Displaying publications 61 - 80 of 123 in total

Abstract:
Sort:
  1. Mohamad NE, Keong Yeap S, Beh BK, Romli MF, Yusof HM, Kristeen-Teo YW, et al.
    J Sci Food Agric, 2018 Jan;98(2):534-540.
    PMID: 28631270 DOI: 10.1002/jsfa.8491
    BACKGROUND: Vinegar is widely used as a food additive, in food preparation and as a food supplement. This study compared the phenolic acid profiles and in vivo toxicities, and antioxidant and immunomodulatory effects of coconut, nipah and pineapple juice vinegars, which were respectively prepared via a two-step fermentation using Saccharomyces cerevisiae 7013 INRA and Acetobacter aceti vat Europeans.

    RESULTS: Pineapple juice vinegar, which had the highest total phenolic acid content, also exhibited the greatest in vitro antioxidant capacity compared to coconut juice and nipah juice vinegars. Following acute and sub-chronic in vivo toxicity evaluation, no toxicity and mortality were evident and there were no significant differences in the serum biochemical profiles between mice administered the vinegars versus the control group. In the sub-chronic toxicity evaluation, the highest liver antioxidant levels were found in mice fed with pineapple juice vinegar, followed by coconut juice and nipah juice vinegars. However, compared to the pineapple juice and nipah juice vinegars, the mice fed with coconut juice vinegar, exhibited a higher population of CD4+ and CD8+ T-lymphocytes in the spleen, which was associated with greater levels of serum interleukin-2 and interferon-γ cytokines.

    CONCLUSIONS: Overall, the data suggested that not all vinegar samples cause acute and sub-chronic toxicity in vivo. Moreover, the in vivo immunity and organ antioxidant levels were enhanced, to varying extents, by the phenolic acids present in the vinegars. The results obtained in this study provide appropriate guidelines for further in vivo bioactivity studies and pre-clinical assessments of vinegar consumption. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Acetic Acid/analysis*; Acetic Acid/metabolism; Acetic Acid/toxicity
  2. Thang LY, See HH, Quirino JP
    Talanta, 2016 Dec 01;161:165-169.
    PMID: 27769394 DOI: 10.1016/j.talanta.2016.08.054
    The low conductivity of separation electrolytes employed in nonaqueous capillary electrophoresis (NACE) limits the use of on-line sample concentration or stacking by field enhancement. Herein, micelle-to-solvent stacking (MSS) was performed by the simple injection of a micellar solution plug prior to electrokinetic injection of sample prepared under field-enhanced stacking conditions (known as field-enhanced sample injection, FESI). The proposed approach allowed a 214-625-fold improvement in peak signals for targeted anticancer drugs (e.g., tamoxifen) and its major metabolites in NACE using 100% methanol-based separation electrolyte that comprised of 7.5mM deoxycholic acid sodium salt, 15mM acetic acid and 1mM 18-crown-6. These improvements yielded tamoxifen and its metabolites with 2-5 times better stacking efficiency as compared to those obtained without micellar solution injection or FESI only. This is comparable to the results typically achieved when FESI is combined with isotachophoresis (electrokinetic supercharging). The FESI-MSS-NACE was tested for the measuring levels of target drugs in plasma. The analytical figures of merit are also reported.
    Matched MeSH terms: Acetic Acid
  3. Zihad SMNK, Bhowmick N, Uddin SJ, Sifat N, Rahman MS, Rouf R, et al.
    Front Pharmacol, 2018;9:1164.
