Displaying publications 61 - 80 of 686 in total

Abstract:
Sort:
  1. Wong Ch, Goh K
    Biomed Imaging Interv J, 2006 Jul;2(3):e7.
    PMID: 21614253 MyJurnal DOI: 10.2349/biij.2.3.e7
    Hepatitis B virus (HBV) is one of the most well recognised human carcinogens. Since its discovery about 40 years ago, HBV has been studied extensively. This article summarises the evidence derived from various studies including epidemiological, animal model, histopathology studies and molecular genetics studies leading to the establishment of HBV as the main aetiological agent for hepatocellular carcinoma (HCC). The reduction in the incidence of childhood HCC due to mass hepatitis B vaccination in Taiwan is a dramatic demonstration of the critical aetiological role of hepatitis B in HCC. Thus it is essential for interventionalists to understand the epidemiological and pathogenesis of HCC to ensure optimal patient care.
    Matched MeSH terms: Disease Models, Animal
  2. Alam F, Islam MA, Gan SH, Mohamed M, Sasongko TH
    Curr Pharm Des, 2016;22(28):4398-419.
    PMID: 27229720
    DNA methylation, a major regulator of epigenetic modifications has been shown to alter the expression of genes that are involved in aspects of glucose metabolism such as glucose intolerance, insulin resistance, β-cell dysfunction and other conditions, and it ultimately leads to the pathogenesis of type 2 diabetes mellitus (T2DM). Current evidences indicate an association of DNA methylation with T2DM. This review provides an overview of how various factors play crucial roles in T2DM pathogenesis and how DNA methylation interacts with these factors. Additionally, an update on current techniques of DNA methylation analysis with their pros and cons is provided as a basis for the adoption of suitable techniques in future DNA methylation research towards better management of T2DM. To elucidate the mechanistic relationship between vital environmental factors and the development of T2DM, a better understanding of the changes in gene expression associated with DNA methylation at the molecular level is still needed.
    Matched MeSH terms: Disease Models, Animal
  3. Khalin I, Jamari NL, Razak NB, Hasain ZB, Nor MA, Zainudin MH, et al.
    Neural Regen Res, 2016 Apr;11(4):630-5.
    PMID: 27212925 DOI: 10.4103/1673-5374.180749
    Traumatic brain injury (TBI) is a leading cause of death and disability in individuals worldwide. Producing a clinically relevant TBI model in small-sized animals remains fairly challenging. For good screening of potential therapeutics, which are effective in the treatment of TBI, animal models of TBI should be established and standardized. In this study, we established mouse models of closed head injury using the Shohami weight-drop method with some modifications concerning cognitive deficiency assessment and provided a detailed description of the severe TBI animal model. We found that 250 g falling weight from 2 cm height produced severe closed head injury in C57BL/6 male mice. Cognitive disorders in mice with severe closed head injury could be detected using passive avoidance test on day 7 after injury. Findings from this study indicate that weight-drop injury animal models are suitable for further screening of brain neuroprotectants and potentially are similar to those seen in human TBI.
    Matched MeSH terms: Disease Models, Animal
  4. Anukulthanakorn K, Parhar IS, Jaroenporn S, Kitahashi T, Watanbe G, Malaivijitnond S
    Phytother Res, 2016 Jun;30(6):929-39.
    PMID: 26915634 DOI: 10.1002/ptr.5595
