Displaying publications 721 - 740 of 2693 in total

Abstract:
Sort:
  1. Satyam SM, Bairy LK, Shetty P, Sainath P, Bharati S, Ahmed AZ, et al.
    Cardiovasc Toxicol, 2023 Feb;23(2):107-119.
    PMID: 36790727 DOI: 10.1007/s12012-023-09784-8
    Doxorubicin is a widely used anticancer drug whose efficacy is limited due to its cardiotoxicity. There is no ideal cardioprotection available against doxorubicin-induced cardiotoxicity. This study aimed to investigate the anticipated cardioprotective potential of metformin and dapagliflozin against doxorubicin-induced acute cardiotoxicity in Wistar rats. At the beginning of the experiment, cardiac screening of experimental animals was done by recording an electrocardiogram (ECG) before allocating them into the groups. Thereafter, a total of thirty healthy adult Wistar rats (150-200 g) were randomly divided into five groups (n = 6) and treated for eight days as follows: group I (normal control), group II (doxorubicin control), group III (metformin 250 mg/kg/day), group IV (metformin 180 mg/kg/day), and group V (dapagliflozin 0.9 mg/kg/day). On the 7th day of the treatment phase, doxorubicin 20 mg/kg was administered intraperitoneal to groups II, III, IV, and V. On the 9th day (immediately after 48 h of doxorubicin administration), blood was collected from anesthetized animals for glucose, lipid profile, CK-MB & AST estimation, and ECG was recorded. Later, animals were sacrificed, and the heart was dissected for histopathological examination. We found that compared to normal control rats, CK-MB, AST, and glucose were significantly increased in doxorubicin control rats. There was a significant reversal of doxorubicin-induced hyperglycemia in the rats treated with metformin 250 mg/kg compared to doxorubicin control rats. Both metformin (180 mg/kg and 250 mg/kg) and dapagliflozin (0.9 mg/kg) significantly altered doxorubicin-induced ECG changes and reduced the levels of cardiac injury biomarkers CK-MB and AST compared to doxorubicin control rats. Metformin and dapagliflozin protected the cellular architecture of the myocardium from doxorubicin-induced myocardial injury. Current study revealed that both metformin and dapagliflozin at the FDA-recommended antidiabetic doses mitigated doxorubicin-induced acute cardiotoxicity in Wistar rats. The obtained data have opened the perspective to perform chronic studies and then to clinical studies to precisely consider metformin and dapagliflozin as potential chemoprotection in the combination of chemotherapy with doxorubicin to limit its cardiotoxicity, especially in patients with comorbid conditions like type II diabetes mellitus.
    Matched MeSH terms: Rats, Wistar; Rats
  2. Mashori GR, Tariq AR, Shahimi MM, Suhaimi H
    Singapore Med J, 1996 Jun;37(3):278-81.
    PMID: 8942229
    Treatment of hypertension has reduced the incidence of stroke, heart failure and renal failure. However, the incidence of coronary heart disease is not reduced to the same degree. Many of the drugs advocated as first-line drugs in the step-wise therapy have been shown to cause carbohydrate intolerance and it is an independent risk factor in the development of coronary heart disease. It is thus important to identify the antihypertensive drugs that may cause deterioration in glucose tolerance. Cicletanine, the first derivative of the furopyridines, is a new class of antihypertensive agents. It acts directly on vascular endothelium cells by increasing prostacyclin synthesis. It also decreases intracytosolic calcium levels in smooth muscles. The purpose of this study is to evaluate the effects of Cicletanine on insulin release in rat isolated pancreas by the perfusion technique adapted from Loubatieres and co-workers (1972). Doses used were based on therapeutic peak plasma concentration. Diazoxide was used as a positive control ie a known insulin suppressant. Cicletanine at 1/10 and equivalent therapeutic concentrations (0.5 microgram/mL and 5.0 micrograms/mL) did not suppress insulin release. However, at concentration exceeding 10X its therapeutic levels (50 micrograms/mL) it begins to suppress insulin release. In conclusion, Cicletanine did not inhibit insulin release at concentrations within the therapeutic range.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  3. Subarmaniam T, Mahmad Rusli RN, Perumal KV, Yong YK, Hadizah S, Othman F, et al.
    Int J Mol Sci, 2023 Mar 09;24(6).
    PMID: 36982300 DOI: 10.3390/ijms24065224
