Displaying publications 61 - 80 of 929 in total

Abstract:
Sort:
  1. Wiart C, Hannah NA, Yassim M, Hamimah H, Sulaiman M
    Phytother Res, 2004 Sep;18(9):783-4.
    PMID: 15478188
    The ethanol extract of leaves of Piper porphyrophyllum N.E. Br. showed a broad spectrum of antibacterial activity. The activity was increased on fractionation (hexane, dichloromethane and aqueous), particularly in the aqueous fraction. No activity was shown against tested Candida albicans.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Positive Bacteria/drug effects
  2. Wiart C, Mogana S, Khalifah S, Mahan M, Ismail S, Buckle M, et al.
    Fitoterapia, 2004 Jan;75(1):68-73.
    PMID: 14693223
    Seventy-two extracts (methanol) obtained from the leaves, barks, and roots of 50 plant species used in the traditional medicine of Perak, Peninsular Malaysia, have been screened for antibacterial and antifungal activities. Peristrophe tinctoria, Polyalthia lateriflora, Knema malayana, Solanum torvum, Celosia argentea, Eclipta prostrata, Ancistrocladus tectorius, Dillenia suffruticosa, Piper stylosum and Rafflesia hasseltii displayed the broadest spectrum of activity.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects*; Gram-Positive Bacteria/drug effects*
  3. Wiart C, Akaho E, Hannah M, Yassim M, Hamimah H, Au TS, et al.
    Am J Chin Med, 2005;33(4):683-5.
    PMID: 16173541
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Bacteria/drug effects*
  4. Wengert PC, Wong NH, Barton HA, Gan HM, Hudson AO, Savka MA
    BMC Res Notes, 2021 May 08;14(1):175.
    PMID: 33964980 DOI: 10.1186/s13104-021-05589-6
    OBJECTIVES: To characterize the bacterial community of Wind Cave's Madison aquifer through whole-genome sequencing, and to better understand the bacterial ecology by identifying genes involved in acyl-homoserine lactone (AHL) based quorum-sensing (QS) systems.

    RESULTS: Genome-based taxonomic classification revealed the microbial richness present in the pristine Madison aquifer. The strains were found to span eleven genera and fourteen species, of which eight had uncertain taxonomic classifications. The genomes of strains SD129 and SD340 were found to contain the archetypical AHL QS system composed of two genes, luxI and luxR. Surprisingly, the genomes of strains SD115, SD129, SD274 and SD316 were found to contain one to three luxR orphans (solos). Strain SD129, besides possessing an archetypical AHL QS luxI-luxR pair, also contained two luxR solos, while strain SD316 contained three LuxR solos and no luxI-luxR pairs. The ligand-binding domain of two LuxR solos, one each from strains SD129 and SD316, were found to contain novel substitutions not previously reported, thus may represent two LuxR orphans that detection and response to unknown self-produced signal(s), or to signal(s) produced by other organisms.

    Matched MeSH terms: Bacteria/genetics; Bacterial Proteins/genetics
  5. Wen X, Cao J, Mi J, Huang J, Liang J, Wang Y, et al.
    J Hazard Mater, 2021 03 05;405:124215.
    PMID: 33109407 DOI: 10.1016/j.jhazmat.2020.124215
    High concentrations of antibiotics may induce bacterial resistance mutations and further lead to fitness costs by reducing growth of resistant bacteria. However, antibiotic concentrations faced by bacteria are usually low in common environments, which leads to questions about how resistant bacteria with fitness costs regulate metabolism to coexist or compete with susceptible bacteria during sublethal challenge. Our study revealed that a low proportion (< 15%) of resistant bacteria coexisted with susceptible bacteria due to the fitness cost without doxycycline. However, the cost for the resistant strain decreased at a doxycycline concentration of 1 mg/L and even disappeared when the doxycycline concentration was 2 mg/L. Metabonomics analysis revealed that bypass carbon metabolism and biosynthesis of secondary metabolites were the primary metabolic pathways enriching various upregulated metabolites in resistant bacteria without doxycycline. Moreover, the alleviation of fitness cost for resistant bacteria competed with susceptible bacteria at 1 mg/L doxycycline was correlated with the downregulation of the biomarkers pyruvate and pilocarpine. Our study offered new insight into the metabolic mechanisms by which the fitness cost of resistant mutants was reduced at doxycycline concentrations as low as 1 mg/L and identified various potential metabolites to limit the spread of antimicrobial resistance in the environment.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/therapeutic use; Bacteria; Drug Resistance, Bacterial/genetics
  6. Wen X, Huang J, Cao J, Xu J, Mi J, Wang Y, et al.
    Ecotoxicol Environ Saf, 2020 Mar 15;191:110214.
