Displaying publications 61 - 80 of 80 in total

Abstract:
Sort:
  1. Harun NH, Misron N, Mohd Sidek R, Aris I, Wakiwaka H, Tashiro K
    Sensors (Basel), 2014;14(11):21923-40.
    PMID: 25414970 DOI: 10.3390/s141121923
    As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.
    Matched MeSH terms: Dielectric Spectroscopy/instrumentation*
  2. Akbarzadeh S, Arof AK, Ramesh S, Khanmirzaei MH, Nor RM
    PLoS One, 2014;9(3):e92241.
    PMID: 24658582 DOI: 10.1371/journal.pone.0092241
    Electrochemical impedance spectroscopy (EIS) is a key method for the characterizing the ionic and electronic conductivity of materials. One of the requirements of this technique is a model to forecast conductivity in preliminary experiments. The aim of this paper is to examine the prediction of conductivity by neuro-fuzzy inference with basic experimental factors such as temperature, frequency, thickness of the film and weight percentage of salt. In order to provide the optimal sets of fuzzy logic rule bases, the grid partition fuzzy inference method was applied. The validation of the model was tested by four random data sets. To evaluate the validity of the model, eleven statistical features were examined. Statistical analysis of the results clearly shows that modeling with an adaptive neuro-fuzzy is powerful enough for the prediction of conductivity.
    Matched MeSH terms: Dielectric Spectroscopy*
  3. Taufiq-Yap, Y. H., Ong, P. S., Zainal, Z.
    MyJurnal
    In this work, 10 mol% yttrium-doped ceria powders, Ce0.9Y0.1O1.95, were synthesised using a new mechanical technique, mechanochemical reaction, in which both impact action and shearing forces were applied for efficient fine grinding, subsequently leading to higher homogeneity of the resultant powders. Ce0.9Y0.1O1.95 prepared using this new technique was systematically compared with a sample of the same prepared using conventional solid-state methodology. X-ray diffraction analysis showed all prepared samples were single phase with a cubic fluorite structure. Generally, Y2O3-doped CeO2 electrolytes prepared by mechanochemical reactions were stable at a lower temperature (1100 °C) compared with a sample of the same synthesised using the conventional solid-state method. Characterisations using differential thermal analysis (DTA) and thermogravimetric analysis (TGA) showed no thermal changes and phase transitions, indicating all materials were thermally stable. The electrical properties of the samples investigated by AC impedance spectroscopy in the temperature range 200–800 ˚C are presented and discussed. Scanning electron microscopy (SEM) was used to study the morphology of the materials. Fine-grained powders with uniform grain-size distribution were obtained from the mechanochemical reaction.
    Matched MeSH terms: Dielectric Spectroscopy
  4. Ho M, Khiew P, Isa D, Tan T, Chiu W, Chia C, et al.
    Sains Malaysiana, 2014;43:885-894.
    In this study, a symmetric supercapacitor has been fabricated by adopting the nanostructured iron oxide (Fe304)-activated carbon (Ac) composite as the core electrode materials. The composite electrodes were prepared via a facile mechanical mixing process and PTFE polymeric solution has been used as the electrode material binder. Structural analysis of the nanocomposite electrodes were characterized by scanning electron microscopy ( sEm) and Brunauer-Emmett-Teller (BET) analysis. The electrochemical performances of the prepared supercapacitor were studied using cyclic voltammetry (cv) and electrochemical impedance spectroscopy (Eis) in 1.0 M Na2S03 and 1.0 M Na2SO4 aqueous solutions, respectively. The experimental results showed that the highest specific capacitance of 43 FIg is achieved with a fairly low Fe304 nanomaterials loading (4 wt. %) in 1 M Na2S03. It is clear that the low concentration of nanostructured Fe304 has improved the capacitive performance of the composite via pseudocapacitance charge storage mechanism as well as the enhancement on the specific surface areas of the electrode. However, further increasing of the Fe304 content in the electrode is found to distort the capacitive performance and deteriorate the specific surface area of the electrode, mainly due to the aggregation of the Fe304 particles within the composite. Additionally, the cv results showed that the Fe3041Ac nanocomposite electrode in Na2S03 electrolyte exhibits a better charge storage performance if compared with Na2SO4 solution. It is believed that Fe304 nanoparticles can provide favourable surface adsorption sites for sulphite (S032-) anions which act as catalysts for subsequent redox and intercalation reactions.
