Displaying publications 61 - 80 of 84 in total

Abstract:
Sort:
  1. Tanimu MI, Mohd Ghazi TI, Harun MR, Idris A
    Appl Microbiol Biotechnol, 2015 May;99(10):4509-20.
    PMID: 25761621 DOI: 10.1007/s00253-015-6486-4
    Foaming problem which occurred occasionally during food waste (FW) anaerobic digestion (AD) was investigated with the Malaysian FW by stepwise increase in organic loading (OL) from 0.5 to 7.5 g VS/L. The FW feedstock with carbon to nitrogen (C/N) ratio of 17 was upgraded to C/N ratio of 26 and 30 by mixing with other wastes. The digestion which was carried out at 37 °C in 1-L batch reactors showed that foam formation initiated at OL of 1.5 g VS/L and was further enhanced as OL of feedstock was increased. The digestion foaming reached its maximum at OL of 5.5 g VS/L and did not increase further even when OL was increased to 7.5 g VS/Ld. Increase in the C/N ratio of feedstock significantly enhanced the microbial degradation activity, leading to better removal of foam causing intermediates and reduced foaming in the reactor by up to 60%.
    Matched MeSH terms: Digestion
  2. Zarkasi KZ, Taylor RS, Abell GC, Tamplin ML, Glencross BD, Bowman JP
    Microb Ecol, 2016 Apr;71(3):589-603.
    PMID: 26780099 DOI: 10.1007/s00248-015-0728-y
    To better understand salmon GI tract microbial community dynamics in relation to diet, a feeding trial was performed utilising diets with different proportions of fish meal, protein, lipid and energy levels. Salmon gut dysfunction has been associated with the occurrence of casts, or an empty hind gut. A categorical scoring system describing expressed digesta consistency was evaluated in relation to GI tract community structure. Faster growing fish generally had lower faecal scores while the diet cohorts showed minor differences in faecal score though the overall lowest scores were observed with a low protein, low energy diet. The GI tract bacterial communities were highly dynamic over time with the low protein, low energy diet associated with the most divergent community structure. This included transiently increased abundance of anaerobic (Bacteroidia and Clostridia) during January and February, and facultatively anaerobic (lactic acid bacteria) taxa from February onwards. The digesta had enriched populations of these groups in relation to faecal cast samples. The majority of samples (60-86 %) across all diet cohorts were eventually dominated by the genus Aliivibrio. The results suggest that an interaction between time of sampling and diet is most strongly related to community structure. Digesta categorization revealed microbes involved with metabolism of diet components change progressively over time and could be a useful system to assess feeding responses.
    Matched MeSH terms: Digestion
  3. Nooraee SE, Alimon AR, Ho YW, Abdullah N
    Lett Appl Microbiol, 2010 Jun 1;50(6):578-84.
    PMID: 20406377 DOI: 10.1111/j.1472-765X.2010.02836.x
    The aim of this study was to find suitable yeast isolates as potential microbial feed additives for ruminants.
    Matched MeSH terms: Digestion
  4. Ibrahim YS, Tuan Anuar S, Azmi AA, Wan Mohd Khalik WMA, Lehata S, Hamzah SR, et al.
    JGH Open, 2021 Jan;5(1):116-121.
    PMID: 33490620 DOI: 10.1002/jgh3.12457
    Background and Aim: While dietary exposure to microplastics is increasingly recognized, it is unknown if ingested plastics remain within the digestive tract. We aimed to examine human colectomy specimens for microplastics and to report the characteristics as well as polymer composition of the particles.

    Methods: Colectomy samples were obtained from 11 adults (mean age 45.7, six males) who were residents of Northeastern Peninsular Malaysia. Microplastics were identified following chemical digestion of specimens and subsequent filtration. The samples were then examined for characteristics (abundance, length, shape, and color) and composition of three common polymer types using stereo- and Fourier Transform InfraRed (FTIR) microscopes.