    PMID: 30374304 DOI: 10.3389/fphar.2018.01164
    Present study was undertaken to evaluate the analgesic activity of the ethanol extract of Chrysopogon aciculatus. In addition to bioassays in mice, chemical profiling was done by LC-MS and GC-MS to identify phytochemicals, which were further docked on the catalytic site of COX-2 enzymes with a view to suggest the possible role of such phytoconstituents in the observed analgesic activity. Analgesic activity of C. aciculatus was evaluated by acetic acid induced writhing reflex method and hot plate technique. Phytochemical profiling was conducted using liquid chromatography mass spectrometry (LC-MS) and gas chromatography mass spectrometry (GC-MS). In docking studies, homology model of human COX-2 enzyme was prepared using Easy Modeler 4.0 and the identified phytoconstituents were docked using Autodock Vina. Preliminary acute toxicity test of the ethanol extract of C. aciculatus showed no sign of mortality at the highest dose of 4,000 mg/kg. The whole plant extract significantly (p < 0.05) inhibited acetic acid induced writhing in mice at the doses of 500 and 750 mg/kg. The extract delayed the response time in hot plate test in a dose dependent manner. LC-MS analysis of the plant extract revealed the presence of aciculatin, nudaphantin and 5α,8α-epidioxyergosta-6,22-diene-3β-ol. Three compounds namely citronellylisobutyrate; 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one and nudaphantin were identified in the n-hexane fraction by GC-MS. Among these compounds, six were found to be interacting with the binding site for arachidonic acid in COX-2 enzyme. Present study strongly supports the traditional use of C. aciculatus in the management of pain. In conclusion, compounds (tricin, campesterol, gamma oryzanol, and citronellyl isobutyrate) showing promising binding affinity in docking studies, along with previously known anti-inflammatory compound aciculatin can be held responsible for the observed activity.
    Matched MeSH terms: Acetic Acid
  4. Md Ismail, N.H., Nik Mohd Alwi N.A.
    JUMMEC, 2019;22(1):13-19.
    MyJurnal
    Oral ulcer is a lesion with multifactorial causes and occurs worldwide. The lesion usually resolved within 14
    days, but the pain may have an impact on the quality of patient’s life. Therefore, having a natural derived
    remedy that can reduce healing time would be a great advantage. This study aims to investigate histological
    sections of buccal ulcer on rats treated with aqueous extract of Piper sarmentosum (AEPS). Glacial acetic acid
    was used to induce buccal ulcer on male Sprague Dawley rats. Control group received normal saline while
    the experimental group received AEPS for treatment. On certain days of post-ulcer induction, buccal ulcer
    tissue samples were harvested, sectioned and stained with Hematoxylin and Eosin (H&E). Histological slides
    were examined for inflammation and scored. The inflammation severity reduced from day 2 to day 12. In the
    experimental group there was a statistically significant differences of inflammation score, particularly on day
    2 with a score of (2.8 + 0.2). Neutrophils were less in the experimental group and the tissue debris clearance
    was faster compared to control group. Full reepithelization was observed on both treated tissue sections on
    day 12 with less severe inflammation. Topical application of AEPS is proven to have anti-inflammatory effect
    by reducing the number of neutrophils during inflammation phase of oral ulcer healing.
    Matched MeSH terms: Acetic Acid
  5. Kam W, Wan Aida W, Sahilah A, Maskat M
    The aim of this study is to identify the predominating lactic acid bacteria (LAB) in a spontaneous fermented wheat sourdough. At the same time, an investigation towards volatile compounds that were produced was also carried out. Lactobacillus plantarum has been identified as the dominant species of lactobacilli with characters of a facultative heterofermentative strain. The generated volatile compounds that were produced during spontaneous fermentation were isolated by solvent extraction method, analysed by gas chromatography (GC), and identified by mass spectrophotometer (MS). Butyric acid has been found to be the main volatile compound with relative abundance of 6.75% and acetic acid at relative abundance of 3.60%. Esters that were formed at relatively low amount were butyl formate (1.23%) and cis 3 hexenyl propionate (0.05%). Butanol was also found at low amount with relative abundance of 0.60%. The carbohydrate metabolism of Lactobacillus plantarum may contributed to the production of acetic acid in this study via further catabolism activity on lactic acid that was produced. However, butyric acid was not the major product via fermentation by LAB but mostly carried out by the genus Clostridium via carbohydrate metabolism which needs further investigation
    Matched MeSH terms: Acetic Acid
  6. Micky Vincent, Berry Rence Anak Senawi, Ennry Esut, Norizawati Muhammad Nor, Dayang Salwani Awang Adeni
    Sains Malaysiana, 2015;44:899-904.