    Colorectal cancer (CRC) is responsible for a notable rise in the overall mortality rate. Obesity is found to be one of the main factors behind CRC development. Andrographis paniculata is a herbaceous plant famous for its medicinal properties, particularly in Southeast Asia for its anti-cancer properties. This study examines the chemopreventive impact of A. paniculata ethanolic extract (APEE) against a high-fat diet and 1,2-dimethylhydrazine-induced colon cancer in Sprague Dawley rats. Sprague Dawley rats were administered 1,2-dimethylhydrazine (40 mg/kg, i.p. once a week for 10 weeks) and a high-fat diet (HFD) for 20 weeks to induce colorectal cancer. APEE was administered at 125 mg/kg, 250 mg/kg, and 500 mg/kg for 20 weeks. At the end of the experiment, blood serum and organs were collected. DMH/HFD-induced rats had abnormal crypts and more aberrant crypt foci (ACF). APEE at a dose of 500 mg/kg improved the dysplastic state of the colon tissue and caused a 32% reduction in the total ACF. HFD increased adipocyte cell size, while 500 mg/kg APEE reduced it. HFD and DMH/HFD rats had elevated serum insulin and leptin levels. Moreover, UHPLC-QTOF-MS analysis revealed that APEE was rich in anti-cancer phytochemicals. This finding suggests that APEE has anti-cancer potential against HFD/DMH-induced CRC and anti-adipogenic and anti-obesity properties.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  4. Hashim KN, Chin KY, Ahmad F
    Molecules, 2023 Mar 20;28(6).
    PMID: 36985762 DOI: 10.3390/molecules28062790
    Metabolic syndrome (MetS) is composed of central obesity, hyperglycemia, dyslipidemia and hypertension that increase an individual's tendency to develop type 2 diabetes mellitus and cardiovascular diseases. Kelulut honey (KH) produced by stingless bee species has a rich phenolic profile. Recent studies have demonstrated that KH could suppress components of MetS, but its mechanisms of action are unknown. A total of 18 male Wistar rats were randomly divided into control rats (C group) (n = 6), MetS rats fed with a high carbohydrate high fat (HCHF) diet (HCHF group) (n = 6), and MetS rats fed with HCHF diet and treated with KH (HCHF + KH group) (n = 6). The HCHF + KH group received 1.0 g/kg/day KH via oral gavage from week 9 to 16 after HCHF diet initiation. Compared to the C group, the MetS group experienced a significant increase in body weight, body mass index, systolic (SBP) and diastolic blood pressure (DBP), serum triglyceride (TG) and leptin, as well as the area and perimeter of adipocyte cells at the end of the study. The MetS group also experienced a significant decrease in serum HDL levels versus the C group. KH supplementation reversed the changes in serum TG, HDL, leptin, adiponectin and corticosterone levels, SBP, DBP, as well as adipose tissue 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) level, area and perimeter at the end of the study. In addition, histological observations also showed that KH administration reduced fat deposition within hepatocytes, and prevented deterioration of pancreatic islet and renal glomerulus. In conclusion, KH is effective in preventing MetS by suppressing leptin, corticosterone and 11βHSD1 levels while elevating adiponectin levels.
    Matched MeSH terms: Rats, Wistar; Rats
  5. Naomi R, Teoh SH, Rusli RNM, Embong H, Bahari H, Kumar J
    Nutrients, 2023 May 15;15(10).
    PMID: 37242195 DOI: 10.3390/nu15102312
    Maternal obesity can be considered an intergenerational cycle and is also an important indicator of cognitive impairments. It is thought that using natural products is the best and safest way to combat maternal obesity and associated complications. Recent studies have shown that Elateriospermum tapos (E. tapos) contains bioactive compounds with anti-obesity effects, and yoghurt is a convenient medium for supplementing obese maternal rats with E. tapos extract. Thus, the aim of this study is to investigate the impact of E. tapos in yoghurt on maternally obese rats' cognitive function supplemented with a high-fat diet (HFD). In this study, 48 female Sprague-Dawley rats were used. The rats were fed HFD for a period of 16 weeks to induce obesity, after which they were allowed to mate. Upon confirmation of pregnancy, obese rats were given varying doses of E. tapos (5, 50, and 500 mg/kg) in yoghurt until postnatal (PND) day 21. On PND 21, the dams' body mass index (BMI), Lee index, abdominal circumference, oxidative status, and metabolic profile were measured. The behavioral tests (open field, place, and object recognition) were conducted on PND 21 to access memory. The results show that the 50 and 500 mg/kg E. tapos in yoghurt supplemented groups had similar BMI, Lee index, abdominal circumference, lipid profile, FBG, insulin, FRAP, and GSH levels, as well as a similar recognition index, in comparison with the control group supplemented with saline. In conclusion, the results of this study indicate that the newly formulated E. tapos in yogurt can act as an anti-obesity agent in maternal obesity, alleviate anxiety, and enhance hippocampal-dependent memory.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  6. Yosida TH, Sagai T