    Results: Microplastics were detected in all 11 specimens with an average of 331 particles/individual specimen or 28.1 ± 15.4 particles/g tissue. Filaments or fibers accounted for 96.1% of particles, and 73.1% of all filaments were transparent. Out of 40 random filaments from 10 specimens (one had indeterminate spectra patterns), 90% were polycarbonate, 50% were polyamide, and 40% were polypropylene.

    Conclusion: Our study suggests that microplastics are ubiquitously present in the human colon.

    Matched MeSH terms: Digestion
  5. Akbar, I., Jaswir, I., Jamal, P.
    MyJurnal
    Gelatine obtained from fish skin has become a potential source of preparing nanoparticles and
    encapsulation of bioactive compounds. Within these fish skin, gelatine nanoparticles show
    potent benefits for application in pharmaceutical and cosmetic industry. The encapsulated
    bioactive ingredients within nanoparticles have improved bioavailability, delivery properties,
    and solubility of the nutraceuticals within the human body and blood stream. Many of such
    bioactive peptides (biopeptides) are potent antioxidants; and as oxidative stress is the main
    cause of the onset of various chronic diseases, encapsulation of antioxidant biopeptides within
    fish gelatine nanoparticles could be a potential remedy to prevent or delay the onset of such
    diseases and for better health prospects. The purpose of the present work was to prepare a
    simple, safe, and reproducible novel food delivery nanoparticle system encapsulating a desirable antioxidant biopeptide. An optimisation study was conducted to produce a desirable size
    of gelatine nanoparticles which showed a higher encapsulation efficiency of an antioxidant
    biopeptide. Sunflower biopeptide was chosen as the antioxidant biopeptide, as the activity of
    this protein hydrolysate is quite high at DPPH of 89% and FRAP assay of 968 µm/L. Tilapia
    fish was used as gelatine source at an average yield of the process at 10% wt/wt. Effects of
    parameters such as pH, biopeptide concentration, and cross-linking agent ‘glutaraldehyde’ on
    the size, stability, and encapsulation efficiency on the nanoparticles were studied. The average
    diameter of the biopeptide loaded gelatine nanoparticle was between 228.3 and 1,305 nm.
    Encapsulation efficiency was 76% at an optimal pH of 2, glutaraldehyde concentration of 2
    mL, and biopeptide concentration of 0.1 mg/mL exhibited DPPH at 92% and FRAP assay of
    978 µm/L. To understand the absorption of sunflower biopeptide in stomach, blood stream,
    and biopeptide release of the gelatine nanoparticles, biopeptide loaded gelatine nanoparticles
    were subjected to simulated gastrointestinal conditions mimicking human stomach and
    intestine; and showed peptide release of 0.1464 and 0.277 mg/mL upon pepsin and pancreatin
    digestion, respectively.
    Matched MeSH terms: Digestion
  6. Abdul Ghani ZD, Husin JM, Rashid AH, Shaari K, Chik Z
    J Ethnopharmacol, 2016 Oct 7.
    PMID: 27725236 DOI: 10.1016/j.jep.2016.10.022
    Piper Betle L. (PB) belongs to the Piperaceae family. The presence of a fairly large quantity of diastase in the betel leaf is deemed to play an important role in starch digestion and calls for the study of weight loss activities and metabolite profile from PB leaf extracts using metabolomics approach to be performed. PB dried leaves were extracted with 70% ethanol and the extracts were subjected to five groups of rats fed with high fat (HF) and standard diet (SD). They were then fed with the extracts in two doses and compared with a negative control group given water only according to the study protocol. The body weights and food intakes were monitored every week. At the end of the study, blood serum of the experimental animal was analysed to determine the biochemical and metabolite changes. PB treated group demonstrated inhibition of body weight gain without showing an effect on the food intake. In serum bioassay, the PB treated group (HF/PB (100mg/kg and 500mg/kg) showed an increased in glucose and cholesterol levels compared to the Standard Diet (SD/WTR) group, a decrease in LDL level and increase in HDL level when compared with High Fat Diet (HF/WTR) group. For metabolite analysis, two separation models were made to determine the metabolite changes via group activities. The best separation of PCA serum in Model 1 and 2 was achieved in principle component 1 and principle component 2. SUS-Plot model showed that HF group was characterized by high-level of glucose, glycine and alanine. Increase in the β-hydroxybutyrate level similar with SD group animals was evident in the HF/PB(500mg/kg) group. This finding suggested that the administration of 500mg/kg PB extracts leads to increase in oxidation process in the body thus maintaining the body weight and without giving an effect on the appetite even though HF was continuously consumed by the animals until the end of the studies and also a reduction in food intake, thus maintaining their body weight although they were continuously consumed HF.
