Displaying publications 61 - 80 of 90 in total

Abstract:
Sort:
  1. Khalid K, Tan X, Mohd Zaid HF, Tao Y, Lye Chew C, Chu DT, et al.
    Bioengineered, 2020 12;11(1):328-355.
    PMID: 32138595 DOI: 10.1080/21655979.2020.1736240
    With the unique properties such as high surface area to volume ratio, stability, inertness, ease of functionalization, as well as novel optical, electrical, and magnetic behaviors, nanomaterials have a wide range of applications in various fields with the common types including nanotubes, dendrimers, quantum dots, and fullerenes. With the aim of providing useful insights to help future development of efficient and commercially viable technology for large-scale production, this review focused on the science and applications of inorganic and organic nanomaterials, emphasizing on their synthesis, processing, characterization, and applications on different fields. The applications of nanomaterials on imaging, cell and gene delivery, biosensor, cancer treatment, therapy, and others were discussed in depth. Last but not least, the future prospects and challenges in nanoscience and nanotechnology were also explored.
  2. Devadas VV, Khoo KS, Chia WY, Chew KW, Munawaroh HSH, Lam MK, et al.
    Bioresour Technol, 2021 Apr;325:124702.
    PMID: 33487515 DOI: 10.1016/j.biortech.2021.124702
    The accumulation of conventional petroleum-based polymers has increased exponentially over the years. Therefore, algae-based biopolymer has gained interest among researchers as one of the alternative approaches in achieving a sustainable circular economy around the world. The benefits of microalgae biopolymer over other feedstock is its autotrophic complex to reduce the greenhouse gases emission, rapid growing ability with flexibility in diverse environments and its ability to compost that gives greenhouse gas credits. In contrast, this review provides a comprehensive understanding of algae-based biopolymer in the evaluation of microalgae strains, bioplastic characterization and bioplastic blending technologies. The future prospects and challenges on the algae circular bioeconomy which includes the challenges faced in circular economy, issues regard to the scale-up and operating cost of microalgae cultivation and the life cycle assessment on algal-based biopolymer were highlighted. The aim of this review is to provide insights of algae-based biopolymer towards a sustainable circular bioeconomy.
  3. Mohd-Sahib AA, Lim JW, Lam MK, Uemura Y, Isa MH, Ho CD, et al.
    Bioresour Technol, 2017 Sep;239:127-136.
    PMID: 28501685 DOI: 10.1016/j.biortech.2017.04.118
    The potential to grow attached microalgae Chlorella vulgaris in fluidized bed bioreactor was materialized in this study, targeting to ease the harvesting process prior to biodiesel production. The proposed thermodynamic mechanism and physical property assessment of various support materials verified polyurethane to be suitable material favouring the spontaneous adhesion by microalgae cells. The 1-L bioreactor packed with only 2.4% (v/v) of 1.00-mL polyurethane foam cubes could achieve the highest attached growth microalgae biomass and lipid weights of 812±122 and 376±37mg, respectively, in comparison with other cube sizes. The maturity of attached growth microalgae biomass for harvesting could also be determined from the growth trend of suspended microalgae biomass. Analysis of FAME composition revealed that the harvested microalgae biomass was dominated by C16-C18 (>60%) and mixture of saturated and mono-unsaturated fatty acids (>65%), satiating the biodiesel standard with adequate cold flow property and oxidative stability.
  4. Lim JW, Mohd-Noor SN, Wong CY, Lam MK, Goh PS, Beniers JJA, et al.
    J Environ Manage, 2019 Feb 01;231:129-136.