    Bioethanol is a very environmentally friendly liquid biofuel that is not only renewable, but also sustainable. It is currently
    deemed as a highly suitable additive and substitute energy source to replace fossil based fuel. In this study, bioethanol
    was produced from sago hampas by using commercial amylase, cellulase and Saccharomyces cerevisiae via sequential
    saccharification and simultaneous fermentation (SSSF), a modified version of the simultaneous saccharification and
    fermentation (SSF) process. SSSF was performed on sago hampas at 2.5 and 5.0% (w/v) feedstock load for five days. The
    samples taken from the SSSF broths were analysed via high performance liquid chromatography (HPLC) for ethanol, glucose
    and acetic acid production. From the results obtained, SSSF with 5.0% sago hampas loading exhibited the highest ethanol
    production at 14.13 g/L (77.43% of theoretical ethanol yield), while SSSF using 2.5% sago hampas loading produced
    ethanol at 6.45 g/L (69.24% of theoretical ethanol yield). This study has shown that ethanol not only can be produced
    from sago hampas using different enzyme mixtures and S. cerevisiae via SSSF, but yields were also high, making this
    process highly promising for the production of cheap and sustainable ethanol as fuel.
    Matched MeSH terms: Acetic Acid
  7. Palanyandy SR, Gantait S, Subramaniam S, Sinniah UR
    3 Biotech, 2020 Jan;10(1):9.
    PMID: 31850156 DOI: 10.1007/s13205-019-1997-9
    The current report assesses the efficiency of encapsulation-desiccation protocol to cryopreserve oil palm (Elaeis guineensis Jacq.) polyembryoids. Specifically identified polyembryoids, comprising of haustorium and torpedo-shaped structures, were encapsulated [comprising 3% (w/v) sodium alginate and 100 mM CaCl2]. Calcium alginate-encapsulated and sucrose-precultured polyembryoids were subjected to different spans of desiccation in a laminar air-flow cabinet, followed by freezing in liquid nitrogen. The effect of sucrose preculture (with gradual exposure to 0.3, 0.5, 0.75 and 1 M for 7 days) and dehydration periods (0-10 h) under sterile air-flow on post-freezing survival and regrowth of encapsulated polyembryoids were studied. Cryopreserved and thawed polyembryoids (initially precultured in sucrose, followed by 9 h air-desiccated to 23.3% moisture content) displayed the highest survival percentage (73.3%) and regeneration (of shoot, root and secondary somatic embryo) on Murashige and Skoog regrowth medium containing sucrose (0.3-1 M) and 0.2 mg/l 2,4-dichlorophenoxy acetic acid. In addition, ultrastructural study using scanning electron microscopy exhibited successful revival of cryopreserved polyembryoids, owing to retention of cellular membrane stability through optimized and protected (encapsulated) desiccation. The present study thus substantiates the potential of this encapsulation-desiccation procedure in cryopreservation of oil palm polyembryoids for long-term conservation programs.
    Matched MeSH terms: Acetic Acid
  8. Ahmad W, Husain I, Ahmad N, Amir M, Sarafroz M, Ansari MA, et al.
    3 Biotech, 2020 Apr;10(4):165.
    PMID: 32206499 DOI: 10.1007/s13205-020-2154-1
    Boerhavia diffusa (BD) Linn. (Nyctaginaceae) is one of the most commonly used herbs in the Indian traditional system of medicine for the urinary disorders. The aim of the current investigation was to carry out initiation, development, and maintenance of BD callus cultures and quantitative estimation of punarnavine in plant and callus extracts. Leaves and stem of BD were used as explant for the tissue culture studies using Murashige and Skoog (MS) basal medium. MS Media comprising 2,4-Dichlorophenoxy acetic acid (2,4-D) (1 ppm) and 2,4-D (1 ppm) + Indole-3-acetic acid (IAA) (1.0 ppm) were found to yield friable callus from leaf explant; similarly, 2,4-D (0.3 ppm) + IAA (0.75 ppm) + Kinetin (0.3 ppm) and 2,4-D (0.5 ppm) + Naphthalene acetic acid (NAA) (1.5 ppm) + Kinetin (0.3 ppm) were found to yield friable callus from the stem explant. High-performance thin-layer chromatography method was been developed for the quantitative estimation of punarnavine (Rf = 0.73) using mobile phase containing toluene: ethyl acetate: formic acid in the ratio (7.0:2.5:0.7, v/v/v) at 262 nm. The validated method was found linear (r2 = 0.9971) in a wide range (100-1000 ng spot-1), precise, accurate, and robust. The values of limit of detection, LOD = 30.3 ng spot-1, and limit of quantification, LOQ = 100.0 ng spot-1. The robustness of the method was proved by applying the Box-Behnken design (BBD). The developed method found appropriate for the quality control of medicinal plants containing punarnavine as a constituent.