    Matched MeSH terms: Digestion
  7. Tan PY, Tan TB, Chang HW, Tey BT, Chan ES, Lai OM, et al.
    J Agric Food Chem, 2017 Dec 06;65(48):10651-10657.
    PMID: 29124932 DOI: 10.1021/acs.jafc.7b03521
    Considering the health benefits of tocotrienols, continuous works have been done on the encapsulation and delivery of these compounds. In this study, we encapsulated tocotrienols in chitosan-alginate microcapsules and evaluated their release profile. Generally, these tocotrienols microcapsules (TM) displayed high thermal stability. When subjected to pH adjustments (pH 1-9), we observed that the release of tocotrienols was the highest (33.78 ± 0.18%) under basic conditions. The TM were also unstable against the effect of ionic strength, with a high release (70.73 ± 0.04%) of tocotrienols even at a low sodium chloride concentration (50 mM). As for the individual isomers, δ-tocotrienol was the most sensitive to pH and ionic strength. In contrast, β-/γ-tocotrienols were the most ionic-stable isomers but more responsive toward thermal treatment. Simulated gastrointestinal model showed that the chitosan-alginate-based TM could be used to retain tocotrienols in the gastric and subsequently release them in the intestines for possible absorption.
    Matched MeSH terms: Digestion
  8. Yusuf AL, Adeyemi KD, Samsudin AA, Goh YM, Alimon AR, Sazili AQ
    BMC Vet Res, 2017 Nov 24;13(1):349.
    PMID: 29178910 DOI: 10.1186/s12917-017-1223-0
    BACKGROUND: The nature and amount of dietary medicinal plants are known to influence rumen fermentation and nutrient digestibility in ruminants. Nonetheless, changes in nutrient digestibility and rumen metabolism in response to dietary Andrographis paniculata (AP) in goats are unknown. This study examined the effects of dietary supplementation of leaves and whole plant of AP on nutrient digestibility, rumen fermentation, fatty acids and rumen microbial population in goats. Twenty-four Boer crossbred bucks (4 months old; average body weight of 20.18 ± 0.19 kg) were randomly assigned to three dietary groups of eight goats each. The dietary treatments included a control diet (Basal diet without additive), basal diet +1.5% (w/w) Andrographis paniculata leaf powder (APL) and basal diet +1.5% (w/w) Andrographis paniculata whole plant powder (APW). The trial lasted 100 d following 14 d of adjustment.

    RESULTS: The rumen pH and concentration of propionate were greater (P 

    Matched MeSH terms: Digestion
  9. Zailan MZ, Salleh SM, Abdullah S, Yaakub H
    Trop Anim Health Prod, 2023 Nov 10;55(6):402.