    We determined the neurotherapeutic effects of Pueraria mirifica extract (PME) and pure puerarin (PU) in comparison with 17β-estradiol (E2 ) in early- and late-stage cognitive impaired rats. Rats were ovariectomized (OVX), kept for 2 and 4 months to induce early- and late-stage cognitive impairment, respectively, and divided into four groups that were treated daily with (i) distilled water, (ii) 100 mg/kg of PME, (iii) 7 mg/kg of PU, and (iv) 80 µg/kg of E2 for 4 months. The estrogen deficiency symptoms of OVX rats were abrogated by treatment with E2 or PME, but not by treatment with PU. The mRNA level of genes associated with amyloid production (App and Bace1) and hyperphosphorylated Tau (Tau4) were upregulated together with the level of impaired cognition in the 2- and 4-month OVX rats. Treatment with E2 reduced the level of cognitive impairment more than that with PME and PU, and 2-month OVX rats were more responsive than 4-month OVX rats. All treatments down-regulated the Bace1 mRNA level in 2-month OVX rats, while PU and PME also decreased the App mRNA level in 2- and 4-month OVX rats, respectively. Only PU suppressed Tau4 expression in 2-month OVX rats. Thus, PME and PU elicit neurotherapeutic effects in different pathways, and earlier treatment is optimal. Copyright © 2016 John Wiley & Sons, Ltd.
    Matched MeSH terms: Disease Models, Animal
  5. Komang-Agung IS, Hydravianto L, Sindrawati O, William PS
    Malays Orthop J, 2018 Nov;12(3):6-13.
    PMID: 30555640 DOI: 10.5704/MOJ.1811.002
    Introduction: Percutaneous vertebroplasty (PV) is one of the available treatments for vertebral compression fracture (VCF). Polymethylmethacrylate (PMMA) is the most common bone substitute used in the procedure, but it has several disadvantages. Bioceramic material, such as hydroxyapatite (HA), has better biological activity compared to PMMA. The aim of this study was to find an optimal biomaterial compound which offers the best mechanical and biological properties to be used in PV. Materials and Methods: This was an experimental study with goat (Capra aegagrus hircus) as an animal model. The animals' vertebral columns were injected with PMMA-HA compound. Animal samples were divided into four groups, and each group received a different proportion of PMMA:HA compound. The mechanical and biological effects of the compound on the bone were then analysed. The mechanical effect was assessed by measuring the vertebral body's compressive strength. Meanwhile, the biological effect was assessed by analysing the callus formation in the vertebral body. Results: The optimal callus formation and compressive strength was observed in the group receiving PMMA:HA with a 1:2 ratio. Conclusion: A mixture of PMMA and HA increases the quality of callus formation and the material's compressive strength. The optimum ratio of PMMA:HA in the compound is 1:2.
    Matched MeSH terms: Disease Models, Animal
  6. Tan WS, Arulselvan P, Ng SF, Mat Taib CN, Sarian MN, Fakurazi S
    BMC Complement Altern Med, 2019 Jan 17;19(1):20.
    PMID: 30654793 DOI: 10.1186/s12906-018-2427-y
    BACKGROUND: Impaired wound healing is a debilitating complication of diabetes that leads to significant morbidity, particularly foot ulcers. The risk of developing diabetic foot ulcers for diabetic patients is 15% over their lifetime and approximately 85% of limb amputations is caused by non-healing ulcers. Unhealed, gangrenous wounds destroy the structural integrity of the skin, which acts as a protective barrier that prevents the invasion of external noxious agents into the body. Vicenin-2 (VCN-2) has been reported to contain prospective anti-oxidant and anti-inflammatory properties that enhance cell proliferation and migration. Sodium Alginate (SA) is a natural polysaccharide that possesses gel forming properties and has biodegradable and biocompatible characteristics. Therefore, the objective of this study is to evaluate the effect of SA wound dressings containing VCN-2 on diabetic wounds.