    PMID: 31968275 DOI: 10.1016/j.ecoenv.2020.110214
    Microbial remediation has the potential to inexpensively yet effectively decontaminate and restore contaminated environments, but the virulence of pathogens and risk of resistance gene transmission by microorganisms during antibiotic removal often limit its implementation. Here, a cloned tetX gene with clear evolutionary history was expressed to explore doxycycline (DOX) degradation and resistance variation during the degradation process. Phylogenetic analysis of tetX genes showed high similarity with those of pathogenic bacteria, such as Riemerella sp. and Acinetobacter sp. Successful tetX expression was performed in Escherichia coli and confirmed by SDS-PAGE and Western blot. Our results showed that 95.0 ± 1.0% of the DOX (50 mg/L) was degraded by the recombinant strain (ETD-1 with tetX) within 48 h, which was significantly higher than that for the control (38.9 ± 8.7%) and the empty plasmid bacteria (8.8 ± 5.1%) (P  0.05). The efficient and safe DOX-degrading capacity of the recombinant strain ETD-1 makes it valuable and promising for antibiotic removal in the environment.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism*; Bacteria/classification; Bacteria/genetics; Bacteria/metabolism; Bacterial Proteins/genetics*; Bacterial Proteins/metabolism
  7. Wei W, Jiang N, Mei YN, Chu YL, Ge HM, Song YC, et al.
    Phytochemistry, 2014 Apr;100:103-9.
    PMID: 24529576 DOI: 10.1016/j.phytochem.2014.01.003
    In searching for symbionts derived from bioactive natural products, six sulfureous diketopiperazines designated as lasiodiplines A-F (1-6) were characterized from the culture of Lasiodiplodia pseudotheobromae F2, previously residing in the apparently normal flower of Illigera rhodantha (Hernandiaceae). Identification of structures was accomplished by a combination of spectroscopic and computational approaches, in conjunction with the low-temperature (100K) single-crystal X-ray diffraction with Cu Kα radiation. Lasiodipline E (5) was demonstrated to be antibacterial against the clinical strains Streptococcus sp., Bacteroides vulgates, Peptostreptococcus sp. and Veillonella parvula, respectively, with an minimum inhibitory concentration (MIC) range of 0.12-0.25 μg/mL. In addition, compounds 4 and 6 exemplify two unusual architectures of natural cyclodipeptides, signifying the unique biochemical characteristics of the producing fungus.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification; Anti-Bacterial Agents/metabolism*; Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry; Bacteria/drug effects
  8. Wei OY, Xavier R, Marimuthu K
    Eur Rev Med Pharmacol Sci, 2010 Aug;14(8):675-81.
    PMID: 20707287
    The objective of this study is to gain a better understanding of the antimicrobial properties of the mucus extract of snakehead fish, Channa striatus against selected human and fish pathogenic microbes.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification; Anti-Bacterial Agents/pharmacology*; Bacteria/drug effects*; Bacteria/pathogenicity
  9. Wei LS, Wee W, Siong JY, Syamsumir DF
    Acta Med Iran, 2011;49(10):670-4.
