Displaying publications 61 - 80 of 460 in total

Abstract:
Sort:
  1. Rafiqul ISM, Mimi Sakinah AM, Zularisam AW
    Prep Biochem Biotechnol, 2021;51(10):1060-1070.
    PMID: 33724897 DOI: 10.1080/10826068.2021.1897840
    Enzymatic production of bioxylitol from lignocellulosic biomass (LCB) provides a promising alternative to both chemical and fermentative routes. This study aimed to assess the impacts of catalytic variables on bioxylitol production from wood sawdust using xylose reductase (XR) enzyme and to optimize the bioprocess. Enzyme-based xylitol production was carried out in batch cultivation under various experimental conditions to obtain maximum xylitol yield and productivity. The response surface methodology (RSM) was followed to fine-tune the most significant variables such as reaction time, temperature, and pH, which influence the synthesis of bioxylitol from sawdust hydrolysate and to optimize them. The optimum time, temperature, and pH became were 12.25 h, 35 °C, and 6.5, respectively, with initial xylose 18.8 g/L, NADPH 2.83 g/L, XR 0.027 U/mg, and agitation 100 rpm. The maximum xylitol production was attained at 16.28 g/L with a yield and productivity of 86.6% (w/w) and 1.33 g/L·h, respectively. Optimization of catalytic parameters using sequential strategies resulted in 1.55-fold improvement in overall xylitol production. This study explores a novel strategy for using sawdust hemicellulose in bioxylitol production by enzyme technology.
    Matched MeSH terms: Fermentation
  2. Hoshino S, Seino S, Funahashi T, Hoshino T, Clauss M, Matsuda I, et al.
    PLoS One, 2021;16(9):e0256548.
    PMID: 34543310 DOI: 10.1371/journal.pone.0256548
    Colobine monkeys are known for the anatomical complexity of their stomachs, making them distinct within the primate order. Amongst foregut fermenters, they appear peculiar because of the occurrence of two different stomach types, having either three ('tripartite') or four ('quadripartite', adding the praesaccus) chambers. The functional differences between tri and quadripartite stomachs largely remain to be explained. In this study, we aim to compare the apparent digestibility (aD) in tripartite and quadripartite colobines. Hence, we measured the aD in two colobine species, Nasalis larvatus (quadripartite) and Trachypithecus cristatus (tripartite), in two zoos. We also included existing colobine literature data on the aD and analysed whether the aD of fibre components is different between the stomach types to test the hypothesis of whether quadripartite colobines show higher aD of fibre components than tripartite colobines did. Our captive N. larvatus specimen had a more distinctively varying nutrient intake across seasons with a larger seasonal variation in aD than that of a pair of T. cristatus, which mostly consumed commercial foods with a lower proportion of browse and less seasonal variation. We observed higher aD of dry matter (DM), neutral detergent fibre (NDF) and acid detergent fibre (ADF) in the N. larvatus specimen, suggesting a higher gut capacity of N. larvatus provided by the additional praesaccus forestomach chamber. Based on the analysis of literature data for aD, we also found that quadripartite species achieved higher fibre digestibility at similar dietary fibre levels compared with tripartite species, supporting the hypothesis that the additional gut capacity offered by the praesaccus facilitates a longer retention and hence more thorough microbial fermentation of plant fibre.
    Matched MeSH terms: Fermentation/physiology
  3. Hussin FS, Chay SY, Zarei M, Meor Hussin AS, Ibadullah WZW, Zaharuddin ND, et al.
    Foods, 2020 Dec 09;9(12).
    PMID: 33316941 DOI: 10.3390/foods9121826
    The current study evaluated the γ-aminobutyric acid (GABA) producing ability from three novel strains of lactic acid bacteria (L. plantarum Taj-Apis362, assigned as UPMC90, UPMC91, and UPMC1065) co-cultured with starter culture in a yogurt. A combination of UPMC90 + UPMC91 with starter culture symbiotically revealed the most prominent GABA-producing effect. Response surface methodology revealed the optimized fermentation conditions at 39.0 °C, 7.25 h, and 11.5 mM glutamate substrate concentration to produce GABA-rich yogurt (29.96 mg/100 g) with desirable pH (3.93) and water-holding capacity (63.06%). At 2% glucose to replace pyridoxal-5-phosphate (PLP), a cofactor typically needed during GABA production, GABA content was further enhanced to 59.00 mg/100 g. In vivo study using this sample revealed a blood pressure-lowering efficacy at 0.1 mg/kg GABA dosage (equivalent to 30 mg/kg GABA-rich yogurt) in spontaneously hypertensive rats. An improved method to produce GABA-rich yogurt has been established, involving shorter fermentation time and lower glutamate concentration than previous work, along with glucose induction that omits the use of costly PLP, fostering the potential of developing a GABA-rich functional dairy product through natural fermentation with desirable product quality and antihypertensive property.
    Matched MeSH terms: Fermentation
  4. Wei J, Ren W, Wang L, Liu M, Tian X, Ding G, et al.
    J Sci Food Agric, 2020 Dec;100(15):5627-5636.
    PMID: 32712996 DOI: 10.1002/jsfa.10690
    BACKGROUND: Serofluid dish, a traditional Chinese fermented food, possesses unique flavors and health beneficial effects. These properties are likely due to the sophisticated metabolic networks during fermentation, which are mainly driven by microbiota. However, the exact roles of metabolic pathways and the microbial community during this process remain equivocal.