    PMID: 30340132 DOI: 10.1016/j.jenvman.2018.10.022
    The black soldier fly larvae (BSFL) have been widely extolled for the application in managing various solid organic wastes. Owing to the saprophagous nature of BSFL, a rapid valorization of solid organic wastes can be accomplished with the simultaneous production of valuable biochemical compounds derived from larval biomass. In the present works, the mixed waste coconut endosperm (w-CE) and soybean curd residue (SC-r) substrates with increasing protein nutritional constituent were administered to BSFL. The correlations between protein from larval feed substrates and nutritional profiles of BSFL biomasses were ultimately unveiled. The protein from larval feed substrates could be increased by increasing of SC-r portion against w-CE. At the w-CE:SC-r ratio of 3:2, the highest larval total weight gained and growth rate were attained; indicating an optimum protein nutritional constituent in mixed organics (12.4%) that could enhance the BSFL palatability. Further increment of protein nutritional constituent in mixed organics was found acidifying the residual larval feed substrate progressively, undermining the growth of BSFL. By feeding the BSFL with optimum mixed organics, the maximum accumulations of larval lipid and protein could be achieved. Transesterification of extracted lipid had demonstrated high in monounsaturated fatty acids (73%) which was suitable for biodiesel. The BSFL palatability was finally confirmed from the bioconversion viewpoint of mixed organic wastes. Again, achieving the highest bioconversion efficiency of 14% into larval biomass after accounting the metabolic loss of 54%. Therefore, a total of 68% of mixed w-CE and SC-r could be successfully bioconverted.
  5. Wong CY, Lim JW, Chong FK, Lam MK, Uemura Y, Tan WN, et al.
    Environ Res, 2020 06;185:109458.
    PMID: 32247911 DOI: 10.1016/j.envres.2020.109458
    The conventional practice in enhancing the larvae growths is by co-digesting the low-cost organic wastes with palatable feeds for black soldier fly larvae (BSFL). In circumventing the co-digestion practice, this study focused the employment of exo-microbes in a form of bacterial consortium powder to modify coconut endosperm waste (CEW) via fermentation process in enhancing the palatability of BSFL to accumulate more larval lipid and protein. Accordingly, the optimum fermentation condition was attained by inoculating 0.5 wt% of bacterial consortium powder into CEW for 14-21 days. The peaks of BSFL biomass gained and growth rate were initially attained whilst feeding the BSFL with optimum fermented CEW. These were primarily attributed by the lowest energy loss via metabolic cost, i.e., as high as 22% of ingested optimum fermented CEW was effectively bioconverted into BSFL biomass. The harvested BSFL biomass was then found containing about 40 wt% of lipid, yielding 98% of fatty acid methyl esters of biodiesel upon transesterification. Subsequently, the protein content was also analyzed to be 0.32 mg, measured from 20 harvested BSFL with a corrected-chitin of approximately 8%. Moreover, the waste reduction index which represents the BSFL valorization potentiality was recorded at 0.31 g/day 20 BSFL. The benefit of fermenting CEW was lastly unveiled, accentuating the presence of surplus acid-producing bacteria. Thus, it was propounded the carbohydrates in CEW were rapidly hydrolysed during fermentation, releasing substantial organic acids and other nutrients to incite the BSFL assimilation into lipid for biodiesel and protein productions simultaneously.
  6. Liew CS, Yunus NM, Chidi BS, Lam MK, Goh PS, Mohamad M, et al.
    J Hazard Mater, 2022 Feb 05;423(Pt A):126995.
    PMID: 34482076 DOI: 10.1016/j.jhazmat.2021.126995
    The high investment cost required by modern treatment technologies of hazardous sewage sludge such as incineration and anaerobic digestion have discouraged their application by many developing countries. Hence, this review elucidates the status, performances and limitations of two low-cost methods for biological treatment of hazardous sewage sludge, employing vermicomposting and black soldier fly larvae (BSFL). Their performances in terms of carbon recovery, nitrogen recovery, mass reduction, pathogen destruction and heavy metal stabilization were assessed alongside with the mature anaerobic digestion method. It was revealed that vermicomposting and BSFL were on par with anaerobic digestion for carbon recovery, nitrogen recovery and mass reduction. Thermophilic anaerobic digestion was found superior in pathogen destruction because of its high operational temperature. Anaerobic digestion also had proven its ability to stabilize heavy metals, but no conclusive finding could confirm similar application from vermicomposting or BSFL treatment. However, the addition of co-substrates or biochar during vermicomposting or BSFL treatment may show synergistic effects in stabilizing heavy metals as demonstrated by anaerobic digestion. Moreover, vermicomposting and BSFL valorization had manifested their potentialities as the low-cost alternatives for treating hazardous sewage sludge, whilst producing value-added feedstock for biochemical industries.