    PMID: 22071643
    Peperomia pellucida leaf extract was characterized for its anticancer, antimicrobial, antioxidant activities, and chemical compositions. Anticancer activity of P. pellucida leaf extract was determined through Colorimetric MTT (tetrazolium) assay against human breast adenocarcinoma (MCF-7) cell line and the antimicrobial property of the plant extract was revealed by using two-fold broth micro-dilution method against 10 bacterial isolates. Antioxidant activity of the plant extract was then characterized using α, α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging method and the chemical compositions were screened and identified using gas chromatography-mass spectrometry (GC-MS). The results of present study indicated that P. pellucida leaf extract possessed anticancer activities with half maximal inhibitory concentration (IC(50)) of 10.4 ± 0.06 µg/ml. The minimum inhibitory concentration (MIC) values were ranged from 31.25 to 125 mg/l in which the plant extract was found to inhibit the growth of Edwardsiella tarda, Escherichia coli, Flavobacterium sp., Pseudomonas aeruginosa and Vibrio cholerae at 31.25 mg/l; Klebsiella sp., Aeromonas hydrophila and Vibrio alginolyticus at 62.5 mg/l; and it was able to control the growth of Salmonella sp. and Vibrio parahaemolyticus at 125 mg/l. At the concentration of 0.625 ppt, the plant extract was found to inhibit 30% of DPPH, free radical. Phytol (37.88%) was the major compound in the plant extract followed by 2-Naphthalenol, decahydro- (26.20%), Hexadecanoic acid, methyl ester (18.31%) and 9,12-Octadecadienoic acid (Z,Z)-, methyl ester (17.61%). Findings from this study indicated that methanol extract of P. pellucida leaf possessed vast potential as medicinal drug especially in breast cancer treatment.
    Matched MeSH terms: Bacteria/drug effects; Bacteria/growth & development
  10. Wei J, Ren W, Wang L, Liu M, Tian X, Ding G, et al.
    J Sci Food Agric, 2020 Dec;100(15):5627-5636.
    PMID: 32712996 DOI: 10.1002/jsfa.10690
    BACKGROUND: Serofluid dish, a traditional Chinese fermented food, possesses unique flavors and health beneficial effects. These properties are likely due to the sophisticated metabolic networks during fermentation, which are mainly driven by microbiota. However, the exact roles of metabolic pathways and the microbial community during this process remain equivocal.

    RESULTS: Here, we investigated the microbial dynamics by next-generation sequencing, and outlined a differential non-targeted metabolite profiling in the process of serofluid dish fermentation using the method of hydrophilic interaction liquid chromatography column with ultra-high-performance liquid chromatography-quadruple time-of-flight mass spectrometry. Lactobacillus was the leading genus of bacteria, while Pichia and Issatchenkia were the dominant fungi. They all accumulated during fermentation. In total, 218 differential metabolites were identified, of which organic acids, amino acids, sugar and sugar alcohols, fatty acids, and esters comprised the majority. The constructed metabolic network showed that tricarboxylic acid cycle, urea cycle, sugar metabolism, amino acids metabolism, choline metabolism, and flavonoid metabolism were regulated by the fermentation. Furthermore, correlation analysis revealed that the leading fungi, Pichia and Issatchenkia, were linked to organic acids, amino acid and sugar metabolism, flavonoids, and several other flavor and functional components. Antibacterial tests indicated the antibacterial effect of serofluid soup against Salmonella and Staphylococcus.

    CONCLUSION: This work provides new insights into the complex microbial and metabolic networks during serofluid dish fermentation, and a theoretical basis for the optimization of its industrial production. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Bacteria/classification; Bacteria/genetics; Bacteria/isolation & purification*; Bacteria/metabolism
  11. Wayah SB, Philip K
    Front Microbiol, 2018;9:564.
    PMID: 29636737 DOI: 10.3389/fmicb.2018.00564
    Micrococcus luteus, Listeria monocytogenes, and Bacillus cereus are major food-borne pathogenic and spoilage bacteria. Emergence of antibiotic resistance and consumer demand for foods containing less of chemical preservatives led to a search for natural antimicrobials. A study aimed at characterizing, investigating the mechanism of action and regulation of biosynthesis and evaluating the biopreservative potential of pentocin from Lactobacillus pentosus CS2 was conducted. Pentocin MQ1 is a novel bacteriocin isolated from L. pentosus CS2 of coconut shake origin. The purification strategy involved adsorption-desorption of bacteriocin followed by RP-HPLC. It has a molecular weight of 2110.672 Da as determined by MALDI-TOF mass spectrometry and a molar extinction value of 298.82 M-1 cm-1. Pentocin MQ1 is not plasmid-borne and its biosynthesis is regulated by a quorum sensing mechanism. It has a broad spectrum of antibacterial activity, exhibited high chemical, thermal and pH stability but proved sensitive to proteolytic enzymes. It is potent against M. luteus, B. cereus, and L. monocytogenes at micromolar concentrations. It is quick-acting and exhibited a bactericidal mode of action against its targets. Target killing was mediated by pore formation. We report for the first time membrane permeabilization as a mechanism of action of the pentocin from the study against Gram-positive bacteria. Pentocin MQ1 is a cell wall-associated bacteriocin. Application of pentocin MQ1 improved the microbiological quality and extended the shelf life of fresh banana. This is the first report on the biopreservation of banana using bacteriocin. These findings place pentocin MQ1 as a potential biopreservative for further evaluation in food and medical applications.