    Chromosoma, 1975;50(3):283-300.
    PMID: 1149576
    All subspecies of black rats (Rattus rattus) used in the present study are characterized by having large and clear C-bands at the centromeric region. The appearance of the bands, however, is different in the subspecies. Chromosome pair No. 1 in Asian type black rats (2n=42), which are characterized by an acrocentric and subtelocentric polymorphism, showed C-band polymorphism. In Phillipine rats (R. rattus mindanensis) the pair was subtelocentric with C-bands, but in Malayan black rats (R. rattus diardii) it was usually acrocentric with C-bands. In Hong-Kong (R. rattus flavipectus) and Japanese black rats (R. rattus tanezumi) it was polymorphic with respect to the presence of acrocentrics with C-bands or subtelocentrics without C-bands. The other chromosomes pairs showed clear C-bands, but in Hong-Kong black rats the pairs No. 2 and 5 were polymorphic with and without C-bands. In Japanese black rats, 6 chromosome pairs (No. 3, 4, 7, 9, 11 and 13) were polymorphic in regard to presence and absence of C-bands, but the other 5 chromosome pairs (No. 2, 5, 6, 8 and 10) showed always absence of C-bands. Only pair No. 12 usually showed C-bands. C-bands in small metacentric pairs (No. 14 to 20) in Asian type black rats generally large in size, but those in the Oceanian (2n=38) and Ceylon type black rats (2n=40) were small. In the hybrids between Asian and Oceanian type rats, heteromorphic C-bands, one large and the other small, were observed. Based on the consideration of karyotype evolution in the black rats, the C-band is suggested to have a tendency toward the diminution as far as the related species are concerned.
    Matched MeSH terms: Rats*
  7. Aziz ZAA, Nasir HM, Ahmad A, Setapar SHM, Ahmad H, Noor MHM, et al.
    Sci Rep, 2019 Sep 23;9(1):13678.
    PMID: 31548590 DOI: 10.1038/s41598-019-50134-y
    Eucalyptus globulus is an aromatic medicinal plant which known for its 1,8-cineole main pharmacological constituent exhibits as natural analgesic agent. Eucalyptus globulus-loaded micellar nanoparticle was developed via spontaneous emulsification technique and further evaluation for its analgesic efficacy study, in vivo analgesic activity assay in rats. The nanoemulsion system containing Eucalyptus-micelles was optimized at different surfactant types (Tween 40, 60 and 80) and concentrations (3.0, 6.0, 9.0, 12.0, 15.0, and 18.0 wt. %). These formulations were characterized by thermodynamically stability, viscosity, micelles particle size, pH, and morphology structure. The spontaneous emulsification technique offered a greener micelles formation in nanoemulsion system by slowly titrated of organic phase, containing Eucalyptus globulus (active compound), grape seed oil (carrier oil) and hydrophilic surfactant into aqueous phase, and continuously stirred for 30 min to form a homogeneity solution. The characterizations evaluation revealed an optimized formulation with Tween 40 surfactant type at 9.0 wt. % of surfactant concentration promoted the most thermodynamic stability, smaller micelles particle size (d = 17.13 ± 0.035 nm) formed with spherical shape morphological structure, and suitable in viscosity (≈2.3 cP) and pH value (6.57) for transdermal purpose. The in vivo analgesic activity assay of optimized emulsion showed that the transdermal administration of micellar nanoparticle of Eucalyptus globulus on fore and hind limb of rats, possessed the central and peripheral analgesic effects by prolonged the rats pain responses towards the heat stimulus after being put on top of hot plate (55 °C), with longest time responses, 40.75 s at 60 min after treatment administration. Thus, this study demonstrated that micellar nanoparticle of Eucalyptus globulus formed in nanoemulsion system could be promising as an efficient transdermal nanocarrier for the analgesic therapy alternative.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  8. Ajiboye BO, Dada S, Fatoba HO, Lawal OE, Oyeniran OH, Adetuyi OY, et al.
    Biomed Pharmacother, 2023 Dec;168:115681.
    PMID: 37837880 DOI: 10.1016/j.biopha.2023.115681