    Matched MeSH terms: Dielectric Spectroscopy
  5. Siti Khatijah Deraman, Nor Sabirin Mohamed, Ri Hanum Yahaya Subban
    Sains Malaysiana, 2014;43:877-883.
    This paper is focussed on conductivity and dielectric properties of Poly (vinyl) chloride (Pvc)- ammonium triflate (NH4CF3SO3) - butyltrimethyl ammonium bis (trifluoromethyl sulfonyl) imide (Bu3MeNTf2N) ionic liquid, electrolyte system. The electrolyte is prepared by solution cast technique. In this work, the sample containing 30 wt. % NH4CF3SO3 exhibits the highest room temperature conductivity of 2.50 x 10-7 S cm' . Ionic liquid is added in various quantities to the 70 wt. % Pvc-30 wt. % NH4CF3SO3 composition in order to enhance the conductivity of the sample. The highest conductivity at room temperature is obtained for the sample containing 15 wt. % Bu3MeNTf2N with a value of 1.56 x 10 -4 S cm' . The effects of ionic liquid addition on the frequency dependent dielectric properties of PVC based electrolytes is investigated by electrochemical impedance spectroscopy (Eis) at room temperature. The values of dielectric constant were found to increase with increasing conductivity of the samples. Analysis of the ac conductivity data showed the electrolytes to be of the non-Debye type.
    Matched MeSH terms: Dielectric Spectroscopy
  6. Al-Amiery AA, Kadhum AAH, Mohamad AB, Musa AY, Li CJ
    Materials (Basel), 2013 Nov 27;6(12):5466-5477.
    PMID: 28788402 DOI: 10.3390/ma6125466
    A new curcumin derivative, i.e., (1E,4Z,6E)-5-chloro-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one (chlorocurcumin), was prepared starting with the natural compound curcumin. The newly synthesized compound was characterized by elemental analysis and spectral studies (IR, ¹H-NMR and 13C-NMR). The corrosion inhibition of mild steel in 1 M HCl by chlorocurcumin has been studied using potentiodynamic polarization (PDP) measurements and electrochemical impedance spectroscopy (EIS). The inhibition efficiency increases with the concentration of the inhibitor but decreases with increases in temperature. The potentiodynamic polarization reveals that chlorocurcumin is a mixed-type inhibitor. The kinetic parameters for mild steel corrosion were determined and discussed.
    Matched MeSH terms: Dielectric Spectroscopy
  7. Junaedi S, Al-Amiery AA, Kadihum A, Kadhum AA, Mohamad AB
    Int J Mol Sci, 2013 Jun 04;14(6):11915-28.
    PMID: 23736696 DOI: 10.3390/ijms140611915
    1,5-Dimethyl-4-((2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-one (DMPO) was synthesized to be evaluated as a corrosion inhibitor. The corrosion inhibitory effects of DMPO on mild steel in 1.0 M HCl were investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, open circuit potential (OCP) and electrochemical frequency modulation (EFM). The results showed that DMPO inhibited mild steel corrosion in acid solution and indicated that the inhibition efficiency increased with increasing inhibitor concentration. Changes in the impedance parameters suggested an adsorption of DMPO onto the mild steel surface, leading to the formation of protective films. The novel synthesized corrosion inhibitor was characterized using UV-Vis, FT-IR and NMR spectral analyses. Electronic properties such as highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy (EHOMO and ELUMO, respectively) and dipole moment (μ) were calculated and discussed. The results showed that the corrosion inhibition efficiency increased with an increase in the EHOMO values but with a decrease in the ELUMO value.
    Matched MeSH terms: Dielectric Spectroscopy
  8. Al-Amiery AA, Kadhum AAH, Mohamad AB, Junaedi S
    Materials (Basel), 2013 Apr 02;6(4):1420-1431.
    PMID: 28809218 DOI: 10.3390/ma6041420
    2-(1-methyl-4-((E)-(2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-ylidene)-hydrazineecarbothioamide (HCB) was synthesized as a corrosion inhibitor from the reaction of 4-aminoantipyrine, thiosemicarbazide and 2-methylbenzaldehyde. The corrosion inhibitory effects of HCB on mild steel in 1.0 M HCl were investigated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The results showed that HCB inhibited mild steel corrosion in acidic solution and inhibition efficiency increased with an increase in the concentration of the inhibitor. The inhibition efficiency was up to 96.5% at 5.0 mM. Changes in the impedance parameters suggested that HCB adsorbed on the surface of mild steel, leading to the formation of a protective film. The novel corrosion inhibitor synthesized in the present study was characterized using Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectral data.