    METHODS: Wounds were inflicted in type-1 diabetic-streptozotocin (STZ) induced male Sprague Dawley rats. Subsequently, relevant groups were topically treated with the indicated concentrations (12.5, 25 and 50 μM) of VCN-2 hydrocolloid film over the study duration (14 days). The control group was treated with vehicle dressing (blank or allantoin). Wounded tissues and blood serum were collected on 0, 7 and 14 days prior to sacrifice. Appropriate wound assessments such as histological tests, nitric oxide assays, enzyme-linked immunosorbent assays (ELISA) and immunoblotting assays were conducted to confirm wound healing efficacy in the in vivo model. One-way Analysis of Variance (ANOVA) was used for statistical analysis.

    RESULTS: Results showed that hydrocolloid film was recapitulated with VCN-2 enhanced diabetic wound healing in a dose-dependent manner. VCN-2 reduced pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α), mediators (iNOS and COX-2), and nitric oxide (NO) via the NF-κB pathway. Data suggests that the VCN-2 film facilitated healing in hyperglycemic conditions by releasing growth factors such as (VEGF and TGF-β) to enhance cell proliferation, migration, and wound contraction via the VEGF and TGF-β mechanism pathways.

    CONCLUSIONS: This study's findings suggest that VCN-2 may possess wound healing potential since topical treatment with VCN-2 hydrocolloid films effectively enhanced wound healing in hyperglycemic conditions.

    Matched MeSH terms: Disease Models, Animal
  7. Passmore MR, Obonyo NG, Byrne L, Boon AC, Diab SD, Dunster KR, et al.
    Thromb Res, 2019 Apr;176:39-45.
    PMID: 30776686 DOI: 10.1016/j.thromres.2019.02.015
    INTRODUCTION: Fluid resuscitation is a cornerstone of severe sepsis management, however there are many uncertainties surrounding the type and volume of fluid that is administered. The entire spectrum of coagulopathies can be seen in sepsis, from asymptomatic aberrations to fulminant disseminated intravascular coagulation (DIC). The aim of this study was to determine if fluid resuscitation with saline contributes to the haemostatic derangements in an ovine model of endotoxemic shock.

    MATERIALS AND METHODS: Twenty-one adult female sheep were randomly divided into no endotoxemia (n = 5) or endotoxemia groups (n = 16) with an escalating dose of lipopolysaccharide (LPS) up to 4 μg/kg/h administered to achieve a mean arterial pressure below 60 mmHg. Endotoxemia sheep received either no bolus fluid resuscitation (n = 8) or a 0.9% saline bolus (40 mL/kg over 60 min) (n = 8). No endotoxemia, saline only animals (n = 5) underwent fluid resuscitation with a 0.9% bolus of saline as detailed above. Hemodynamic support with vasopressors was initiated if needed, to maintain a mean arterial pressure (MAP) of 60-65 mm Hg in all the groups.

    RESULTS: Rotational thromboelastometry (ROTEM®) and conventional coagulation biomarker tests demonstrated sepsis induced derangements to secondary haemostasis. This effect was exacerbated by saline fluid resuscitation, with low pH (p = 0.036), delayed clot initiation and formation together with deficiencies in naturally occurring anti-coagulants antithrombin (p = 0.027) and Protein C (p = 0.001).

    CONCLUSIONS: Endotoxemia impairs secondary haemostasis and induces changes in the intrinsic, extrinsic and anti-coagulant pathways. These changes to haemostasis are exacerbated following resuscitation with 0.9% saline, a commonly used crystalloid in clinical settings.

    Matched MeSH terms: Disease Models, Animal
  8. Mitra NK, Xuan KY, Teo CC, Xian-Zhuang N, Singh A, Chellian J
    Res Pharm Sci, 2020 Dec;15(6):602-611.
    PMID: 33828603 DOI: 10.4103/1735-5362.301345
    Background and Purpose: Multiple sclerosis (MS) is an autoimmune disorder characterized by demyelination and axonal loss. Quantitative estimation of behavioral, locomotor, and histological changes following the use of alpha-tocopherol (AT) in the animal model of MS have not been reported. The present study was planned to evaluate whether AT can improve sensorimotor dysfunction and reduce demyelination in the cuprizone (CPZ)-induced rat model of MS.