    PMID: 37950132 DOI: 10.1007/s11250-023-03817-8
    This study aimed to evaluate the effect of feeding P. pulmonarius-treated empty fruit bunch (FTEFB) on the nutrient intakes, digestibility, milk yield and milk profiles of lactating Saanen goats. A total of nine lactating Saanen goats were used in an incomplete cross-over experimental design. The balanced dietary treatments contain different replacement levels of Napier grass with FTEFB at 0% (0-FT), 25% (25-FT) and 50% (50-FT). The FTEFB contained crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid detergent lignin (ADL) at 4.10, 94.6, 70.8 and 19.4% DM, respectively. The replacement of FTEFB in 25-FT did not alter dry matter, NDF, hemicellulose, ADL, ether extract and gross energy intakes when compared to the control fed group (0-FT). The ADF and cellulose intake was higher in 25-FT than in the others (P  0.05). There are no differences in milk fatty profiles between dietary treatments (P > 0.05), except for OCFA. Goat fed with 25-FT had the lowest OCFA (P 
    Matched MeSH terms: Digestion
  10. Ali RB, Atangwho IJ, Kuar N, Ahmad M, Mahmud R, Asmawi MZ
    PMID: 23425283 DOI: 10.1186/1472-6882-13-39
    One vital therapeutic approach for the treatment of type 2 diabetes mellitus is the use of agents that can decrease postprandial hyperglycaemia by inhibiting carbohydrate digesting enzymes. The present study investigated the effects of bioassay-guided extract and fractions of the dried fruit pericarp of Phaleria macrocarpa, a traditional anti-diabetic plant, on α-glucosidase and α-amylase, in a bid to understand their anti-diabetic mechanism, as well as their possible attenuation action on postprandial glucose increase.
    Matched MeSH terms: Digestion/drug effects
  11. Tan VM, Ooi DS, Kapur J, Wu T, Chan YH, Henry CJ, et al.
    Eur J Nutr, 2016 Jun;55(4):1573-81.
    PMID: 26160548 DOI: 10.1007/s00394-015-0976-0
    PURPOSE: There are wide inter-individual differences in glycemic response (GR). We aimed to examine key digestive parameters that influence inter-individual and ethnic differences in GR in healthy Asian individuals.
    METHODS: Seventy-five healthy male subjects (25 Chinese, 25 Malays, and 25 Asian-Indians) were served equivalent available carbohydrate amounts (50 g) of jasmine rice (JR) and basmati rice (BR) on separate occasions. Postprandial blood glucose concentrations were measured at fasting (-5 and 0 min) and at 15- to 30-min interval over 180 min. Mastication parameters (number of chews per mouth and chewing time per mouthful), saliva α-amylase activity, AMY1 gene copy numbers and gastric emptying rate were measured to investigate their relationships with GR.
    RESULTS: The GR for jasmine rice was significantly higher than for basmati rice (P 0.05).
    CONCLUSION: Mastication parameters contribute significantly to GR. Eating slowly and having larger food boluses before swallowing (less chewing), both potentially modifiable, may be beneficial in glycemic control.
    Matched MeSH terms: Digestion/ethnology*
  12. Lan GQ, Abdullah N, Jalaludin S, Ho YW
    Poult Sci, 2002 Oct;81(10):1522-32.
    PMID: 12412919
    We evaluated the efficacy of supplementation of active Mitsuokella jalaludinii culture (AMJC) on the growth performance, nutrient use, and mineral concentrations in tibia bone and plasma of broiler chickens fed corn-soybean meal diets. Dietary treatments included low-nonphytate P (NPP) feed (containing 0.24% and 0.232% NPP for chicks from 1 to 21 and 22 to 42 d of age, respectively), low-NPP feed added with different levels of AMJC (equivalent to 250, 500, 750, and 1,000 U phytase/kg of feed), and normal-NPP feed (containing 0.46 and 0.354% NPP for chicks from 1 to 21 and 22 to 42 d of age, respectively). Supplementation of AMJC to low-NPP feed increased (P < 0.05) weight gain and feed intake and decreased (P < 0.05) feed:gain ratio of chickens during the whole experiment (Days 1 to 42). Supplementation of AMJC increased (P < 0.05) the AME value, digestibility of DM and CP, and retention of P, Ca, and Cu. Mn retention in broilers was only increased (P < 0.05) by AMJC supplementation from 18 to 20 d of age, and Zn retention was improved (P < 0.05) only at a high level of AMJC (equivalent to 1,000 U phytase/kg of feed) supplementation. Chicks fed low-NPP feed added with AMJC had similar tibia ash percentages as those fed the normal-NPP diet. Generally, supplementing AMJC to low-NPP feed increased (P < 0.05) Ca, decreased significantly (P < 0.05) Mn and Cu, but did not affect Zn and P concentrations in tibia ash. Supplementing AMJC also increased (P < 0.05) plasma P but had no effect on plasma Ca or Mn. Plasma Zn concentration was increased only when a high level of AMJC (equivalent to 1,000 U phytase/kg of feed) was used. In conclusion, AMJC supplementation to low-NPP feed improved growth performance; AME value; digestibility of CP and DM; use of Ca, P, and Cu; and bone mineralization.