    Matched MeSH terms: Dielectric Spectroscopy
  9. Farma R, Deraman M, Awitdrus A, Talib IA, Taer E, Basri NH, et al.
    Bioresour Technol, 2013 Mar;132:254-61.
    PMID: 23411456 DOI: 10.1016/j.biortech.2013.01.044
    Fibres from oil palm empty fruit bunches, generated in large quantities by palm oil mills, were processed into self-adhesive carbon grains (SACG). Untreated and KOH-treated SACG were converted without binder into green monolith prior to N2-carbonisation and CO2-activation to produce highly porous binderless carbon monolith electrodes for supercapacitor applications. Characterisation of the pore structure of the electrodes revealed a significant advantage from combining the chemical and physical activation processes. The electrochemical measurements of the supercapacitor cells fabricated using these electrodes, using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge techniques consistently found that approximately 3h of activation time, achieved via a multi-step heating profile, produced electrodes with a high surface area of 1704m(2)g(-1) and a total pore volume of 0.889cm(3)g(-1), corresponding to high values for the specific capacitance, specific energy and specific power of 150Fg(-1), 4.297Whkg(-1) and 173Wkg(-1), respectively.
    Matched MeSH terms: Dielectric Spectroscopy
  10. Zainal-Mokhtar K, Mohamad-Saleh J
    Sensors (Basel), 2013;13(9):11385-406.
    PMID: 24064598 DOI: 10.3390/s130911385
    This paper presents novel research on the development of a generic intelligent oil fraction sensor based on Electrical Capacitance Tomography (ECT) data. An artificial Neural Network (ANN) has been employed as the intelligent system to sense and estimate oil fractions from the cross-sections of two-component flows comprising oil and gas in a pipeline. Previous works only focused on estimating the oil fraction in the pipeline based on fixed ECT sensor parameters. With fixed ECT design sensors, an oil fraction neural sensor can be trained to deal with ECT data based on the particular sensor parameters, hence the neural sensor is not generic. This work focuses on development of a generic neural oil fraction sensor based on training a Multi-Layer Perceptron (MLP) ANN with various ECT sensor parameters. On average, the proposed oil fraction neural sensor has shown to be able to give a mean absolute error of 3.05% for various ECT sensor sizes.
    Matched MeSH terms: Dielectric Spectroscopy/instrumentation*; Dielectric Spectroscopy/methods
  11. Basirun WJ, Sookhakian M, Baradaran S, Mahmoudian MR, Ebadi M
    Nanoscale Res Lett, 2013;8(1):397.
    PMID: 24059434 DOI: 10.1186/1556-276X-8-397
    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.
    Matched MeSH terms: Dielectric Spectroscopy
  12. Tan, Y.P., Wong, Y.C.
    MyJurnal
    Bismuth chromium solid solutions, with a general formula Bi6-xCr2Oδ, where -1 ≤ x ≤ 2, were successfully synthesized via the conventional solid state method. The phases of the synthesized samples were determined by X-ray diffraction (XRD) analysis. The properties of single-phase compounds were characterized by using differential thermal analysis (DTA), thermal gravimetric analysis (TGA), AC impedance spectroscopy, and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The occurrence of phase transitions was confirmed by DTA and TGA, where a thermal event was observed by DTA at around 800oC. In addition, TGA studies also showed that there was a weight loss at around 800oC. Elemental analysis of Bi6Cr2O15 and its solid solutions by ICP-AES showed a good agreement between the expected value and the experimental value on the compositions, with no evidence of any systematic deviation from stoichiometric. Electrical properties of Bi6Cr2O15 and its solid solutions were investigated by using AC impedance spectroscopy from 300oC to 650oC. Ionic conductivity increased with the increasing temperature and bismuth content, and the best ionic conductivity was observed for Bi7Cr2O16.5. The activation energy (Ea) of Bi6Cr2O15 and its solid solutions were in the range of 1.22-1.32 eV.
    Matched MeSH terms: Dielectric Spectroscopy
  13. Ramesh, S., Shanti, R., Chin, S.F.
    ASM Science Journal, 2011;5(1):19-26.