  7. Liew CS, Mong GR, Abdelfattah EA, Raksasat R, Rawindran H, Kiatkittipong W, et al.
    Environ Res, 2022 Feb 10;210:112923.
    PMID: 35150716 DOI: 10.1016/j.envres.2022.112923
    Black soldier fly larvae (BSFL) have been deployed to valorize various organic wastes. Nonetheless, its growth rate whilst being offered with waste activated sludge (WAS) is not promising, likely by virtue of the presence of extracellular polymeric substances' structure in WAS. In this work, the WAS were first thermally pre-treated under different treatment temperatures and durations before being administered as the feeding substrates for BSFL. The results showed the thermal pre-treatment could improve WAS palatability and subsequently, enhance the growth of BSFL especially after the pre-treatments at 75 °C and above. The highest larva weight gained was recorded at 2.16 mg/larva for the WAS sample being pre-treated at 90 °C and 16 h. Furthermore, the samples pre-treated above 75 °C also achieved higher degradation rates, indicating that the 75 °C was a threshold temperature to effectively hydrolyze the WAS. The changes of WAS characteristics, namely, (i) soluble chemical oxygen demand (SCOD), (ii) soluble carbohydrate, (iii) soluble protein, (iv) humic substances and (v) total soluble protein and humic substances, after the thermal pre-treatments were also studied in correlating with the BSFL growth. Accordingly, a model was successfully developed with the highest R2 value attained at 0.95, evidencing the SCOD was the most suitable WAS characteristic to accurately predict the BSFL growth behavior.
  8. Chong JWR, Khoo KS, Yew GY, Leong WH, Lim JW, Lam MK, et al.
    Bioresour Technol, 2021 Dec;342:125947.
    PMID: 34563823 DOI: 10.1016/j.biortech.2021.125947
    Microalgae have emerged as an effective dual strategy for bio-valorisation of food processing wastewater and food waste hydrolysate which favours microalgae cultivation into producing value-added by products mainly lipids, carbohydrates, and proteins to the advantages of bioplastic production. Moreover, various microalgae have successfully removed high amount of organic pollutants from food processing wastewater prior discharging into the environment. Innovation of microalgae cultivating in food processing wastewater greatly reduced the cost of wastewater treatment compared to conventional approach in terms of lower carbon emissions, energy consumption, and chemical usage while producing microalgae biomass which can benefit low-cost fertilizer and bioplastic applications. The study on several microalgae species has all successfully grown on food waste hydrolysates showing high exponential growth rate and biomass production rich in proteins, lipids, carbohydrates, and fatty acids. Multiple techniques have been implemented for the extraction of food wastes to be incorporate into the bioplastic production.
  9. Rawindran H, Syed R, Alangari A, Khoo KS, Lim JW, Sahrin NT, et al.
    Environ Res, 2023 Apr 01;222:115352.
    PMID: 36716802 DOI: 10.1016/j.envres.2023.115352
    The capacity to maximize the proliferation of microalgal cells by means of topologically textured organic solid surfaces under various pH gave rise to the fundamental biophysical analysis of cell-surface attachment in this study. The substrate used in analysis was palm kernel expeller (PKE) in which the microalgal cells had adhered onto its surface. The findings elucidated the relevance of surface properties in terms of surface wettability and surface energy in relation to the attached microalgal growth with pH as the limiting factor. The increase in hydrophobicity of PKE-microalgae attachment was able to facilitate the formation of biofilm better. The pH 5 and pH 11 were found to be the conditions with highest and lowest microalgal growths, respectively, which were in tandem with the highest contact angle value at pH 5 and conversely for pH 11. The work of attachment (Wcs) had supported the derived model with positive values being attained for all the pH conditions, corroborating the thermodynamic feasibility. Finally, this study had unveiled the mechanism of microalgal attachment onto the surface of PKE using the aid of extracellular polymeric surfaces (EPS) from microalgae. Also, the hydrophobic nature of PKE enabled excellent attachment alongside with nutrients for microalgae to grow and from layer-by-layer (LbL) assembly. This assembly was then isolated using organosolv method by means of biphasic solvents, namely, methanol and chloroform, to induce detachment.
  10. Zango ZU, Khoo KS, Garba A, Lawal MA, Abidin AZ, Wadi IA, et al.
    Environ Geochem Health, 2024 Apr 03;46(4):145.
