PATIENTS AND METHODS: This prospective study included 30 consecutive patients with femoral OM. LRS insertion and corticotomy were done according to the standard technique. Radiographic evaluation was performed every 2 weeks during the distraction phase and every 2-4 weeks during the consolidation phase. The clinical outcome measurements included union time, limb length discrepancy, additional operative procedures, refracture and infection.
RESULTS: The present study included 30 patients with femoral OM. They comprised 27 males (90.0%) and 3 females (10.0%) with an age of 28.1 ± 15.6 years. All, except one, achieved union with a mean union time of 8.6 months (range 4-20 months). The mean union time for acute compression was 7.6 months (range 4-20 months) while for patients with bone transport it was 14.5 months (range 12-18 months). The mean limb length discrepancy was 1.8 cm (range 0-4 cm). At the end of the follow=up, two patients were not able to ambulate without support; one due to non-union and one due to paraplegia.
CONCLUSION: The present study identified treatment of femoral OM using LRS as a feasible and effective technique with good outcomes. Reported complications could be adequately managed in most cases.
QUESTION/PURPOSE: Does a controlled deep-freezing temperature during irradiation help preserve the compressive mechanical properties of human femoral cortical bone allografts?
METHODS: Cortical bone cube samples, each measuring 64 mm3, were cut from the mid-diaphyseal midshaft of five fresh-frozen cadaver femurs (four male donors, mean [range] age at procurement 42 years [42 to 43]) and were allocated via block randomization into one of three experimental groups (with equal numbers of samples from each donor allocated into each group). Each experimental group consisted of 20 bone cube samples. Samples irradiated in dry ice were subjected to irradiation doses ranging from 26.7 kGy to 27.1 kGy (mean 26.9 kGy) at a deep-freezing temperature below -40°C (the recommended long-term storage temperature for allografts). Samples irradiated in gel ice underwent irradiation doses ranging from 26.2 kGy and 26.4 kGy (mean 26.3 kGy) in a freezing temperature range between -40°C and 0°C. Acting as controls, samples in a third group were not subjected to gamma irradiation. The mechanical properties (0.2% offset yield stress, ultimate compression stress, toughness, and the Young modulus) of samples from each group were subsequently evaluated via axial compression loading to failure along the long axis of the bone. The investigators were blinded to sample group during compression testing.
RESULTS: The mean ultimate compression stress (84 ± 27 MPa versus 119 ± 31 MPa, mean difference 35 [95% CI 9 to 60]; p = 0.005) and toughness (3622 ± 1720 kJ/m3 versus 5854 ± 2900 kJ/m3, mean difference 2232 [95% CI 70 to 4394]; p = 0.009) of samples irradiated at a higher temperature range (-40°C to 0°C) were lower than in those irradiated at deep-freezing temperatures (below -40°C). The mean 0.2% offset yield stress (73 ± 28 MPa versus 109 ± 38 MPa, mean difference 36 [95% CI 11 to 60]; p = 0.002) and ultimate compression stress (84 ± 27 MPa versus 128 ± 40 MPa, mean difference 44 [95% CI 17 to 69]; p < 0.001) of samples irradiated at a higher temperature range (-40°C to 0°C) were lower than the nonirradiated control group samples. The mean 0.2% offset yield stress (73 ± 28 MPa versus 101 ± 28 MPa, mean difference 28 [95% CI 3 to 52]; p = 0.02; effect size = 1.0 [95% CI 0.8 to 1.2]) of samples irradiated at higher temperature range (-40°C to 0°C) were no different with the numbers available to those irradiated at deep-freezing temperature. The mean toughness (3622 ± 1720 kJ/m3 versus 6231 ± 3410 kJ/m3, mean difference 2609 [95% CI 447 to 4771]; p = 0.02; effect size = 1.0 [95% CI 0.8 to 1.2]) of samples irradiated at higher temperature range (-40°C to 0°C) were no different with the numbers available to the non-irradiated control group samples. The mean 0.2% offset yield stress, ultimate compression stress, and toughness of samples irradiated in deep-freezing temperatures (below -40°C) were not different with the numbers available to the non-irradiated control group samples. The Young modulus was not different with the numbers available among the three groups.
CONCLUSION: In this study, maintenance of a deep-freezing temperature below -40°C, using dry ice as a cooling agent, consistently mitigated the adverse effects of irradiation on the monotonic-compression mechanical properties of human cortical bone tissue. Preserving the mechanical properties of a cortical allograft, when irradiated in a deep-freezing temperature, may have resulted from attenuation of the deleterious, indirect effects of gamma radiation on its collagen architecture in a frozen state. Immobilization of water molecules in this state prevents radiolysis and the subsequent generation of free radicals. This hypothesis was supported by an apparent loss of the protective effect when a range of higher freezing temperatures was used during irradiation.
CLINICAL RELEVANCE: Deep-freezing temperatures below -40°C during gamma irradiation may be a promising approach to better retain the native mechanical properties of cortical bone allografts. A further study of the effect of deep-freezing during gamma radiation sterilization on sterility and other important biomechanical properties of cortical bone (such as, tensile strength, fracture toughness, and fatigue) is needed to confirm these findings.
METHOD: This review followed the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analyses 2020) statement. The initial electronic search yielded a total of 3710 articles. The search identified 2354 potential papers after removing duplicates and 2301 articles were excluded by title and abstract. The full texts of the remaining 53 articles and nine articles from the citation searching were screened and 15 articles matched the inclusion criteria. The Mixed-Method Appraisal Tool (MMAT) was used for quality appraisal.
RESULTS: The thematic analysis resulted in four main themes which were educational intervention, physical intervention, clinical intervention, and a combination of both educational and clinical intervention.
CONCLUSION: We presented the findings in a narrative synthesis with the primary outcomes which served as answers to our main research question that prompted this systematic review.
DESIGN: A cross sectional study was conducted among 267 elderly people, 54 care givers and 66 health professionals in two rural areas of Peninsular of Malaysia (i.e Sabak Bernam, Selangor and Kuala Pilah, Negeri Sembilan). Information on nutritional knowledge was obtained from an interview based questionnaire for older subjects and caregiver and through self administered questionnaire from the health professionals. Anthropometric and functional measurements were also conducted among elderly subjects.
RESULTS: It was found that the elderly subjects had poor nutritional knowledge with 43.8% of them classified as having unsatisfactory nutritional knowledge, followed by moderately satisfactory (33.7%), very unsatisfactory (15.7%) and good (6.7%). Talks, counselling sessions with health professionals and electronic media such as television and radio were the most preferred nutrition education sources among elderly subjects and their care givers. The majority of health professionals studied (98.5%) had good nutritional knowledge. Although most of them (93.6%) were involved in management of the elderly, only 45.5% incorporated nutritional information component in this activity. Most of the health professionals used the guidelines for management of elderly patients (63.6%). However, nutritional knowledge was very minimal in these guidelines. Multiple regression analysis indicated that 'level education', involvement in 'social activities', presence of 'hearing problems', the Instrumental Activities of Daily Living (IADL) score, having previous 'nutritional information' and 'participation in healthy eating programme' were the major predictors of nutritional knowledge score among elderly subjects.
CONCLUSION: Based on the above findings it is thus, imperative that an appropriate nutritional intervention package and programme be developed so as to help improve nutritional knowledge and subsequently the nutritional status of the rural elderly Malays.