    Experimental approach: Female Sprague-Dawley rats (8 weeks) were fed with cuprizone diet for 5 weeks followed by intraperitoneal injections of alpha-tocopherol (100 mg/Kg) or PBS for 2 weeks (groups E1 and E2, n = 8). Group C (n = 8) was fed with normal pellets followed by intraperitoneal doses of PBS. Open-field test and beam walking were carried out on every 10th day. The mean area of demyelination in the corpus callosum was quantified in Luxol® fast blue (LFB) stained histological sections of the forebrain. Qualitative grading for relative changes in the stains of myelinated fibers was also done.

    Findings/Results: During withdrawal of CPZ, AT treatment increased the average speed by 22% in group E1, compared to group E2 (P < 0.05). The mean time to walk the beam was reduced in group E1 by 2.6% compared to group E2 (P < 0.05). The rearing frequency was increased in group E1 during week 6-7 compared to that in the period of CPZ treatment. The mean area of demyelination in the corpus callosum showed a 12% reduction in group E1 compared to group E2 (P < 0.05).

    Conclusion and implications: Short-term AT therapy showed improvement in motor dysfunction and reduction of demyelination in the animal model of MS.

    Matched MeSH terms: Disease Models, Animal
  9. Yam MF, Loh YC, Oo CW, Basir R
    Int J Mol Sci, 2020 Jun 19;21(12).
    PMID: 32575378 DOI: 10.3390/ijms21124355
    Pain is the most common sensation installed in us naturally which plays a vital role in defending us against severe harm. This neurological mechanism pathway has been one of the most complex and comprehensive topics but there has never been an elaborate justification of the types of analgesics that used to reduce the pain sensation through which specific pathways. Of course, there have been some answers to curbing of pain which is a lifesaver in numerous situations-chronic and acute pain conditions alike. This has been explored by scientists using pain-like behavioral study methodologies in non-anesthetized animals since decades ago to characterize the analgesic profile such as centrally or peripherally acting drugs and allowing for the development of analgesics. However, widely the methodology is being practiced such as the tail flick/Hargreaves test and Von Frey/Randall-Selitto tests which are stimulus-evoked nociception studies, and there has rarely been a complete review of all these methodologies, their benefits and its downside coupled with the mechanism of the action that is involved. Thus, this review solely focused on the complete protocol that is being adapted in each behavioral study methods induced by different phlogogenic agents, the different assessment methods used for phasic, tonic and inflammatory pain studies and the proposed mechanism of action underlying each behavioral study methodology for analgesic drug profiling. It is our belief that this review could significantly provide a concise idea and improve our scientists' understanding towards pain management in future research.
    Matched MeSH terms: Disease Models, Animal
  10. Gandhi G, Abdullah S, Foead AI, Yeo WWY
    J Neurol Sci, 2021 08 15;427:117485.
    PMID: 34015517 DOI: 10.1016/j.jns.2021.117485
    Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by low levels of full-length survival motor neuron (SMN) protein due to the loss of the survival motor neuron 1 (SMN1) gene and inefficient splicing of the survival motor neuron 2 (SMN2) gene, which mostly affects alpha motor neurons of the lower spinal cord. Despite the U.S. Food and Drug Administration (FDA) approved SMN-dependent therapies including Nusinersen, Zolgensma® and Evrysdi™, SMA is still a devastating disease as these existing expensive drugs may not be sufficient and thus, remains a need for additional therapies. The involvement of microRNAs (miRNAs) in SMA is expanding because miRNAs are important mediators of gene expression as each miRNA could target a number of genes. Hence, miRNA-based therapy could be utilized in treating this genetic disorder. However, the delivery of miRNAs into the target cells remains an obstacle in SMA, as there is no effective delivery system to date. This review highlights the potential strategies for intracellular miRNA delivery into target cells and current challenges in miRNA delivery. Furthermore, we provide the future prospects of miRNA-based therapeutic strategies in SMA.
    Matched MeSH terms: Disease Models, Animal
  11. Murugaiah C, Noor NZ, Mustafa S, Manickam R, Pattabhiraman L
    Microb Pathog, 2017 Apr;105:25-29.
    PMID: 28179117 DOI: 10.1016/j.micpath.2017.02.002
    Cholera, a severe form of gastroenteritis, is one of the most widespread diseases in developing countries. The mechanism of intestinal infection caused by V. cholerae O139 remains unclear. In order to explore some morphological aspects of its infection in the intestine including Peyer's patches, we investigated the V. cholerae O139 infection at intestinal site of the rabbit gut-loop model. The electron microscopic analysis revealed denuded mucosal surface with loss of microvilli and integrity of the surface epithelium. Infection of the intestine with V. cholerae O139 induces destruction of villi, microvilli and lining epithelium with exposure of crypts of Lieberkuhn.
    Matched MeSH terms: Disease Models, Animal
  12. Donald Koh Fook Chen, Joon Wah Mak, Soo Shen Ooi, Kok Fee Mak, Kwai Hoe Chong
    MyJurnal
    We previously evaluated the biochemical changes induced by the local product TCM for diabetes (TCM-D™) on blood glucose levels and other biochemical changes in normal mice fed orally with the recommended human dose (30 ml/kg daily) and ten times this dose for eight weeks. TCM-D™ is an aqueous extract of the roots of Trichosanthes kirilowii Maxim, Paeonia lactiflora Pall, Glycyrrhiza uranlensis Fisch. and Panax ginseng Meyer (red) combined at the dry weight proportions of 36%, 28%, 18% and 18% respectively. The study showed that at these dosages the blood glucose levels as well as the body weights in treated mice were significantly reduced when compared with pretreatment values and control animals. The present study evaluated the effect of the extract in a mouse model of Type 1 diabetes mellitus.
    Matched MeSH terms: Disease Models, Animal
  13. Palmieri JR, Krishnasamy M, Sullivan JT
    PMID: 415371
    Matched MeSH terms: Disease Models, Animal
  14. Gao M, Qu K, Zhang W, Wang X
    Neuroimmunomodulation, 2021;28(2):90-98.
    PMID: 33774633 DOI: 10.1159/000513297
    INTRODUCTION: Pediatric patients with epilepsy are prone to cognitive impairments during growth and long-term use of most antiepileptic drugs (AED). The affected children do not respond to conventional AED and may require novel drugs to manage the disease. Valproic acid, a first-line drug to treat epilepsy, is associated with serious side effects, which precludes its wider use. Thus, in the present study, we intended to develop novel substituted pyrazoles.