    Matched MeSH terms: Gram-Positive Bacteria
  12. Watts MP, Spurr LP, Gan HM, Moreau JW
    Appl Microbiol Biotechnol, 2017 Jul;101(14):5889-5901.
    PMID: 28510801 DOI: 10.1007/s00253-017-8313-6
    Thiocyanate (SCN-) forms as a by-product of cyanidation during gold ore processing and can be degraded by a variety of microorganisms utilizing it as an energy, nitrogen, sulphur and/or carbon source. In complex consortia inhabiting bioreactor systems, a range of metabolisms are sustained by SCN- degradation; however, despite the addition or presence of labile carbon sources in most bioreactor designs to date, autotrophic bacteria have been found to dominate key metabolic functions. In this study, we cultured an autotrophic SCN--degrading consortium directly from gold mine tailings. In a batch-mode bioreactor experiment, this consortium degraded 22 mM SCN-, accumulating ammonium (NH4+) and sulphate (SO42-) as the major end products. The consortium consisted of a diverse microbial community comprised of chemolithoautotrophic members, and despite the absence of an added organic carbon substrate, a significant population of heterotrophic bacteria. The role of eukaryotes in bioreactor systems is often poorly understood; however, we found their 18S rRNA genes to be most closely related to sequences from bacterivorous Amoebozoa. Through combined chemical and phylogenetic analyses, we were able to infer roles for key microbial consortium members during SCN- biodegradation. This study provides a basis for understanding the behaviour of a SCN- degrading bioreactor under autotrophic conditions, an anticipated approach to remediating SCN- at contemporary gold mines.
    Matched MeSH terms: Bacteria/genetics; Bacteria/metabolism
  13. Wang W, Zhou F, Chang Y, Cui J, He D, Du J, et al.
    Bull Environ Contam Toxicol, 2020 Mar;104(3):380-385.
    PMID: 31932904 DOI: 10.1007/s00128-020-02786-0
    In this study, three soil amendments (inorganic, liming, or organic-inorganic materials) were used in a Cd-contaminated purple field soil to investigate their impacts on soil Cd availability, enzyme (urease, catalase, sucrase, and acid phosphatase) activities, microbial biomass (carbon/nitrogen) and type (bacteria, fungi, and actinomycetes) in mustard and corn trials. Results showed that soil amendments generally decreased soil exchangeable Cd, fungi and bacterial populations while increasing the activities of all the four soil enzymes tested, microbial biomass carbon and populations of actinomycetes (p  0.05) whereas stronger effects appeared in soil organic matter and available nutrients (nitrogen, phosphorous and potassium; p 
    Matched MeSH terms: Bacteria/growth & development
  14. Wan Omar WH, Mahyudin NA, Azmi NN, Mahmud Ab Rashid NK, Ismail R, Mohd Yusoff MHY, et al.
    Int J Food Microbiol, 2023 Jun 02;394:110184.