    This experiment was conducted to evaluate the Dalbergiella welwitschia alkaloid-rich extracts on liver damage in streptozotocin-induced diabetic rats. Hence, to induce diabetes, 45 mg/kg body weight of streptozotocin was intraperitoneally injected into the Wistar rats. Subsequently, 5 % (w/v) of glucose water was given to the induced animals for 24 h. Thus, the animals (48) were grouped into five groups (n = 8), containing normal control (NC), diabetic control (DC), diabetic rats placed on low (50 mg/kg body weight) and high (100 mg/kg body weight) doses of D. welwitschi alkaloid-rich leaf extracts (i.e. DWL and DWH respectively), and diabetic rats administered 200 mg/kg body weight of metformin (MET). The animals were sacrificed on the 21st day of the experiment, blood and liver were harvested, and different liver damage biomarkers were evaluated. The results obtained demonstrated that diabetic rats administered DWL, DWH and MET significantly (p  0.05) different when compared with NC. Also, diabetic rats administered DWL, DWH and MET revealed a significant (p  0.05) different when compared with NC. In addition, histological examination revealed that diabetic rats placed on DWL, DWH and MET normalized the hepatocytes. Consequently, it can be inferred that alkaloid-rich extracts from D. welwitschi leaf could be helpful in improving liver damage associated with diabetes mellitus rats.
    Matched MeSH terms: Rats, Wistar; Rats
  9. Zolkeflee NKZ, Wong PL, Maulidiani M, Ramli NS, Azlan A, Abas F
    Planta Med, 2023 Aug;89(9):916-934.
    PMID: 36914160 DOI: 10.1055/a-2053-0950
    Diabetes mellitus (DM) is a metabolic endocrine disorder caused by decreased insulin concentration or poor insulin response. Muntingia calabura (MC) has been used traditionally to reduce blood glucose levels. This study aims to support the traditional claim of MC as a functional food and blood-glucose-lowering regimen. The antidiabetic potential of MC is tested on a streptozotocin-nicotinamide (STZ-NA)-induced diabetic rat model by using the 1H-NMR-based metabolomic approach. Serum biochemical analyses reveal that treatment with 250 mg/kg body weight (bw) standardized freeze-dried (FD) 50% ethanolic MC extract (MCE 250) shows favorable serum creatinine (37.77 ± 3.53 µM), urea (5.98 ± 0.84 mM) and glucose (7.36 ± 0.57 mM) lowering capacity, which was comparable to the standard drug, metformin. The clear separation between diabetic control (DC) and normal group in principal component analysis indicates the successful induction of diabetes in the STZ-NA-induced type 2 diabetic rat model. A total of nine biomarkers, including allantoin, glucose, methylnicotinamide, lactate, hippurate, creatine, dimethylamine, citrate and pyruvate are identified in rats' urinary profile, discriminating DC and normal groups through orthogonal partial least squares-discriminant analysis. Induction of diabetes by STZ-NA is due to alteration in the tricarboxylic acid (TCA) cycle, gluconeogenesis pathway, pyruvate metabolism and nicotinate and nicotinamide metabolism. Oral treatment with MCE 250 in STZ-NA-induced diabetic rats shows improvement in the altered carbohydrate metabolism, cofactor and vitamin metabolic pathway, as well as purine and homocysteine metabolism.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  10. Man F, Choo CY
    PMID: 28869873 DOI: 10.1016/j.jchromb.2017.08.037
    Bruceines D and E are quassinoids from seeds of Brucea javanica (L.) Merr. exhibiting hypoglycemia effect. The crude drug is used as a traditional medicine by diabetes patients. The aim of this study is to understand the bioavailability and pharmacokinetics of both the bruceines D & E. A rapid and sensitive HPLC-MS/MS method was developed and validated for the quantification of both quassinoids, bruceines D & E in rat plasma. Both the bruceines D & E were separated with the Zorbax SBC-18 column with gradient elution and mobile phase system of acetonitrile and deionized water with 0.1% formic acid at a flow rate of 0.5mL/min. Analytes were detected in multiple reaction monitoring (MRM) mode with electrospray positive ionization. The quassinoids, namely bruceines D & E were detected with transitions of m/z 411.2→393.2 and m/z 395.2→377.2, respectively. Another quassinoid, eurycomanone was used as the internal standard with transition of m/z 409.2→391.2. The method was validated and conformed to the regulatory requirements. The validated method was applied to pharmacokinetic and bioavailability studies in rats. The pharmacokinetic study indicated both bruceine D and E were rapidly absorbed into the circulation system and reached its peak concentration at 0.54±0.34h and 0.66±0.30h, respectively. Bruceine E was eliminated slower than Bruceine D with t1/2 value almost increased two-fold compared to Bruceine D. In conclusion, a rapid, selective and sensitive HPLC-MS/MS method was developed for the simultaneous determination of both the bruceines D and E in rat plasma. Both bruceines D and E displayed poor oral bioavailability.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  11. Murugaiyah V, Chan KL
    PMID: 17261384