    Matched MeSH terms: Indoleacetic Acids; Naphthaleneacetic Acids; Acetic Acid
  9. Kong Fei Chai, Noranizan Mohd Adzahan, Roselina Karim, Yaya Rukayadi, Hasanah Mohd Ghazali
    Sains Malaysiana, 2018;47:2311-2318.
    Sweatings, the exudates that leach out from fermenting fruits during rambutan fruit fermentation are considered as
    a waste by-product and are allowed to be drained off. This could lead to a pollution problem. Besides, it is a waste if
    the sweatings are possible to be transformed into food products and ingredients. However, prior transformation, the
    fundamental knowledge of the sweatings should be understood. Hence, the main aim of this study was to investigate
    the physicochemical properties of sweatings as affected by fermentation time and turning intervals during natural
    fermentation of rambutan fruits. In this study, peeled rambutan fruit was fermented for 8 days and turned. Different
    batches of the fruits were turned every 24, 48 or 72 h and sweatings from the process were collected and analyzed.
    The results showed that fermentation time significantly reduced (p<0.05) the yield, pH and sucrose content of the
    sweatings by 79-84%, 32-33%, 76.5-80.8%, respectively. Fermentation time also significantly increased (p<0.05) the
    titratable acidity, total soluble solids, fructose, glucose, total sugar, citric acid, lactic acid, acetic acid and ascorbic
    acid contents of the sweatings by 5.6-6.0, 1.5-1.6, 2.4-2.6, 2.1-2.5, 1.0-1.1, 5.7-6.5, 2.4-2.6, 2.1-2.5 and 2.6-2.8 folds,
    respectively. However, turning intervals did not significantly affect (p>0.05) the physicochemical properties of the
    sweatings. High concentrations of sugars and organic acids allow the sweatings to have a balance of sweet and sour
    taste and they are suitable to be used in the production of syrup, soft drinks, jam, jelly, marmalade and vinegar.
    Matched MeSH terms: Acetic Acid
  10. Shahnavaz Z, Zaharani L, Johan MR, Khaligh NG
    Curr Org Synth, 2020;17(2):131-135.
    PMID: 32013833 DOI: 10.2174/1570179417666200203121437
    BACKGROUND: In continuation of our previous work and the applications of saccharin, we encouraged to investigate the one-pot synthesis of the aryl iodides by the diazotization of the arene diazonium saccharin salts.

    OBJECTIVE: Arene diazonium salts play an important role in organic synthesis as intermediate and a wide variety of aromatic compounds have been prepared using them. A serious drawback of arene diazonium salts is their instability in a dry state; therefore, they must be stored and handled carefully to avoid spontaneous explosion and other hazard events.

    METHODS: The arene diazonium saccharin salts were prepared as active intermediates in situ through the reaction of various aryl amines with tert-butyl nitrite (TBN) in the presence of saccharin (Sac-H). Then, in situ obtained intermediates were used into the diazotization step without separation and purification in the current protocol.

    RESULTS: A variety of aryl iodides were synthesized at a greener and low-cost method in the presence of TBN, Sac-H, glacial acetic acid, and TEAI.

