. The extracts (0.125-4 mg/mL) also induced vasorelaxation on endothelium-intact aorta rings. PEPN elicited the most potent maximum relaxation effect (Rmax). Mechanism assessment of PEPN showed that its relaxation effect is significantly suppressed in endothelium-denuded aorta rings. Pre-incubation of aorta rings with atropine, L-NAME, ODQ, indomethacin, and propranolol also significantly attenuated its relaxation effect. Conversely, incubation with TEA and glibenclamide did not show a significant effect on PEPN-induced relaxation.
CONCLUSION: This study indicates that the antihypertensive activity of P. niruri extract is mediated by vasoactive phytoconstituents that dilate the arterial wall via endothelium-dependent pathways and β-adrenoceptor activity which, in turn, cause vasorelaxation and reduce blood pressure.
OBJECTIVE: To determine whether retinal nerve fiber layer (RNFL) measurement can be used to detect glaucoma in uveitic eyes with elevated intraocular pressure (IOP).
DESIGN, SETTING, AND PARTICIPANTS: Comparative case series of RNFL measurement using optical coherence tomography performed from May 1, 2010, through October 31, 2012, at a tertiary referral center. We assigned 536 eyes with uveitis (309 patients) in the following groups: normal contralateral eyes with unilateral uveitis (n = 72), normotensive uveitis (Uv-N) (n = 143), raised IOP and normal optic disc and/or visual field (Uv-H) (n = 233), and raised IOP and glaucomatous disc and/or visual field (Uv-G) (n = 88).
EXPOSURES: Eyes with uveitis and elevated IOP (>21 mm Hg) on at least 2 occasions.
MAIN OUTCOMES AND MEASURES: Comparison of RNFL values between groups of eyes and correlation with clinical data; risk factors for raised IOP, glaucoma, and RNFL thinning.
RESULTS: Mean (SD) global RNFL was thicker in Uv-N (106.4 [21.4] µm) compared with control (96.0 [9.0] µm; P