    A simple analytical method using HPLC with fluorescence detection was developed for the simultaneous determination of four lignans, phyllanthin (1), hypophyllanthin (2), phyltetralin (3) and niranthin (4) from Phyllanthus niruri L. in plasma. The method recorded limits of detection for 1, 2, 3 and 4 as 1.22, 6.02, 0.61 and 1.22 ng/ml, respectively, at a signal-to-noise ratio of 5:1 whereas their limits of quantification were 4.88, 24.41, 4.88 and 9.76 ng/ml, respectively, at a signal-to-noise ratio of 12:1. These values were comparable to those of other sensitive methods such as gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography-MS (HPLC-MS) and HPLC-electrochemical detection (HPLC-ECD) for the analysis of plasma lignans. A further advantage over known methods was its simple protocol for sample preparation. The within-day and between-day accuracies for the analysis of the four lignans were between 87.69 and 110.07% with precision values below 10.51%. Their mean recoveries from extraction were between 91.39 and 114.67%. The method was successfully applied in the pharmacokinetic study of lignans in rats. Following intravenous administration, the lignans were eliminated slowly from the body with a mean clearance of 0.04, 0.01, 0.03 and 0.02 l/kg h and a mean half-life of 3.56, 3.87, 3.35 and 4.40 h for 1, 2, 3 and 4, respectively. Their peak plasma concentration upon oral administration was 0.18, 0.56, 0.12 and 0.62 microg/ml, respectively, after 1h. However, their absorption was incomplete with a calculated absolute oral bioavailability of 0.62, 1.52, 4.01 and 2.66% for 1, 2, 3 and 4, respectively.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  12. Ammar Aldaddou W, Aljohani ASM, Adewale Ahmed I, Al-Wabel NA, El-Ashmawy IM
    Chem Biodivers, 2023 Jul;20(7):e202300115.
    PMID: 37236909 DOI: 10.1002/cbdv.202300115
    Most heavy metals and industrial chemicals such as nicotine and lead cause harm to the reproduction process through a decrease in sperm motility, fertilization process, and sperm binding to the oocyte. Salvia officinalis L. (sage) has been reported to enhance serum testosterone levels and other certain biochemical enzymes. Thus, the current study is aimed at evaluating the potential health benefits of S. officinalis L. methanol extract on lead and nicotine hydrogen tartrate-induced sperm quality degeneration in male rats and also identifying some of the non-polar volatile bioactive compounds that might be attributed to the bioactivity of S. officinalis extract using gas chromatography-mass spectrometry (GC/MS). In the study, fifty-four mature male albino rats of about 220-250 g [were divided randomly and equally into 9 groups (n=6)]. Sperm quality degeneration was induced through the oral administration of 1.5 g/L of lead acetate in drinking water or peritoneal injection of 0.50 mg/kg (animal weight) nicotine hydrogen tartrate for sixty days. Two doses (200 & 400 mg/kg b.w.) of S. officinalis L. were used. The rats were anesthetized after the experimental period and then sacrificed. Blood samples were collected while the epididymis, testicle, and accessory sex organs (prostates and seminal vesical) were taken for histopathological studies. Twelve major compounds were identified through the GC/MS analysis of S. officinalis L. methanol extract. Lead and nicotine toxicity had a great effect on the rats' sperm quality causing a significant (p<0.05) decrease in the quantity of sperm and sperm motility as well as an upsurge in the abnormalities of the sperm and a reduction in the length & diameter of seminiferous tubules and size & weight of sexual organs (accessory sex glands, epididymis, and testis). The administration of S. officinalis L. methanol extract, however, had a positive impact on the sexual organ weights, semen quality & quantity, and rats' fertility, thus, ameliorating the adversative effects of both lead and nicotine. Further evaluation and isolation of the bioactive components are recommended as potential drug leads.
    Matched MeSH terms: Rats, Wistar; Rats
  13. Abdul Ghani NA, Abdul Nasir NA, Lambuk L, Sadikan MZ, Agarwal R, Ramli N
    Graefes Arch Clin Exp Ophthalmol, 2023 Jun;261(6):1587-1596.
    PMID: 36622408 DOI: 10.1007/s00417-022-05965-3
    PURPOSE: Angiogenesis in diabetic retinopathy (DR) is associated with increased retinal expression of angiopoietin-2 (Ang-2) and protein kinase C (PKC). Tocotrienol-rich fraction (TRF) has been shown to reduce the expression vascular endothelial growth factor (VEGF) in several experimental models. However, its effect against other angiogenic markers such as Ang-2 and PKC in rat model of diabetes remains unknown. Therefore, we investigated the effect of TRF on the retinal vascular changes and Ang-2 and PKC expressions in rats with streptozotocin (STZ)-induced DR.