    PMID: 38568460 DOI: 10.1007/s10653-024-01936-1
    Frequent detection of sulfonamides (SAs) pharmaceuticals in wastewater has necessitated the discovery of suitable technology for their sustainable remediation. Adsorption has been widely investigated due to its effectiveness, simplicity, and availability of various adsorbent materials from natural and artificial sources. This review highlighted the potentials of carbon-based adsorbents derived from agricultural wastes such as lignocellulose, biochar, activated carbon, carbon nanotubes graphene materials as well as organic polymers such as chitosan, molecularly imprinted polymers, metal, and covalent frameworks for SAs removal from wastewater. The promising features of these materials including higher porosity, rich carbon-content, robustness, good stability as well as ease of modification have been emphasized. Thus, the materials have demonstrated excellent performance towards the SAs removal, attributed to their porous nature that provided sufficient active sites for the adsorption of SAs molecules. The modification of physico-chemical features of the materials have been discussed as efficient means for enhancing their adsorption and reusable performance. The article also proposed various interactive mechanisms for the SAs adsorption. Lastly, the prospects and challenges have been highlighted to expand the knowledge gap on the application of the materials for the sustainable removal of the SAs.
  11. Zango ZU, Khoo KS, Garba A, Garba ZN, Danmallam UN, Aldaghri O, et al.
    Environ Res, 2024 Apr 30;252(Pt 3):119024.
    PMID: 38692419 DOI: 10.1016/j.envres.2024.119024
    Environmental pollution has been increasing since last decade due to increasing industrialisation and urbanisation. Various kinds ofenvironmental pollutants including carbon dioxide (CO2), dyes, pharmaceuticals, phenols, heavy metals along with many organic and inorganic species have been discovered in the various environmental compartments which possess harmful impacts tox human health, wildlife, and ecosystems. Thus, various efforts have been made through regulations, technological advancements, and public awareness campaigns to reduce the impact of the pollution. However, finding suitable alternatives to mitigate their impacts remained a challenge. Metal-organic frameworks (MOFs) are one of the advanced materials with unique features such as high porosity and stability which exhibit versatile applications in environmental remediation. Their composites with titanium oxide nanoparticles (TiO2) have been discovered to offer potential feature such as light harvesting capacity and catalytic activity. The composite integration and properties have been confirmed through characterization using surface area analysis, scanning electron/transmission electron microscopy, atomic force microscopy, fourier transformed infrared spectroscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, thermogravimetric analysis, and others. Thus, this work rigorously discussed potential applications of the MOF@TiO2 nanomaterials for the CO2 capture and effective utilization in methanol, ethanol, acetone, acetaldehyde, and other useful products that served as fuel to various industrial processes. Additionally, the work highlights the effective performance of the materials towards photocatalytic degradation of both organic and inorganic pollutants with indepth mechanistic insights. The article will offer significant contribution for the development of sustainable and efficient technologies for the environmental monitoring and pollution mitigation.
  12. Ahmad Sobri MZ, Khoo KS, Liew CS, Lim JW, Tong WY, Zhou Y, et al.
    J Environ Manage, 2024 Jun;360:121138.
    PMID: 38749131 DOI: 10.1016/j.jenvman.2024.121138
    In the pursuit of alternatives for conventional diesel, sourced from non-renewable fossil fuel, biodiesel has gained attentions for its intrinsic benefits. However, the commercial production process for biodiesel is still not sufficiently competitive. This review analyses microalgal lipid, one of the important sources of biodiesel, and its cultivation techniques with recent developments in the technical aspects. In fact, the microalgal lipids are the third generation feedstock, used for biodiesel production after its benefits outweigh that of edible vegetable oils (first generation) and non-edible oils (second generation). The critical factors influencing microalgal growth and its lipid production and accumulation are also discussed. Following that is the internal enhancement for cellular lipid production through genetic engineering. Moreover, the microalgae cultivation data modelling was also rationalized, with a specific focus on growth kinetic models that allow for the prediction and optimization of lipid production. Finally, the machine learning and environmental impact analysis are as well presented as important aspects to consider in fulfilling the prime objective of commercial sustainability to produce microalgal biodiesel.