    CONCLUSION: In summary, a telescopic reaction is developed for the synthesis of aryl iodides. The current methodology is safe, cost-effective, broad substrate scope, and metal-free. All used reagents are commercially available and inert to moisture and air. Also, the saccharine and tetraethylammonium cation could be partially recovered from the reaction residue, which reduces waste generation, energy consumption, raw material, and waste disposal costs.

    Matched MeSH terms: Acetic Acid
  11. Atif M, Khalid SH, Onn Kit GL, Sulaiman SA, Asif M, Chandersekaran A
    J Young Pharm, 2013 Mar;5(1):26-9.
    PMID: 24023449 DOI: 10.1016/j.jyp.2013.01.005
    A simple, sensitive and selective HPLC method with UV detection for determination of Glipizide in human plasma was developed. Liquid-liquid extraction method was used to extract the drug from the plasma samples. Chromatographic separation of Glipizide was achieved using C18 column (ZORBAX ODS 4.6 × 150 mm). The mobile phase was comprised of 0.01 M potassium dihydrogen phosphate and acetonitrile (65:35, v/v) adjusted to pH 4.25 with glacial acetic acid. The analysis was run at a flow rate of 1.5 mL/min with an injection volume was 20 μL. The detector was operated at 275 nm. The calibration curve was linear over a concentration range of 50-1600 ng/mL. Intra-day and inter-day precision and accuracy values were below 15%. The limit of quantification was 50 ng/mL and the mean recovery was above 98%. Freeze-thaw, short-term, long-term and post-preparative stability studies showed that Glipizide in plasma sample was stable. The method may be successfully applied to analyze the Glipizide concentration in plasma samples for bioavailability and bioequivalence studies.
    Matched MeSH terms: Acetic Acid
  12. Abd Rahman S, Ariffin N, Yusof NA, Abdullah J, Mohammad F, Ahmad Zubir Z, et al.
    Sensors (Basel), 2017 Jul 01;17(7).
    PMID: 28671559 DOI: 10.3390/s17071537
    A semiconducting water-soluble core-shell quantum dots (QDs) system capped with thiolated ligand was used in this study for the sensitive detection of glucose in aqueous samples. The QDs selected are of CdSe-coated ZnS and were prepared in house based on a hot injection technique. The formation of ZnS shell at the outer surface of CdSe core was made via a specific process namely, SILAR (successive ionic layer adsorption and reaction). The distribution, morphology, and optical characteristics of the prepared core-shell QDs were assessed by transmission electron microscopy (TEM) and spectrofluorescence, respectively. From the analysis, the results show that the mean particle size of prepared QDs is in the range of 10-12 nm and that the optimum emission condition was displayed at 620 nm. Further, the prepared CdSe/ZnS core shell QDs were modified by means of a room temperature ligand-exchange method that involves six organic ligands, L-cysteine, L-histidine, thio-glycolic acid (TGA or mercapto-acetic acid, MAA), mercapto-propionic acid (MPA), mercapto-succinic acid (MSA), and mercapto-undecanoic acid (MUA). This process was chosen in order to maintain a very dense water solubilizing environment around the QDs surface. From the analysis, the results show that the CdSe/ZnS capped with TGA (CdSe/ZnS-TGA) exhibited the strongest fluorescence emission as compared to others; hence, it was tested further for the glucose detection after their treatment with glucose oxidase (GOx) and horseradish peroxidase (HRP) enzymes. Here in this study, the glucose detection is based on the fluorescence quenching effect of the QDs, which is correlated to the oxidative reactions occurred between the conjugated enzymes and glucose. From the analysis of results, it can be inferred that the resultant GOx:HRP/CdSe/ZnS-TGA QDs system can be a suitable platform for the fluorescence-based determination of glucose in the real samples.
    Matched MeSH terms: Acetic Acid
  13. Shajib MS, Rashid RB, Ming LC, Islam S, Sarker MMR, Nahar L, et al.
    Front Pharmacol, 2018;9:85.