    Matched MeSH terms: Digestion
  13. Chen Y, Ge H, Zheng Y, Zhang H, Li Y, Su X, et al.
    J Agric Food Chem, 2020 Jun 03;68(22):6190-6201.
    PMID: 32379465 DOI: 10.1021/acs.jafc.0c01250
    The present study aims to design a milk fat globule membrane (MFGM)-inspired structured membrane (phospholipid- and protein-rich) for microencapsulation of docosahexaenoic acid (DHA) oil. DHA-enriched oil emulsions were prepared using different ratios of sunflower phospholipid (SPL), proteins [whey protein concentrate (WPC), soy protein isolate (SPI), and sodium caseinate (SC)], and maltodextrin and spray-dried to obtain DHA microcapsules. The prepared DHA oil emulsions have nanosized particles. SPLs were found to affect the secondary structure of WPC, which resulted in increased exposure of the protein hydrophobic site and emulsion stability. SPL also reduced the surface tension and viscosity of the DHA oil emulsions. In vitro digestion of the spray-dried DHA microcapsules showed that they were able to effectively resist gastric proteolysis and protect their bioactivity en route to the intestine. The DHA microcapsules have a high lipid digestibility in the small intestine with a high DHA hydrolysis efficiency (74.3%), which is higher than that of commercial DHA microcapsules.
    Matched MeSH terms: Digestion
  14. Tan EW, Tan KY, Phang LV, Kumar PV, In LLA
    PLoS One, 2019;14(7):e0219912.
    PMID: 31335895 DOI: 10.1371/journal.pone.0219912
    Vaccine administration via the oral route is preferable to parenteral routes due to ease of administration. To date, most available oral vaccines comprises of live attenuated pathogens as oppose to peptide-based vaccines due to its low bioavailability within the gastrointestinal (GI) tract. Over the years, probiotic-based peptide delivery vehicles comprising of lactic acid bacteria such as Lactococcus lactis has emerged as an interesting alternative due to its generally recognized as safe (GRAS) status, a fully sequenced genome, transient gut colonization time, and is an efficient cellular factory for heterologous protein production. However, its survivability through the GI tract is low, thus better delivery approaches are being explored to improve its bioavailability. In this study, we employ the incorporation of a double coated mucoadhesive film consisting of sodium alginate and Lycoat RS 720 film as the inner coat. The formulated film exhibits good mechanical properties of tensile strength and percent elongation for manipulation and handling with an entrapment yield of 93.14±2.74%. The formulated mucoadhesive film is subsequently loaded into gelatin capsules with an outer enteric Eudragit L100-55 coating capable of a pH-dependent breakdown above pH 5.5 to protect against gastric digestion. The final product and unprotected controls were subjected to in vitro simulated gastrointestinal digestions to assess its survivability. The product demonstrated enhanced protection with an increase of 69.22±0.67% (gastric) and 40.61±8.23% (intestinal) survivability compared to unprotected controls after 6 hours of sequential digestion. This translates to a 3.5 fold increase in overall survivability. Owing to this, the proposed oral delivery system has shown promising potential as a live gastrointestinal vaccine delivery host. Further studies involving in vivo gastrointestinal survivability and mice immunization tests are currently being carried out to assess the efficacy of this novel oral delivery system in comparison to parenteral routes.
    Matched MeSH terms: Digestion
  15. Nayan N, van Erven G, Kabel MA, Sonnenberg AS, Hendriks WH, Cone JW
    J Sci Food Agric, 2019 Jun;99(8):4054-4062.