  13. Zango ZU, Binzowaimil AM, Aldaghri OA, Eisa MH, Garba A, Ahmed NM, et al.
    Chemosphere, 2023 Dec;343:140223.
    PMID: 37734509 DOI: 10.1016/j.chemosphere.2023.140223
    Covalent organic frameworks (COFs) are class of porous coordination polymers made up of organic building blocks joined together by covalent bonding through thermodynamic and controlled reversible polymerization reactions. This review discussed versatile applications of COFs for remediation of wastewater containing dyes, emphasizing the advantages of both pristine and modified materials in adsorption, membrane separation, and advanced oxidations processes. The excellent performance of COFs towards adsorption and membrane filtration has been centered to their higher crystallinity and porosity, exhibiting exceptionally high surface area, pore size and pore volumes. Thus, they provide more active sites for trapping the dye molecules. On one hand, the photocatalytic performance of the COFs was attributed to their semiconducting properties, and when coupled with other functional semiconducting materials, they achieve good mechanical and thermal stabilities, positive light response, and narrow band gap, a typical characteristic of excellent photocatalysts. As such, COFs and their composites have demonstrated excellent potentialities for the elimination of the dyes.
  14. Zango ZU, Ethiraj B, Al-Mubaddel FS, Alam MM, Lawal MA, Kadir HA, et al.
    Environ Res, 2023 Aug 15;231(Pt 2):116102.
    PMID: 37196688 DOI: 10.1016/j.envres.2023.116102
    Perfluoroalkyl carboxylic acids (PFCAs) are sub-class of perfluoroalkyl substances commonly detected in water matrices. They are persistent in the environment, hence highly toxic to living organisms. Their occurrence at trace amount, complex nature and prone to matrix interference make their extraction and detection a challenge. This study consolidates current advancements in solid-phase extraction (SPE) techniques for the trace-level analysis of PFCAs from water matrices. The advantages of the methods in terms of ease of applications, low-cost, robustness, low solvents consumption, high pre-concentration factors, better extraction efficiency, good selectivity and recovery of the analytes have been emphasized. The article also demonstrated effectiveness of some porous materials for the adsorptive removal of the PFCAs from the water matrices. Mechanisms of the SPE/adsorption techniques have been discussed. The success and limitations of the processes have been elucidated.
  15. Zango ZU, Lawal MA, Usman F, Sulieman A, Akhdar H, Eisa MH, et al.
    Chemosphere, 2024 Mar;351:141218.
    PMID: 38266876 DOI: 10.1016/j.chemosphere.2024.141218
    The widespread consumption of pharmaceutical drugs and their incomplete breakdown in organisms has led to their extensive presence in aquatic environments. The indiscriminate use of antibiotics, such as sulfonamides, has contributed to the development of drug-resistant bacteria and the persistent pollution of water bodies, posing a threat to human health and the safety of the environment. Thus, it is paramount to explore remediation technologies aimed at decomposing and complete elimination of the toxic contaminants from pharmaceutical wastewater. The review aims to explore the utilization of metal-oxide nanoparticles (MONPs) and graphitic carbon nitrides (g-C3N4) in photocatalytic degradation of sulfonamides from wastewater. Recent advances in oxidation techniques such as photocatalytic degradation are being exploited in the elimination of the sulfonamides from wastewater. MONP and g-C3N4 are commonly evolved nano substances with intrinsic properties. They possessed nano-scale structure, considerable porosity semi-conducting properties, responsible for decomposing wide range of water pollutants. They are widely applied for photocatalytic degradation of organic and inorganic substances which continue to evolve due to the low-cost, efficiency, less toxicity, and more environmentally friendliness of the materials. The review focuses on the current advances in the application of these materials, their efficiencies, degradation mechanisms, and recyclability in the context of sulfonamides photocatalytic degradation.
  16. Rozaini MNH, Khoo KS, Abdah MAAM, Ethiraj B, Alam MM, Anwar AF, et al.
    Environ Geochem Health, 2024 Mar 11;46(3):111.