    PMID: 29515437 DOI: 10.3389/fphar.2018.00085
    Polymethoxylavones (PMFs) are known to exhibit significant anti-inflammatory and neuroprotective properties.Nicotiana plumbaginifolia, an annual Bangladeshi herb, is rich in polymethoxyflavones that possess significant analgesic and anxiolytic activities. The present study aimed to determine the antinociceptive and neuropharmacological activities of polyoxygenated flavonoids namely- 3,3',5,6,7,8-hexamethoxy-4',5'-methylenedioxyflavone (1), 3,3',4',5',5,6,7,8-octamethoxyflavone (exoticin) (2), 6,7,4',5'-dimethylenedioxy-3,5,3'-trimethoxyflavone (3), and 3,3',4',5,5',8-hexamethoxy-6,7-methylenedioxyflavone (4), isolated and identified fromN. plumbaginifolia. Antinociceptive activity was assessed using the acetic-acid induced writhing, hot plate, tail immersion, formalin and carrageenan-induced paw edema tests, whereas neuropharmacological effects were evaluated in the hole cross, open field and elevated plus maze test. Oral treatment of compounds1,3, and4(12.5-25 mg/kg b.w.) exhibited dose-dependent and significant (p< 0.01) antinociceptive activity in the acetic-acid, formalin, carrageenan, and thermal (hot plate)-induced pain models. The association of ATP-sensitive K+channel and opioid systems in their antinociceptive effect was obvious from the antagonist effect of glibenclamide and naloxone, respectively. These findings suggested central and peripheral antinociceptive activities of the compounds. Compound1,3, and4(12.5 mg/kg b.w.) demonstrated significant (p< 0.05) anxiolytic-like activity in the elevated plus-maze test, while the involvement of GABAAreceptor in the action of compound3and4was evident from the reversal effects of flumazenil. In addition, compounds1and4(12.5-25 mg/kg b.w) exhibited anxiolytic activity without altering the locomotor responses. The present study suggested that the polymethoxyflavones (1-4) fromN. Plumbaginifoliacould be considered as suitable candidates for the development of analgesic and anxiolytic agents.
    Matched MeSH terms: Acetic Acid
  14. Sani MH, Zakaria ZA, Balan T, Teh LK, Salleh MZ
    PMID: 22611437 DOI: 10.1155/2012/890361
    Muntingia calabura L. (family Elaeocarpaceae) has been traditionally used to relieve various pain-related ailments. The present study aimed to determine the antinociceptive activity of methanol extract of M. calabura leaves (MEMC) and to elucidate the possible mechanism of antinociception involved. The in vivo chemicals (acetic acid-induced abdominal constriction and formalin-, capsaicin-, glutamate-, serotonin-induced paw licking test) and thermal (hot plate test) models of nociception were used to evaluate the extract antinociceptive activity. The extract (100, 250, and 500 mg/kg) was administered orally 60 min prior to subjection to the respective test. The results obtained demonstrated that MEMC produced significant (P < 0.05) antinociceptive response in all the chemical- and thermal-induced nociception models, which was reversed after pretreatment with 5 mg/kg naloxone, a non-selective opioid antagonist. Furthermore, pretreatment with L-arginine (a nitric oxide (NO) donor), N(G)-nitro-L-arginine methyl esters (L-NAME; an inhibitor of NO synthase (NOS)), methylene blue (MB; an inhibitor of cyclic-guanosine monophosphate (cGMP) pathway), or their combination also caused significant (P < 0.05) change in the intensity of the MEMC antinociception. In conclusion, the MEMC antinociceptive activity involves activation of the peripheral and central mechanisms, and modulation via, partly, the opioid receptors and NO/cGMP pathway.