    PMID: 30737799 DOI: 10.1002/jsfa.9634
    BACKGROUND: White rot fungi have been used to improve the nutritive value of lignocellulose for ruminants. In feed analysis, the Van Soest method is widely used to determine the cell wall contents. To assess the reliability of this method (Method A) for determination of cell wall contents in fungal-treated wheat straw, we compared a combined monosaccharide analysis and pyrolysis coupled to gas chromatography with mass spectrometry (Py-GC/MS) (Method B). Ruminal digestibility, measured as in vitro gas production (IVGP), was subsequently used to examine which method explains best the effect of fungal pretreatment on the digestibility of wheat straw.

    RESULTS: Both methods differed considerably in the mass recoveries of the individual cell wall components, which changed on how we assess their degradation characteristics. For example, Method B gave a higher degradation of lignin (61.9%), as compared to Method A (33.2%). Method A, however, showed a better correlation of IVGP with the ratio of lignin to total structural carbohydrates, as compared to Method B (Pearson's r of -0.84 versus -0.69). Nevertheless, Method B provides a more accurate quantification of lignin, reflecting its actual modification and degradation. With the information on the lignin structural features, Method B presents a substantial advantage in understanding the underlying mechanisms of lignin breakdown. Both methods, however, could not accurately quantify the cellulose contents - among others, due to interference of fungal biomass.

    CONCLUSION: Method A only accounts for the recalcitrant residue and therefore is more suitable for evaluating ruminal digestibility. Method B allows a more accurate quantification of cell wall, required to understand and better explains the actual modification of the cell wall. The suitability of both methods, therefore, depends on their intended purposes. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

    Matched MeSH terms: Digestion
  16. Cheong AM, Tan CP, Nyam KL
    J Food Sci, 2018 Jul;83(7):1964-1969.
    PMID: 29802733 DOI: 10.1111/1750-3841.14191
    Kenaf (Hibiscus cannabinus L.) seed oil-in-water nanoemulsions stabilized by complexation of beta-cyclodextrin with sodium caseinate and Tween 20 have been shown to have higher bioaccessibility of vitamin E and total phenolic content than nonemulsified kenaf seed oil in the previous in vitro gastrointestinal digestion study. However, its oral bioavailability was unknown. Therefore, the aim of this study was to evaluate the rate of in vivo oral bioavailability of kenaf seed oil-in-water nanoemulsions in comparison with nonemulsified kenaf seed oil and kenaf seed oil macroemulsions during the 180 min of gastrointestinal digestion. Kenaf seed oil macroemulsions were produced by using conventional method. Kenaf seed oil-in-water nanoemulsions had shown improvement in the rate of absorption. At 180 min of digestion time, the total α-tocopherol bioavailability of kenaf seed oil nanoemulsions was increased by 1.7- and 1.4-fold, compared to kenaf seed oil and macroemulsion, respectively. Kenaf seed oil-in-water nanoemulsions were stable in considerably wide range of pH (>5 and <3), suggesting that it can be fortified into beverages within this pH range PRACTICAL APPLICATION: The production of kenaf seed oil-in-water nanoemulsions had provided a delivery system to encapsulate the kenaf seed oil, as well as enhanced the bioaccessibility and bioavailability of kenaf seed oil. Therefore, kenaf seed oil-in-water nanoemulsions exhibit a great potential application in nutraceutical fields.
    Matched MeSH terms: Digestion
  17. Ng SH, Robert SD, Wan Ahmad WA, Wan Ishak WR
    Food Chem, 2017 Jul 15;227:358-368.
    PMID: 28274444 DOI: 10.1016/j.foodchem.2017.01.108
    The purpose of this study was to determine the effects of Pleurotus sajor-caju (PSC) powder addition at 0, 4, 8 and 12% levels on the nutritional values, pasting properties, thermal characteristics, microstructure, in vitro starch digestibility, in vivo glycaemic index (GI) and sensorial properties of biscuits. Elevated incorporation levels of PSC powder increased the dietary fibre (DF) content and reduced the pasting viscosities and starch gelatinisation enthalpy value of biscuits. The addition of DF-rich PSC powder also interfered with the integrity of the starch granules by reducing the sizes and inducing the uneven spherical shapes of the starch granules, which, in turn, resulted in reduced starch susceptibility to digestive enzymes. The restriction starch hydrolysis rate markedly reduced the GI of biscuits. The incorporation of 8% PSC powder in biscuits (GI=49) could be an effective way of developing a nutritious and low-GI biscuit without jeopardizing its desirable sensorial properties.