    METHODS: Sprague-Dawley rats were divided into normal control rats (N) which received vehicle, and diabetic rats which either received vehicle (DV) or 100 mg/kg of TRF (DT). Diabetes was induced with intraperitoneal injection of STZ (60 mg/kg body weight). Treatments were given orally, once daily, for 12 weeks after confirmation of hyperglycaemia. Fundus photographs were captured at baseline, 6- and 12-week post-STZ injection and average diameter of retinal veins and arteries were measured. At 12-week post-STZ injection, rats were euthanised, and retinae were collected for measurement of Ang-2 and PKC gene and protein expressions.

    RESULTS: Retinal venous and arterial diameters were significantly greater in DV compared to DT at week 12 post-STZ injection (p 

    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  14. Konopacka A, Greenwood M, Loh SY, Paton J, Murphy D
    Elife, 2015 Nov 12;4.
    PMID: 26559902 DOI: 10.7554/eLife.09656
    In response to an osmotic challenge, the synthesis of the antidiuretic hormone arginine vasopressin (AVP) increases in the hypothalamus, and this is accompanied by extension of the 3' poly(A) tail of the AVP mRNA, and the up-regulation of the expression of RNA binding protein Caprin-2. Here we show that Caprin-2 binds to AVP mRNAs, and that lentiviral mediated shRNA knockdown of Caprin-2 in the osmotically stimulated hypothalamus shortens the AVP mRNA poly(A) tail at the same time as reducing transcript abundance. In a recapitulated in vitro system, we confirm that Caprin-2 over-expression enhances AVP mRNA abundance and poly(A) tail length. Importantly, we show that Caprin-2 knockdown in the hypothalamus decreases urine output and fluid intake, and increases urine osmolality, urine sodium concentration, and plasma AVP levels. Thus Caprin-2 controls physiological mechanisms that are essential for the body's response to osmotic stress.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  15. Tan SC, Rajendran R, Bhattamisra SK, Krishnappa P, Davamani F, Chitra E, et al.
    J Pharm Pharmacol, 2023 Aug 01;75(8):1034-1045.
    PMID: 37402616 DOI: 10.1093/jpp/rgad063
    OBJECTIVES: Madecassoside (MAD) is a triterpenoid constituent of Centella asiatica (L.) Urb., an ethnomedical tropical plant, extracts of which were shown to reduce blood glucose in experimental diabetes. This study examines MAD for its anti-hyperglycaemic effects and tests the hypothesis that it reduces the blood glucose in experimentally induced diabetic rats by protecting the β-cells.