    Matched MeSH terms: Acetic Acid
  15. Mohamad NE, Yeap SK, Ky H, Liew NWC, Beh BK, Boo SY, et al.
    PMID: 33029159 DOI: 10.1155/2020/1257962
    Obesity is a pandemic metabolic syndrome with increasing incidences every year. Among the significant factors that lead to obesity, overconsumption of high-fat food in daily intake is always the main contributor. Functional foods have shown a positive effect on disease prevention and provide health benefits, including counteracting obesity problem. Vinegar is one of the fermented functional beverages that have been consumed for many years, and different types of vinegar showed different bioactivities and efficacies. In this study, we investigated the potential effects of pineapple vinegar as an antiobesity agent on a high-fat diet- (HFD-) induced C57BL/6 obese mice. C57BL/6 mice were treated with pineapple vinegar (1 mL/kg BW and 0.08 mL/kg BW) for 12 weeks after 24 weeks of HFD incubation. Serum biochemistry profiles, antioxidant assays, qPCR, proteome profiler, and 16S metagenomic were done posttreatment. Our data showed that a high concentration of pineapple vinegar (1 mL/kg BW) treatment significantly (p < 0.05) reduced the bodyweight (∼20%), restored lipid profiles, increased the antioxidant activities, and reduced the oxidative stress. Besides, significant (p < 0.05) regulation of several adipokines and inflammatory-related genes was recorded. Through the regulation of gut microbiota, we found a higher abundance of Akkermansia muciniphila, a microbiota reported to be associated with obesity in the high concentration of pineapple vinegar treatment. Collectively, these data established the mechanism of pineapple vinegar as antiobesity in mice and revealed the potential of pineapple vinegar as a functional food for obesity.
    Matched MeSH terms: Acetic Acid
  16. Yong YK, Zakaria ZA, Kadir AA, Somchit MN, Ee Cheng Lian G, Ahmad Z
    BMC Complement Altern Med, 2013 Feb 14;13:32.
    PMID: 23410184 DOI: 10.1186/1472-6882-13-32
    BACKGROUND: Bixa orellana L. has been traditionally used in Central and South America to treat a number of ailments, including internal inflammation, and in other tropical countries like Malaysia as treatment for gastric ulcers and stomach discomfort. The current study aimed to determine the major chemical constituents of the aqueous extract of B. orellana (AEBO) and to evaluate the antihistamine activity of AEBO during acute inflammation induced in rats.

    METHODS: Acute inflammation was produced by subplantar injection of 0.1 mL of 0.1% histamine into the right hind paw of each rat in the control and treatment groups. The degree of edema was measured before injection and at the time points of 30, 60, 120, 180, 240 and 300 min after injection. Changes of peritoneal vascular permeability were studied using Evans blue dye as a detector. Vascular permeability was evaluated by the amount of dye leakage into the peritoneal cavity in rats. To evaluate the inhibitory effect of AEBO on biochemical mediators of vascular permeability, the levels of nitric oxide (NO) and vascular endothelial growth factor (VEGF) were determined in histamine-treated paw tissues. The major constituents of AEBO were determined by gas chromatography-mass spectrometry (GC-MS) analysis.

    RESULTS: AEBO produced a significant inhibition of histamine-induced paw edema starting at 60 min time point, with maximal percentage of inhibition (60.25%) achieved with a dose of 150 mg/kg of AEBO at 60 min time point. Up to 99% of increased peritoneal vascular permeability produced by histamine was successfully suppressed by AEBO. The expression of biochemical mediators of vascular permeability, NO and VEGF, was also found to be downregulated in the AEBO treated group. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the major constituent in AEBO was acetic acid.

    CONCLUSIONS: The experimental findings demonstrated that the anti-inflammatory activity of AEBO was due to its inhibitory effect on vascular permeability, which was suppressed as a result of the reduced expression of biochemical mediators (NO and VEGF) in tissues. Our results contribute towards the validation of the traditional use of Bixa orellana in the treatment of inflammatory disorders.

    Matched MeSH terms: Acetic Acid/analysis; Acetic Acid/pharmacology; Acetic Acid/therapeutic use*
  17. Saminathan M, Sieo CC, Abdullah N, Wong CM, Ho YW
    J Sci Food Agric, 2015 Oct;95(13):2742-9.
    PMID: 25418980 DOI: 10.1002/jsfa.7016
    Molecular weights (MWs) and their chemical structures are the primary factors determining the influence of condensed tannins (CTs) on animal nutrition and methane (CH4 ) production in ruminants. In this study the MWs of five CT fractions from Leucaena leucocephala hybrid-Rendang (LLR) were determined and the CT fractions were investigated for their effects on CH4 production and rumen fermentation.