    Matched MeSH terms: Digestion
  18. Nazli MH, Halim RA, Abdullah AM, Hussin G, Samsudin AA
    Trop Anim Health Prod, 2018 Jun;50(5):1119-1124.
    PMID: 29455428 DOI: 10.1007/s11250-018-1538-2
    The potential of using whole corn crop silage and rice straw as an alternative feed for the beef cattle based on the intake and growth performance were evaluated. Using randomised completely block design, nine adult Mafriwal cattle were blocked intro three groups and treated with three different forage diets supplemented with 20% pelleted palm kernel cake on dry matter basis. The treatments were 100% rice straw (RS), 100% corn silage (CS) and an equal mixture of rice straw and corn silage (MIX) fed ad libitum. The animals were housed in individual pens, and the feeding trial was conducted for 12 weeks with 2 weeks of adaptation period. The results showed that CS had the best feed nutritive composition with the lowest concentration of highly indigestible fibre and the highest concentration of organic matter and energy. The CS also had the highest intake, and the corn silage inclusion in MIX managed to improve the intake on par with CS in terms of the dry matter intake of body weight (DMI of BW), voluntary intake (VI) and crude protein (CP) intake. Cattle fed with CS gave the highest and most stable BW gain with an average daily gain (ADG) of 808 g/day rivalling cross-bred cattle fed with high amount of concentrates. The all straw diet (RS) supplemented with PKC recorded a positive ADG of 133 g/day while the MIX gave 383 g/day matching total Napier grass diet.
    Matched MeSH terms: Digestion
  19. Evaristus NA, Wan Abdullah WN, Gan CY
    Peptides, 2018 04;102:61-67.
    PMID: 29510154 DOI: 10.1016/j.peptides.2018.03.001
    The potential of N. lappacheum and N. mutabile seed as a source of α-amylase inhibitor peptides was explored based on the local traditional practice of using the seed. Different gastro-digestive enzymes (i.e. pepsin or chymotrypsin) or a sequential digestion were used to extract the peptides. The effects of digestion time and enzyme to substrate (E:S) ratio on the α-amylase inhibitory activity were investigated. Results showed that chymotrypsin was effective in producing the inhibitor peptides from rambutan seed protein at E:S ratio 1:20 for 1 h, whereas pepsin was more effective for pulasan seed protein under the same condition. A total of 20 and 31 novel inhibitor peptides were identified, respectively. These peptides could bind with the subsites of α-amylase (i.e. Trp58, Trp59, Tyr62, Asp96, Arg195, Asp197, Glu233, His299, Asp300, and His305) and formed a sliding barrier that preventing the formation of enzyme/substrate intermediate leading to lower α-amylase activity.
    Matched MeSH terms: Digestion
  20. Gan CY, Cheng LH, Azahari B, Easa AM
    Int J Food Sci Nutr, 2009;60 Suppl 7:99-108.
    PMID: 19194813 DOI: 10.1080/09637480802635090
    Cross-linked soy protein isolate (SPI) gels were produced via single-treatment of SPI with microbial transglutaminase (MTG) for 5 h or 24 h, or with ribose for 2 h, or via combined-treatments of SPI with MTG followed by heating with ribose. Assessment of gel strength and solubility concluded that measures which increased protein cross-links resulted in improved gel strength; however, in most cases the digestibility and amino acid content of the gels were reduced. The combined treated gel of SPI/MTG for 24 h/ribose was more easily digested by digestive enzymes and retained higher amounts of amino acids compared with the control Maillard gels of SPI with ribose. MTG consumed lysine and glutamine and reduced the availability of amino acids for the Maillard reaction with ribose. MTG was able to preserve the nutritional value of SPI against the destructive effect of the Maillard reaction and cross-links.
    Matched MeSH terms: Digestion
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links