    PMID: 36996693 DOI: 10.1016/j.ijfoodmicro.2023.110184
    Staphylococcus aureus and Salmonella Typhimurium have a propensity to develop biofilms on food contact surfaces, such as stainless-steel, that persist despite rigorous cleaning and sanitizing procedures. Since both bacterial species pose a significant public health risk within the food chain, improved anti-biofilm measures are needed. This study examined the potential of clays as antibacterial and anti-biofilm agents against these two pathogens on appropriate contact surfaces. Natural soil was processed to yield leachates and suspensions of both untreated and treated clays. Soil particle size, pH, cation-exchange capacity, and metal ions were characterized to assess their importance in bacterial killing. Initial antibacterial screening was performed on nine distinct types of natural Malaysian soil using a disk diffusion assay. Untreated leachate from Kuala Gula and Kuala Kangsar clays were found to inhibit S. aureus (7.75 ± 0.25 mm) and Salmonella Typhimurium (11.85 ± 1.63 mm), respectively. The treated Kuala Gula suspension (50.0 and 25.0 %) reduced S. aureus biofilms by 4.4 and 4.2 log at 24 and 6 h, respectively, while treated Kuala Kangsar suspension (12.5 %) by a 4.16 log reduction at 6 h. Although less effective, the treated Kuala Gula leachate (50.0 %) was effective in removing Salmonella Typhimurium biofilm with a decrease of >3 log in 24 h. In contrast to Kuala Kangsar clays, the treated Kuala Gula clays contained a much higher soluble metal content, especially Al (301.05 ± 0.45 ppm), Fe (691.83 ± 4.80 ppm) and Mg (88.44 ± 0.47 ppm). Elimination of S. aureus biofilms correlated with the presence of Fe, Cu, Pb, Ni, Mn and Zn irrespective of the pH of the leachate. Our findings demonstrate that a treated suspension is the most effective for eradication of S. aureus biofilms with a potential as a sanitizer-tolerant, natural antibacterial against biofilms for applications in the food industry.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Bacteria
  15. Wan Nor Amilah WA, Masrah M, Hasmah A, Noor Izani NJ
    Trop Biomed, 2014 Dec;31(4):680-8.
    PMID: 25776593 MyJurnal
    Antimicrobial activities of plants have long been evaluated for their promising use as antimicrobial agent and in minimizing the unwanted resistance effects of microorganisms. The study was conducted to evaluate the antibacterial activity of Quercus infectoria gall crude extracts against multidrug resistant (MDR) bacteria in vitro. The screening test was determined by disc diffusion technique using sterile filter paper discs impregnated with 1 mg/ disc (50 mg/ml) aqueous and ethanol extracts of Q. infectoria galls tested on five selected MDR bacterial strains. The minimum inhibitory concentration (MIC) was determined using the twofold serial micro dilution technique at concentration ranging from 5.00 mg/ml to 0.01 mg/ml. The minimum bactericidal concentration (MBC) was determined by sub culturing the microtitre wells showing no turbidity on the agar plate to obtain the MBC value. Both extracts showed substantial inhibitory effects against methicillin resistant coagulase negative Staphylococcus (MRCoNS) and methicillin resistant Staphylococcus aureus (MRSA). A slightly reduced inhibitory zone diameter was observed with MDR Acinetobacter sp. while no inhibitory effect was displayed among the extended spectrum beta lactamases (ESBL) K. pneumoniae and ESBL E. coli isolates. A significant difference in the zone sizes between both extracts was only observed in MRSA (p < 0.05). The MIC values ranged from 0.08 mg/ml to 0.63 mg/ml for aqueous and ethanol extracts against MRSA, MRCoNS and MDR Acinetobacter sp. while their MBC to MIC ratio values were 2 and less. The Q. infectoria gall extracts have shown very promising in vitro antibacterial activities and may be considered as a potentially good source of antimicrobial agent especially against MDR Gram positive bacteria.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification; Anti-Bacterial Agents/pharmacology*; Bacteria/drug effects*; Gram-Negative Bacteria/drug effects*; Drug Resistance, Multiple, Bacterial*
  16. Wan Nawawi WM, Jamal P, Alam MZ
    Bioresour Technol, 2010 Dec;101(23):9241-7.
    PMID: 20674345 DOI: 10.1016/j.biortech.2010.07.024
    This paper introduces sludge palm oil (SPO) as a novel substrate for biosurfactant production by liquid state fermentation. Potential strains of microorganism were isolated from various hydrocarbon-based sources at palm oil mill and screened for biosurfactant production with the help of drop collapse method and surface tension activity. Out of 22 isolates of microorganism, the strain S02 showed the highest bacterial growth with a surface tension of 36.2 mN/m and was therefore, selected as a potential biosurfactant producing microorganism. Plackett-Burman experimental design was employed to determine the important nutritional requirement for biosurfactant production by the selected strain under controlled conditions. Six out of 11 factors of the production medium were found to significantly affect the biosurfactant production. K(2)HPO(4) had a direct proportional correlation with the biosurfactant production while sucrose, glucose, FeSO(4), MgSO(4), and NaNO(3) showed inversely proportional relationship with biosurfactant production in the selected experimental range.