    PMID: 38466501 DOI: 10.1007/s10653-024-01917-4
    With the advancement of technologies and growth of the economy, it is inevitable that more complex processes are deployed, producing more heterogeneous wastewater that comes from biomedical, biochemical and various biotechnological industries. While the conventional way of wastewater treatment could effectively reduce the chemical oxygen demand, pH and turbidity of wastewater, trace pollutants, specifically the endocrine disruptor compounds (EDCs) that exist in µg L-1 or ng L-1 have further hardened the detection and removal of these biochemical pollutants. Even in small amounts, EDC could interfere human's hormone, causing severe implications on human body. Hence, this review elucidates the recent insights regarding the effectiveness of an advanced 2D material based on titanium carbide (Ti3C2Tx), also known as MXene, in detecting and removing EDCs. MXene's highly tunable feature also allows its surface chemistry to be adjusted by adding chemicals with different functional groups to adsorb different kinds of EDCs for biochemical pollution mitigation. At the same time, the incorporation of MXene into sample matrices also further eases the analysis of trace pollutants down to ng L-1 levels, thereby making way for a more cleaner and comprehensive wastewater treatment. In that sense, this review also highlights the progress in synthesizing MXene from the conventional method to the more modern approaches, together with their respective key parameters. To further understand and attest to the efficacy of MXene, the limitations and current gaps of this potential agent are also accentuated, targeting to seek resolutions for a more sustainable application.
  17. Ardo FM, Khoo KS, Ahmad Sobri MZ, Suparmaniam U, Ethiraj B, Anwar AF, et al.
    Environ Pollut, 2024 Apr 01;346:123648.
    PMID: 38408504 DOI: 10.1016/j.envpol.2024.123648
    Municipal wastewater is ubiquitously laden with myriad pollutants discharged primarily from a combination of domestic and industrial activities. These heterogeneous pollutants are threating the natural environments when the traditional activated sludge system fails sporadically to reduce the pollutants' toxicities. Besides, the activated sludge system is very energy intensive, bringing conundrums for decarbonization. This research endeavoured to employ Chlorella vulgaris sp. In converting pollutants from municipal wastewater into hydrogen via alternate light and dark fermentative process. The microalgae in attached form onto 1 cm3 of polyurethane foam cubes were adopted in optimizing light intensity and photoperiod during the light exposure duration. The highest hydrogen production was recorded at 52 mL amidst the synergistic light intensity and photoperiod of 200 μmolm-2s-1 and 12:12 h (light:dark h), respectively. At this lighting condition, the removals of chemical oxygen demand (COD) and ammoniacal nitrogen were both achieved at about 80%. The sustainability of microalgal fermentative performances was verified in recyclability study using similar immobilization support material. There were negligible diminishments of hydrogen production as well as both COD and ammoniacal nitrogen removals after five cycles, heralding inconsequential microalgal cells' washout from the polyurethane support when replacing the municipal wastewater medium at each cycle. The collected dataset was finally modelled into enhanced Monod equation aided by Python software tool of machine learning. The derived model was capable to predict the performances of microalgae to execute the fermentative process in producing hydrogen while subsisting municipal wastewater at arbitrary photoperiod. The enhanced model had a best fitting of R2 of 0.9857 as validated using an independent dataset. Concisely, the outcomes had contributed towards the advancement of municipal wastewater treatment via microalgal fermentative process in producing green hydrogen as a clean energy source to decarbonize the wastewater treatment facilities.
  18. Rawindran H, Khoo KS, Ethiraj B, Lim JW, Liew CS, Goh PS, et al.
    Environ Res, 2024 Mar 16;251(Pt 2):118687.
    PMID: 38493853 DOI: 10.1016/j.envres.2024.118687
    The current study had conducted the life cycle analysis (LCA) to assess the environmental impact of microalgal wastewater treatment via an integrated membrane bioreactor. The functional unit selected for this analysis was 1 kg of treated microalgal wastewater with contaminants eliminated by ultrafiltration membrane fabricated from recycled polyethylene terephthalate waste. Meanwhile, the applied system boundary in this study was distinguished based on two scenarios, namely, cradle-to-gate encompassed wastewater treatment only and cradle-to-cradle which included the reutilization of treated wastewater to cultivate microalgae again. The environmental impacts and hotspots associated with the different stages of the wastewater treatment process had clearly elucidated that membrane treatment had ensued the highest impact, followed by microalgal harvesting, and finally cultivation. Among the environmental impact categories, water-related impact was found to be prominent in the following series: freshwater ecotoxicity, freshwater eutrophication and marine ecotoxicity. Notably, the key performance indicator of all environmental impact, i.e., the global warming potential was found to be very much lower at 2.94 × 10-4 kg CO2 eq as opposed to other literatures reported on the LCA of wastewater treatments using membranes. Overall, this study had proffered insights into the environmental impact of microalgal wastewater treatment and its stimulus for sustainable wastewater management. The findings of this study can be instrumental in making informed decision for optimizing microalgal wastewater treatment and reutilization assisted by membrane technology with an ultimate goal of enhancing sustainability.