    Matched MeSH terms: Acetic Acid/metabolism
  18. Siew-Wai L, Zi-Ni T, Karim AA, Hani NM, Rosma A
    J Agric Food Chem, 2010 Feb 24;58(4):2274-8.
    PMID: 20121195 DOI: 10.1021/jf903820s
    The in vitro fermentability of sago (Metroxylon sagu) resistant starch type III (RS(3)) by selected probiotic bacteria was investigated. Sago RS(3) with 12% RS content was prepared by enzymatic debranching of native sago starch with pullulanase enzyme, followed by autoclaving, cooling, and annealing. The fermentation of sago RS(3) by L. acidophilus FTCC 0291, L. bulgaricus FTCC 0411, L. casei FTCC 0442, and B. bifidum BB12 was investigated by observing the bacterial growth, carbohydrate consumption profiles, pH changes, and total short chain fatty acids (SCFA) produced in the fermentation media. Comparisons were made with commercial fructo-oligosaccharide (FOS), Hi-maize 1043, and Hi-maize 240. Submerged fermentations were conducted in 30 mL glass vials for 24 h at 37 degrees C in an oven without shaking. The results indicated that fermentation of sago RS(3) significantly (P < 0.05) yielded the highest count of Lactobacillus sp. accompanied by the largest reduction in pH of the medium. Sago RS(3) was significantly the most consumed substrate compared to FOS and Hi-maizes.
    Matched MeSH terms: Acetic Acid/metabolism
  19. Zuhainis Saad W, Abdullah N, Alimon AR, Yin Wan H
    Anaerobe, 2008 Apr;14(2):118-22.
    PMID: 18083606
    The effects of phenolic monomers (i.e. rho-coumaric acid, ferulic acid, rho-hydroxybenzaldehyde and vanillin) on the enzymes and fermentation activities of Neocallimastix frontalis B9 grown in ball-milled filter paper and guinea grass media were studied. The enzymes studied were carboxymethylcellulase (CMCase), filterpaperase (FPase), xylanase and beta-glucosidase. At 96 h of incubation, N. frontalis grown in ball-milled filter paper medium produced comparable xylanase and CMCase activities (0.41, 0.5 micromol/min/mg protein) while in guinea grass medium, N. frontalis produced higher xylanase activity than that of CMCase activity (2.35, 0.05 micromol/min/mg protein). The other enzymes activities were low. When N. frontalis was grown in ball-milled filter paper medium, only acetic acid was produced. However, when grown in guinea grass medium, the major end-product was acetate, but propionic, butyric and isovaleric were also produced in lesser amount. Vanillin showed the least inhibitory effects to enzyme activities of N. frontalis B9 grown in both ball-milled filter paper and guinea grass media. For total volatile fatty acid production, all phenolic monomers showed inhibitory effects, but rho-coumaric and ferulic acids were the stronger inhibitors than rho-hydroxybenzaldehyde and vanillin.
    Matched MeSH terms: Acetic Acid/metabolism
  20. Lew LC, Liong MT
    J Appl Microbiol, 2013 May;114(5):1241-53.
    PMID: 23311666 DOI: 10.1111/jam.12137
    Probiotics have been extensively reviewed for decades, emphasizing on improving general gut health. Recently, more studies showed that probiotics may exert other health-promoting effects beyond gut well-being, attributed to the rise of the gut-brain axis correlations. Some of these new benefits include skin health such as improving atopic eczema, atopic dermatitis, healing of burn and scars, skin-rejuvenating properties and improving skin innate immunity. Increasing evidence has also showed that bacterial compounds such as cell wall fragments, their metabolites and dead bacteria can elicit certain immune responses on the skin and improve skin barrier functions. This review aimed to underline the mechanisms or the exact compounds underlying the benefits of bacterial extract on the skin based on evidences from in vivo and in vitro studies. This review could be of help in screening of probiotic strains with potential dermal enhancing properties for topical applications.
    Matched MeSH terms: Acetic Acid/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links