    METHODS: Diabetes was induced using streptozotocin (60 mg/kg, i.v.) followed by nicotinamide (210 mg/kg, intraperitoneal (i.p.)). MAD (50 mg/kg) was administered orally for 4 weeks, commencing 15 days after induction of diabetes; resveratrol (10 mg/kg) was used as a positive control. Fasting blood glucose, plasma insulin, HbA1c, liver and lipid parameters were measured, along with antioxidant enzymes and malondialdehyde as an index of lipid peroxidation; histological and immunohistochemical studies were also undertaken.

    KEY FINDINGS: MAD normalized the elevated fasting blood glucose levels. This was associated with increased plasma insulin concentrations. MAD alleviated oxidative stress by improving enzymatic antioxidants and reducing lipid peroxidation. Histopathological examination showed significant recovery of islet structural degeneration and an increased area of islets. Immunohistochemical staining showed increased insulin content in islets of MAD-treated rats.

    CONCLUSIONS: The results demonstrate an antidiabetic effect of MAD associated with preservation of β-cell structure and function.

    Matched MeSH terms: Rats, Wistar; Rats
  16. David SR, Lai PPN, Chellian J, Chakravarthi S, Rajabalaya R
    Sci Rep, 2023 Aug 01;13(1):12423.
    PMID: 37528147 DOI: 10.1038/s41598-023-39442-6
    The present work examined the effect of oral administration of rutin and its combination with metformin, an antidiabetic drug on blood glucose, total cholesterol and triglycerides level and vascular function in streptozotocin (STZ) -induced diabetic rats. Male Sprague Dawley rats were rendered diabetic by a single intraperitoneal injection of STZ (50 mg/kg). Rutin and metformin were orally administered to diabetic rats at a dose of 100 mg/kg and 300 mg/kg body weight/day, respectively, for 4 weeks. Plasma analysis was conducted to determine changes in the plasma glucose and lipid levels. Rat aortic ring reactivity in response to endothelium-dependent (acetylcholine, ACh) and endothelium-independent (sodium nitroprusside, SNP) relaxants, and to the α1-adrenergic agonist phenylephrine (PE) were recorded. Histology of pancreas, liver and kidney were evaluated. In results, rutin and metformin alone and in combination has led to significant improvements in blood glucose, cholesterol and triglyceride levels compared to diabetic group. Diabetic aortic rings showed significantly greater contraction in response to PE, and less relaxation in response to ACh and SNP. Treatment with rutin and metformin in combination significantly reduced PE-induced contraction and increased ACh-induced and SNP-induced relaxation in diabetes when compared to rutin or metformin alone. Significant histological improvements were seen with combination therapy. In conclusion, rutin and metformin combination therapy has the most potentiality for restoring blood glucose and lipid level as well as vascular function.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  17. Zakaria ZA, Sahmat A, Hizami Azmi A, Zainol ASN, Omar MH, Balan T, et al.
    Pharm Biol, 2023 Dec;61(1):1152-1161.
    PMID: 37559390 DOI: 10.1080/13880209.2023.2241510
    CONTEXT: Bauhinia purpurea L. (Fabaceae) is used in the Ayurvedic system to treat various oxidative-related ailments (e.g., wounds, ulcers etc.). Therefore, it is believed that the plant also has the potential to alleviate oxidative-related liver damage.