  19. Ab Rashid S, Tong WY, Leong CR, Tan WN, Lee CK, Anuar MR, et al.
    Food Technol Biotechnol, 2023 Jun;61(2):151-159.
    PMID: 37457903 DOI: 10.17113/ftb.61.02.23.7595
    RESEARCH BACKGROUND: The presence of Yersinia enterocolitica on raw food products raises the concern of yersiniosis as most of the berries are consumed raw. This is a challenging issue from the food safety aspect since it could increase the occurrence of foodborne diseases among humans. Thus, it is crucial to implement an effective sanitation before the packaging.

    EXPERIMENTAL APPROACH: This study aims to synthesize and characterize thymol-loaded polyvinyl alcohol (Thy/PVA) nanoparticles as a sanitizer for postharvest treatment of blueberries. Thy/PVA nanoparticles were characterized by spectroscopic and microscopic approaches, prior to the analyses of antimicrobial properties.

    RESULTS AND CONCLUSIONS: The diameter size of the nanoparticles was on average 84.7 nm, with a surface charge of -11.73 mV. Based on Fourier transform infrared (FTIR) measurement, the Thy/PVA nanoparticles notably shifted to the frequency of 3275.70, 2869.66, 1651.02 and 1090.52 cm-1. A rapid burst was observed in the first hour of release study, and 74.9 % thymol was released from the PVA nanoparticles. The largest inhibition zone was displayed by methicillin-resistant Staphylococcus aureus (MRSA), followed by Y. enterocolitica and Salmonella typhi. However, amongst these bacteria, the inhibition and killing of Y. enterocolitica required a lower concentration of Thy/PVA nanoparticles. The treatment successfully reduced the bacterial load of Y. enterocolitica on blueberries by 100 %.

    NOVELTY AND SCIENTIFIC CONTRIBUTION: Thymol is a plant-based chemical without reported adverse effects to humans. In this study, by using the nanotechnology method of encapsulation with PVA, we improved the stability and physicochemical properties of thymol. This nanoparticle-based sanitizer could potentially promote the postharvest microbiological safety of raw berries, which may become an alternative practice of food safety.

  20. Jagaba AH, Abdulazeez I, Lawal DU, Affam AC, Mu'azu ND, Soja UB, et al.
    Environ Geochem Health, 2024 Jul 19;46(9):333.
    PMID: 39026137 DOI: 10.1007/s10653-024-02122-z
    Dye decolorization through biological treatment techniques has been gaining momentum as it is based on suspended and attached growth biomass in both batch and continuous modes. Hence, this review focused on the contribution of moving bed biofilm reactors (MBBR) in dye removal. MBBR have been demonstrated to be an excellent technology for pollution extraction, load shock resistance, and equipment size and energy consumption reduction. The review went further to highlight different biocarrier materials for biofilm development this review identified biochar as an innovative and environmentally friendly material produced through the application of different kinds of reusable or recyclable wastes and biowastes. Biochar as a carbonized waste biomass could be a better competitor and environmentally friendly substitute to activated carbon given its lower mass costs. Biochar can be easily produced particularly in rural locations where there is an abundance of biomass-based trash. Given that circular bioeconomy lowers dependency on natural resources by turning organic wastes into an array of useful products, biochar empowers the creation of competitive goods. Thus, biochar was identified as a novel, cost-effective, and long-term management strategy since it brings about several essential benefits, including food security, climate change mitigation, biodiversity preservation, and sustainability improvement. This review concludes that integrating two treatment methods could greatly lead to better color, organic matter, and nutrients removal than a single biological MBBR treatment process.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links