Materials and Methods: Three different seed extracts were prepared through Soxhlet extraction method by using n-hexane, chloroform and methanol solvents. Acute toxicity test performed at dose of 400 mg/ kg, 800 mg/kg, 1600 mg/kg and 3200 mg/kg. Two different strengths of seed extracts (minimum therapeutic dose of 500 mg/kg and maximum therapeutic dose of 1000 mg/kg) were given to Wistar rats to measure anti-inflammatory activity through Carrageenan induced paw edema method.
Results: The standard drug diclofenac sodium was (percentage of inhibition of paw edema 29.68%) more effective as compared to test drug. When efficacy of all extracts compared with each other, n-hexane extract showed more anti-inflammatory effect (percentage inhibition of paw edema 22.21%) at maximum effective dose 1000 mg/kg.
Conclusion: Seed extracts of T. ammi showed anti-inflammatory activity by potentiating the neurotransmission of GABA and also by repression glutamate receptor.
AIM OF THE STUDY: The purpose of this study was to determine the anti-inflammatory activity of the ethanol extract of E. maculata resin exudate, its methylene chloride and n-butanol fractions, as well as the isolated compounds.
MATERIALS AND METHODS: the ethanol extract was partitioned by methylene chloride, and n-butanol saturated with water. The fractions were chromatographed to isolate pure compounds. In-vivo anti-inflammatory activity of the ethanol extract, the fractions at a dose of 200 mg/kg, and the isolated compounds (20 mg/kg) was estimated using carrageenan-induced rat paws edema method against indomethacin (20 mg/kg). The activity was supported by histopathological and biochemical parameters.
RESULTS: Three isolated compounds were identified as aromadendrin (C1), 7-O-methyl aromadendrin (C2), and naringenin (C3). Our findings demonstrated that the tested fractions significantly reduced the paw edema starting from the 3rd to the 5th hour as compared to the positive control, compounds C2 and C3 showed the greatest significant reduction in paw edema. The ethanol extract, fractions, C2, and C3 demonstrated an anti-inflammatory potential through reducing the levels of TNF-α, IL-6, and PGE2, as well as COX-2 protein expression compared to the negative control. These results were supported by molecular docking, which revealed that the isolated compounds had high affinity to target COX-1 and COX-2 active sites with docking scores ranging from -7.3 to -9.6 kcal mol-1 when compared to ibubrofen (-7.8 and -7.4 kcal mol-1, respectively). Molecular dynamics simulations were also performed and confirmed the docking results.
CONCLUSION: The results supported the traditional anti-inflammatory potency of E. maculata Hook, and the biochemical mechanisms underlying this activity were highlighted, opening up new paths for the development of potent herbal anti-inflammatory medicine. Finally, our findings revealed that E. maculata resin constituents could be considered as promising anti-inflammatory drug candidates.