    OBJECTIVE: This study elucidates the hepatoprotective activity of chloroform extract of B. purpurea leaves (CEBP) in paracetamol (PCM)-induced liver injury (PILI) rats.

    MATERIALS AND METHODS: Male Sprague-Dawley rats (n = 6) were pre-treated once daily (p.o.) with CEBP (50-500 mg/kg) for seven consecutive days before being administered (p.o.) a hepatotoxic agent, 3 g/kg PCM. Liver enzyme levels were determined from the collected blood, while the collected liver was used to determine the activity of endogenous antioxidant enzymes and for histopathological examination. CEBP was also subjected to radical scavenging assays and phytochemical analysis.

    RESULTS: CEBP significantly (p 

    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  18. Sha'aban A, Zainal H, Khalil NA, Abd Aziz F, Ch'ng ES, Teh CH, et al.
    Molecules, 2022 Mar 25;27(7).
    PMID: 35408523 DOI: 10.3390/molecules27072126
    BACKGROUND: Low-dose aspirin (LDA) is the backbone for secondary prevention of coronary artery disease, although limited by gastric toxicity. This study aimed to identify novel metabolites that could predict LDA-induced gastric toxicity using pharmacometabolomics.

    METHODS: Pre-dosed urine samples were collected from male Sprague-Dawley rats. The rats were treated with either LDA (10 mg/kg) or 1% methylcellulose (10 mL/kg) per oral for 28 days. The rats' stomachs were examined for gastric toxicity using a stereomicroscope. The urine samples were analyzed using a proton nuclear magnetic resonance spectroscopy. Metabolites were systematically identified by exploring established databases and multivariate analyses to determine the spectral pattern of metabolites related to LDA-induced gastric toxicity.

    RESULTS: Treatment with LDA resulted in gastric toxicity in 20/32 rats (62.5%). The orthogonal projections to latent structures discriminant analysis (OPLS-DA) model displayed a goodness-of-fit (R2Y) value of 0.947, suggesting near-perfect reproducibility and a goodness-of-prediction (Q2Y) of -0.185 with perfect sensitivity, specificity and accuracy (100%). Furthermore, the area under the receiver operating characteristic (AUROC) displayed was 1. The final OPLS-DA model had an R2Y value of 0.726 and Q2Y of 0.142 with sensitivity (100%), specificity (95.0%) and accuracy (96.9%). Citrate, hippurate, methylamine, trimethylamine N-oxide and alpha-keto-glutarate were identified as the possible metabolites implicated in the LDA-induced gastric toxicity.

    CONCLUSION: The study identified metabolic signatures that correlated with the development of a low-dose Aspirin-induced gastric toxicity in rats. This pharmacometabolomic approach could further be validated to predict LDA-induced gastric toxicity in patients with coronary artery disease.

    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  19. Inayat-Hussain SH, Cohen GM, Cain K
    Cell Biol Toxicol, 1999;15(6):381-7.
    PMID: 10811533
    There is now a wealth of information regarding the apoptotic mode of cell death and its importance in toxicological studies in many mammalian organs including the liver. In this study, we investigated the modulatory effects of the heavy metal Zn2+ on transforming growth factor-beta1 (TGF-beta1)-induced apoptosis in primary rat hepatocytes. Apoptosis induced by TGF-beta1 (1 ng/ml) in hepatocytes was accompanied by nuclear condensation as assessed morphologically by staining with Hoechst 33258 and DNA cleavage as detected biochemically by in situ end-labeling, field inversion and conventional gel electrophoresis. Pretreatment with 100 micromol/L Zn2+ abrogated the nuclear condensation, in situ end-labeling, and DNA laddering in TGF-beta1-treated hepatocytes. Surprisingly, Zn2+ did not inhibit the formation of high-molecular-weight DNA fragments (30-50 kbp to 250-300 kbp). These data provide evidence that Zn2+ exerts its effects on the endonucleases that act downstream in the execution phase of TGF-beta1-induced apoptosis in hepatocytes.
    Matched MeSH terms: Rats, Inbred F344; Rats
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links