    MyJurnal
    In this present study, a series of polymer electrolyte thin films were synthesized by incorporating different ratios of lithium triflate (LiCF3SO3) in a low molecular weight polyvinyl chloride (PVC) matrix by the solution casting technique. The incorporation of LiCF3SO3 suppressed the high degree of crystallinity in PVC enabling the system to possess an appreciable ionic conductivity. The ionic conductivity of the samples, with different LiCF3SO3 content, was determined by the aid of ac impedance spectroscopy. The highest ionic conductivity of 4.04  10–9 S cm–1 was identified for the composition of PVC: LiCF3SO3 (75:25). Further understanding of the ionic conductivity mechanism was based on temperature-dependent conductivity data which obeyed Arrhenius theory, indicating that the ionic conductivity enhancement was thermally assisted. The possible dipole-dipole interaction between the chemical constituents was confirmed with changes in cage peak, analysed using Fourier transform infrared spectroscopy.
    Matched MeSH terms: Dielectric Spectroscopy
  14. Rudhziah S, Muda N, Ibrahim S, Rahman A, Mohamed N
    Sains Malaysiana, 2011;40:1179-1186.
    In the present work, polymer electrolytes of poly(vinylidene fluoride co-hexafluoroproplyne) (PVDF-HFP) and PVDF-HFP/poly(ethyl methacrylate) (PVDF-HFP/PEMA) blend complexed with different concentrations of ammonium triflate (NH4CF3SO3) were prepared and characterized. The structural and thermal properties of the electrolytes were studied by XRD and DSC while the electrical properties were investigated by impedance spectroscopy. Ionic transference number measurements were done by D.C polarization technique. The results of these study showed that the PVDF-HFP/PEMA based electrolytes exhibit higher ionic conductivity as compared to PVDF-HFP based electrolytes. This could be attributed to the higher degree of amorphicity in the PVDF-HFP/PEMA based electrolytes. The results of ionic transference number measurements showed that the charge transport in these electrolytes was mainly due to ions and only negligible contribution comes from electrons.
    Matched MeSH terms: Dielectric Spectroscopy
  15. Md. Isa K, Othman L, Osman Z
    Sains Malaysiana, 2011;40:1179-1186.
    Polymer electrolytes based on polyacrylonitrile (PAN) containing inorganic salts; lithium triflate (LiCF3SO3) and sodium triflate (NaCF3SO3) and ethylene carbonate (EC) as plasticizer were prepared using solvent casting technique. In this study, five systems of plasticized and unplasticized polymer electrolyte films i.e. PAN-EC, PAN-LiCF3SO3, PAN-NaCF3SO3 PAN-EC-LiCF3SO3 and PAN-EC-NaCF3SO3 systems have been prepared. The structural and morphological properties of the films were studied using infrared spectroscopy and scanning electron microscopy (SEM) while the conductivity study was done by using impedance spectroscopy. The infrared results revealed that interaction had taken place between the nitrogen atoms of PAN and Li+ and Na+ ions from the salts. SEM micrographs showed that the plasticized film, PAN-EC-NaCF3SO3 has bigger pores than PAN-EC-LiCF3SO3 film resulting in the film containing NaCF3SO3 salt being more conductive. On addition of salts and plasticizer, the conductivity of pure PAN increases to three orders of magnitude. The plasticized film containing NaCF3SO3 salt has a higher conductivity compared to that containing LiCF3SO3 salt. This result showed that the interaction between Li+-ion and the nitrogen atom of PAN was stronger than that of Na+-ion. The conductivity-temperature dependence of the highest conducting film from each system follows Arrhenius equation in the temperature range of 303 to 353 K. The conductivity-pressure study in the range of 0.01 - 0.09 MPa showed that the conductivity decreased when pressure was increased. This can be explained in term of free volume model.
    Matched MeSH terms: Dielectric Spectroscopy
  16. Amir S, Othman R, Subban R, Mohamed N
    Sains Malaysiana, 2011;40:1179-1186.
    Solid polymer electrolytes comprised of various weight percent ratios of poly(ethyl methacrylate) (PEMA) and lithium perchlorate (LiClO4) salt were prepared via solution casting technique using N,N-dimethylformamide (DMF) as the solvent. The conductivity values of the electrolytes were determined via impedance spectroscopy. The conductivity of the PEMA-LiClO4 electrolytes increased with increasing salt concentration and the highest conductivity obtained was in the order of 10-6 S cm-1 at salt concentration of 20 wt%. The conductivity decreased for higher salt concentration. In order to understand the conductivity behavior, XRD and dielectric studies were done. The results showed that the conductivity was influenced by the fraction of amorphous region and number of charge carriers in the system. The transference number measurement was also performed on the highest conducting electrolyte systems. The result of the measurement indicated that the systems were ionic conductors.