    METHODS: The molecules were tested for anticonvulsive activity in Swiss albino mice via maximal electroshock seizure and subcutaneous pentylenetetrazole assays. The most potent molecule among the class was further assayed for its effect on behavioral and CNS depressant activity. The effect of the most potent compounds was also analyzed on various indices of oxidative stress and inflammation in mice.

    RESULTS: The designed compounds showed significant anticonvulsive activity in mice revealing 7h as the most potent anticonvulsive agent. The most potent anticonvulsant molecule 7h further showed no behavioral alteration and considerable CNS depressant activity. It also reduces the level of oxidative stress and inflammation in the mice.

    CONCLUSION: Our study demonstrated utility of pyrazole derivatives as anticonvulsants against epilepsy.

    Matched MeSH terms: Disease Models, Animal
  15. Mayakrishnan V, Kannappan P, Shanmugasundaram K, Abdullah N
    Pak J Pharm Sci, 2014 Nov;27(6):1911-7.
    PMID: 25362615
    Cyathula prostrata (Linn) Blume herbs are commonly used for the treatment of inflammatory and pain in Nigeria. The objective of the present study was to assess the antitumor and antioxidant activity of Cyathula prostrata (Linn) Blume in mice model. The treatment of Dalton's lymphoma ascites cells induced tumor by the methanolic extract of Cyathula prostrata was determined at concentration of 100 mg/ kg body weight given orally for 11 days, antitumor activity was assessed by monitoring the mean survival time, body weight, effect on hematological parameters, antioxidant enzyme levels and histopathological evidence. The results showed that the methanolic extract of Cyathula prostrata increased the survival period of animals, decreased the body weight and also altered many hematological markers and also restored the antioxidant enzymes when compared to the mice of the DLA control group. These findings indicate that the methanolic extract of C. prostrata has anti-tumor activity by preventing the lipid peroxidation and thereby promoting the antioxidant systems in Dalton's lymphoma ascites induced mice. So, these extract could be a natural anticancer agent for human health.
    Matched MeSH terms: Disease Models, Animal
  16. Yanshree, Yu WS, Fung ML, Lee CW, Lim LW, Wong KH
    Cells, 2022 Jul 24;11(15).
    PMID: 35892581 DOI: 10.3390/cells11152284
    Alzheimer's disease (AD) is a neurodegenerative disorder, and no effective treatments are available to treat this disorder. Therefore, researchers have been investigating Hericium erinaceus, or the monkey head mushroom, an edible medicinal mushroom, as a possible treatment for AD. In this narrative review, we evaluated six preclinical and three clinical studies of the therapeutic effects of Hericium erinaceus on AD. Preclinical trials have successfully demonstrated that extracts and bioactive compounds of Hericium erinaceus have potential beneficial effects in ameliorating cognitive functioning and behavioral deficits in animal models of AD. A limited number of clinical studies have been conducted and several clinical trials are ongoing, which have thus far shown analogous outcomes to the preclinical studies. Nonetheless, future research on Hericium erinaceus needs to focus on elucidating the specific neuroprotective mechanisms and the target sites in AD. Additionally, standardized treatment parameters and universal regulatory systems need to be established to further ensure treatment safety and efficacy. In conclusion, Hericium erinaceus has therapeutic potential and may facilitate memory enhancement in patients with AD.
    Matched MeSH terms: Disease Models, Animal
  17. Shahzad S, Batool Z, Afzal A, Haider S
    Metab Brain Dis, 2022 Dec;37(8):2793-2805.
    PMID: 36152087 DOI: 10.1007/s11011-022-01090-6
    Quercetin, a polyphenolic compound found in a variety of plant products possesses various biological activities and beneficial effects on human health. Schizophrenia (SZ) is one of the neuropsychiatric disorders in human beings with rapid mortality and intense morbidity which can be treated with antipsychotics, but these commercial drugs exert adverse effects and have less efficacy to treat the full spectrum of SZ. The present study was conducted to evaluate neuroprotective effects of quercetin in the preventive and therapeutic treatment of SZ. Quercetin was administered as pre- and post-regimens at the dose of 50 mg/kg in dizocilpine-induced SZ rat model for two weeks. Rats were then subjected for the assessment of different behaviors followed by biochemical, neurochemical, and inflammatory marker analyses. The present findings revealed that quercetin significantly reverses the effects of dizocilpine-induced psychosis-like symptoms in all behavioral assessments as well as it also combats oxidative stress. This flavonoid also regulates dopaminergic, serotonergic, and glutamatergic neurotransmission. A profound effect on inflammatory cytokines and decreased %DNA fragmentation was also observed following the administration of quercetin. The findings suggest that quercetin can be considered as a preventive as well as therapeutic strategy to attenuate oxidative stress and cytokine toxicity, regulate neurotransmission, and prevent enhanced DNA fragmentation that can lead to the amelioration of psychosis-like symptoms in SZ.
    Matched MeSH terms: Disease Models, Animal
  18. Azlina MFN, Qodriyah MS, Kamisah Y
    Curr Drug Targets, 2018;19(12):1456-1462.
    PMID: 29173163 DOI: 10.2174/1389450118666171122130338
    BACKGROUND: Scientific reports had shown that stress is related to numerous pathological changes in the body. These pathological changes can bring about numerous diseases and can significantly cause negative effects in an individual. These include gastric ulcer, liver pathology and neurobehavioral changes. A common pathogenesis in many diseases related to stress involves oxidative damage. Therefore, the administration of antioxidants such as vitamin E is a reasonable therapeutic approach. However, there is conflicting evidence about antioxidant supplementation.