    Matched MeSH terms: Bacteria/drug effects; Bacteria/isolation & purification; Bacteria/metabolism*
  17. Walter JK, Jin Z, Jornitz MW, Gorrschalk U
    Methods Biochem Anal, 2011;54:281-317.
    PMID: 21954783
    Matched MeSH terms: Bacteria/isolation & purification
  18. Vythilingam I, Jeffery J, Oothuman P, Abdul Razak AR, Sulaiman A
    PMID: 9322309
    A study was carried out to determine the distribution of cockroaches in two different housing areas with central sewerage or individual septic tanks in an urban area in Kuala Lumpur, Malaysia. Six species of cockroaches were present and of these Periplaneta americana and Periplaneta brunnea were found in greater abundance. Seventeen species of bacteria were isolated and of these Escherichia coli and Klebsiella p. pneumoniae were isolated in greatest numbers. Control measures carried out using lambda cyhalothrin showed that there was no significant difference between treated and control sites.
    Matched MeSH terms: Bacteria/isolation & purification*; Bacterial Infections/transmission*
  19. Vijayarathna S, Zakaria Z, Chen Y, Latha LY, Kanwar JR, Sasidharan S
    Molecules, 2012 Apr 26;17(5):4860-77.
    PMID: 22538489 DOI: 10.3390/molecules17054860
    The urgent need to treat multi-drug resistant pathogenic microorganisms in chronically infected patients has given rise to the development of new antimicrobials from natural resources. We have tested Elaeis guineensis Jacq (Arecaceae) methanol extract against a variety of bacterial, fungal and yeast strains associated with infections. Our studies have demonstrated that E. guineensis exhibits excellent antimicrobial activity in vitro and in vivo against the bacterial and fungal strains tested. A marked inhibitory effect of the E. guineensis extracts was observed against C. albicans whereby E. guineensis extract at ½, 1, or 2 times the MIC significantly inhibited C. albicans growth with a noticeable drop in optical density (OD) of the bacterial culture. This finding confirmed the anticandidal activity of the extract on C. albicans. Imaging using scanning (SEM) and transmission (TEM) electron microscopy was done to determine the major alterations in the microstructure of the extract-treated C. albicans. The main abnormalities noted via SEM and TEM studies were the alteration in morphology of the yeast cells. In vivo antimicrobial activity was studies in mice that had been inoculated with C. albicans and exhibited good anticandidal activity. The authors conclude that the extract may be used as a candidate for the development of anticandidal agent.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Negative Bacteria/growth & development; Gram-Positive Bacteria/drug effects; Gram-Positive Bacteria/growth & development
  20. Verasoundarapandian G, Wong CY, Shaharuddin NA, Gomez-Fuentes C, Zulkharnain A, Ahmad SA
    PMID: 33572432 DOI: 10.3390/ijerph18041671
    The globe is presently reliant on natural resources, fossil fuels, and crude oil to support the world's energy requirements. Human exploration for oil resources is always associated with irreversible effects. Primary sources of hydrocarbon pollution are instigated through oil exploration, extraction, and transportation in the Arctic region. To address the state of pollution, it is necessary to understand the mechanisms and processes of the bioremediation of hydrocarbons. The application of various microbial communities originated from the Arctic can provide a better interpretation on the mechanisms of specific microbes in the biodegradation process. The composition of oil and consequences of hydrocarbon pollutants to the various marine environments are also discussed in this paper. An overview of emerging trends on literature or research publications published in the last decade was compiled via bibliometric analysis in relation to the topic of interest, which is the microbial community present in the Arctic and Antarctic marine environments. This review also presents the hydrocarbon-degrading microbial community present in the Arctic, biodegradation metabolic pathways (enzymatic level), and capacity of microbial degradation from the perspective of metagenomics. The limitations are stated and recommendations are proposed for future research prospects on biodegradation of oil contaminants by microbial community at the low temperature regions of the Arctic.
    Matched MeSH terms: Bacteria/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links