    Matched MeSH terms: Dielectric Spectroscopy
  17. Ajina, Ahmida, Isa, Dino
    MyJurnal
    Two different supercapacitor configurations were fabricated using coconut shell-based activated
    carbon. Results for cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge-discharge measurements are presented and discussed for both configurations. The results show that coconut shell-based activated carbon is viable economical alternative electrode material to expensive activated carbon (AC) and carbon nano tubes (CNT). Meanwhile, the calculations from the charge-discharge characteristics show that the disk-shape supercapacitor, with 10% polyvinylidene fluoride binder (PVdF), has the highest specific capacitance (70F/g). Thus, the testing shows that the flat-laminated super-capacitor with 10% binder (PVdF) has the lowest (10.1ohms). Sources of high equivalent series resistance (ESR) are proposed and methods of reducing it are also discussed in this paper.
    Matched MeSH terms: Dielectric Spectroscopy
  18. Osman, Z., Othman, L., Md Isa, K.B., Ahmad, A., Kamarulzaman, N.
    ASM Science Journal, 2010;4(1):55-61.
    MyJurnal
    In this study polymer electrolytes composed of poly(methyl methacrylate) (PMMA) as a host polymer and ethylene carbonate (EC) as a plasticizer complexed with different lithium salts, i.e. lithium tetrafluoroborate (LiBF4) and lithium triflate (LiCF3SO3) were prepared by the solution casting technique. The conductivities of the films were characterized by impedance spectroscopy. At room temperature, the highest conductivities were 4.07 × 10–7S cm–1 and 3.40 × 10–5 S cm–1 achieved, respectively from the films containing 30 wt% LiBF4 in the PMMA-EC-LiBF4 system and 35 wt% LiCF3SO3 in the PMMA-EC-LiCF3SO3 system. The conductivity-temperature dependence of the films seemed to obey the Arrhenius equation in which the ion transport in these materials was thermally assisted. Scanning electron microscopy analysis showed that the surface of PMMA-EC-LiCF3SO3 film was smooth and homogeneous, hence lithium ions could traverse through the PMMA-EC-LiCF3SO3 film more easily compared to the PMMA-EC-LiBF4 film. X-Ray diffraction studies revealed that complexation had occurred and the complexes formed were amorphous.
    Matched MeSH terms: Dielectric Spectroscopy
  19. Fathul Karim Sahrani, Zaharah Ibrahim, Adibah Yahya, Madzlan Aziz
    Sulphate-reducing bacteria (SRB), implicated in microbiologically influenced corrosion were isolated from the deep subsurface at the vicinity of Pasir Gudang, Johor, Malaysia. Electrochemical impedance spectroscopic (EIS) study was carried out to determine the polarization resistance in various types of culturing solutions, with SRB1, SRB2, combination of SRB1 and SRB2 and without SRBs inoculated (control). EIS results showed that in the presence of SRB1, SRB2 and mixed culture SRB1 and SRB2, polarisation resistance values were 7170, 6370 and 7190 ohms respectively compared to that of control, 92400 ohm. X-ray analysis (EDS) of the specimens indicated high sulphur content in the medium containing SRBs. Localized corrosion was observed on the metal surface which was associated with the SRB activity.
    Matched MeSH terms: Dielectric Spectroscopy
  20. Sreekantan, Srimala, Ahmad Fauzi Mohd Noor, Zainal Arifin Ahmad, Radzali Othman, West, Anthony, Sinclair, Derek
    MyJurnal
    Barium strontium titanate (Ba0.7Sr0.3TiO3) powder was processed at temperature 80 o C by reacting titania sol in aqueous solutions that contained BaCl2, SrCl2 and NaOH at atmospheric pressure.
    The structural characteristic of the powder and sintered pellet were studied using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) whereas the electrical characteristic was determined via Impedance Spectroscopy (IS) and LCR meter. The synthesized powder was found to have a tetragonal phase after heating at 1300 o C. XRD pattern also showed the presence of secondary phase BaTi2O5 (BT2). The SEM results shows the fine grain size was in the range of 0.2 Pm to 0.4 Pm whereas the large ones are approximately 0.8 Pm to 1.2 Pm The ac response of sample sintered at 1300 o C indicated that three electrically different regions. Element 1 can be assigned as a ferroelectric grain boundary region and it is actually BT2, element 2 as a ferroelectric bulk region and the third element is a conductive core which has a low resistance (200 :) and capacitance value.
    Matched MeSH terms: Dielectric Spectroscopy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links