    OBJECTIVE: The aim of this work was to summarize documented reports on the effects of tocopherol and tocotrienol on various pathological changes induced by stress.

    RESULTS AND CONCLUSION: This review will reveal the scientific evidence of enteral supplementation of vitamin E in the forms of tocotrienol and tocopherol in animal models of stress. These models mimic the stress endured by critically ill patients in a clinical setting and psychological stress in individuals. Positive outcomes from enteral feeding of vitamin E in reducing the occurrence of stress-induced pathological changes are discussed in this review. These positive findings include their ability to reduced stress-induced gastric ulcers, elevated liver enzymes and improved locomotors activity. Evidences showing tocotrienol and tocopherol effects are not just related to its ability to reduce oxidative stress but also acting on other mechanism, are discussed.

    Matched MeSH terms: Disease Models, Animal
  19. Marques Da Costa ME, Zaidi S, Scoazec JY, Droit R, Lim WC, Marchais A, et al.
    Commun Biol, 2023 Sep 18;6(1):949.
    PMID: 37723198 DOI: 10.1038/s42003-023-05320-0
    Pediatric patients with recurrent and refractory cancers are in most need for new treatments. This study developed patient-derived-xenograft (PDX) models within the European MAPPYACTS cancer precision medicine trial (NCT02613962). To date, 131 PDX models were established following heterotopical and/or orthotopical implantation in immunocompromised mice: 76 sarcomas, 25 other solid tumors, 12 central nervous system tumors, 15 acute leukemias, and 3 lymphomas. PDX establishment rate was 43%. Histology, whole exome and RNA sequencing revealed a high concordance with the primary patient's tumor profile, human leukocyte-antigen characteristics and specific metabolic pathway signatures. A detailed patient molecular characterization, including specific mutations prioritized in the clinical molecular tumor boards are provided. Ninety models were shared with the IMI2 ITCC Pediatric Preclinical Proof-of-concept Platform (IMI2 ITCC-P4) for further exploitation. This PDX biobank of unique recurrent childhood cancers provides an essential support for basic and translational research and treatments development in advanced pediatric malignancies.
    Matched MeSH terms: Disease Models, Animal
  20. Agarwal R, Agarwal P, Iezhitsa I
    Expert Opin Drug Discov, 2023;18(11):1287-1300.
    PMID: 37608634 DOI: 10.1080/17460441.2023.2246892
    INTRODUCTION: Animal models are widely used in glaucoma-related research. Since the elevated intraocular pressure (IOP) is a major risk factor underlying the disease pathogenesis, animal models with high IOP are commonly used. However, models are also used to represent the clinical context of glaucomatous changes developing despite a normal IOP.

    AREAS COVERED: Herein, the authors discuss the various factors that contribute to the quality of studies using animal models based on the evaluation of studies published in 2022. The factors affecting the quality of studies using animal models, such as the animal species, age, and sex, are discussed, along with various methods and outcomes of studies involving different animal models of glaucoma.

    EXPERT OPINION: Translating animal research data to clinical applications remains challenging. Our observations in this review clearly indicate that many studies lack scientific robustness not only in their experiment conduct but also in data analysis, interpretation, and presentation. In this context, ensuring the internal validity of animal studies is the first step in quality assurance. External validity, however, is more challenging, and steps should be taken to satisfy external validity at least to some extent.

    Matched MeSH terms: Disease Models, Animal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links