    RESULTS: Here, we investigated the microbial dynamics by next-generation sequencing, and outlined a differential non-targeted metabolite profiling in the process of serofluid dish fermentation using the method of hydrophilic interaction liquid chromatography column with ultra-high-performance liquid chromatography-quadruple time-of-flight mass spectrometry. Lactobacillus was the leading genus of bacteria, while Pichia and Issatchenkia were the dominant fungi. They all accumulated during fermentation. In total, 218 differential metabolites were identified, of which organic acids, amino acids, sugar and sugar alcohols, fatty acids, and esters comprised the majority. The constructed metabolic network showed that tricarboxylic acid cycle, urea cycle, sugar metabolism, amino acids metabolism, choline metabolism, and flavonoid metabolism were regulated by the fermentation. Furthermore, correlation analysis revealed that the leading fungi, Pichia and Issatchenkia, were linked to organic acids, amino acid and sugar metabolism, flavonoids, and several other flavor and functional components. Antibacterial tests indicated the antibacterial effect of serofluid soup against Salmonella and Staphylococcus.

    CONCLUSION: This work provides new insights into the complex microbial and metabolic networks during serofluid dish fermentation, and a theoretical basis for the optimization of its industrial production. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Fermentation
  5. Tang PL, Hassan O
    BMC Chem, 2020 Dec;14(1):7.
    PMID: 32043090 DOI: 10.1186/s13065-020-0663-y
    This study was conducted to evaluate the potential of pineapple peel (PP) and pineapple crown leaves (PCL) as the substrate for vanillic acid and vanillin production. About 202 ± 18 mg L-1 and 120 ± 11 mg L-1 of ferulic acid was produced from the PP and PCL respectively. By applied response surface methodology, the ferulic acid yield was increased to 1055 ± 160 mg L-1 by treating 19.3% of PP for 76 min, and 328 ± 23 mg L-1 by treating 9.9% of PCL for 36 min in aqueous sodium hydroxide solution at 120 °C. The results revealed that PP extract was better than PCL extract for vanillic acid and vanillin production. Furthermore, the experiment also proved that large volume feeding was more efficient than small volume feeding for high vanillic acid and vanillin yield. Through large volume feeding, about 7 ± 2 mg L-1 of vanillic acid and 5 ± 1 mg L-1 of vanillin was successfully produced from PP extract via Aspergillus niger fermentation.
    Matched MeSH terms: Fermentation
  6. Jenol MA, Ibrahim MF, Kamal Bahrin E, Abd-Aziz S
    Bioprocess Biosyst Eng, 2020 Nov;43(11):2027-2038.
    PMID: 32572569 DOI: 10.1007/s00449-020-02391-9
    Sago hampas is a starch-based biomass from sago processing industries consisted of 58% remaining starch. This study has demonstrated the bioconversion of sago hampas to volatile fatty acids (VFAs) by Clostridium beijerinckii SR1 via anaerobic digestion. Higher total VFAs were obtained from sago hampas (5.04 g/L and 0.287 g/g) as compared to commercial starch (5.94 g/L and 0.318 g/g). The physical factors have been investigated for the enhancement of VFAs production using one-factor-at-a-time (OFAT). The optimum condition; 3% substrate concentration, 3 g/L of yeast extract concentration and 2 g/L of ammonium nitrate enhanced the production of VFAs by 52.6%, resulted the total VFAs produced is 7.69 g/L with the VFAs yield of 0.451 g/g. VFAs hydrolysate produced successfully generated 273.4 mV of open voltage circuit and 61.5 mW/m2 of power density in microbial fuel cells. It was suggested that sago hampas provide as an alternative carbon feedstock for bioelectricity generation.
    Matched MeSH terms: Fermentation
  7. Oslan SNH, Tan JS, Abbasiliasi S, Ziad Sulaiman A, Saad MZ, Halim M, et al.
    Microorganisms, 2020 Oct 24;8(11).
    PMID: 33114463 DOI: 10.3390/microorganisms8111654
    Growth of mutant gdhA Pasteurella multocida B:2 was inhibited by the accumulation of a by-product, namely ammonium in the culture medium during fermentation. The removal of this by-product during the cultivation of mutant gdhA P. multocida B:2 in a 2 L stirred-tank bioreactor integrated with an internal column using cation-exchange adsorption resin for the improvement of cell viability was studied. Different types of bioreactor system (dispersed and internal) with resins were successfully used for ammonium removal at different agitation speeds. The cultivation in a bioreactor integrated with an internal column demonstrated a significant improvement in growth performance of mutant gdhA P. multocida B:2 (1.05 × 1011 cfu/mL), which was 1.6-fold and 8.4-fold as compared to cultivation with dispersed resin (7.2 × 1010 cfu/mL) and cultivation without resin (1.25 × 1010 cfu/mL), respectively. The accumulation of ammonium in culture medium without resin (801 mg/L) was 1.24-fold and 1.37-fold higher than culture with dispersed resin (642.50 mg/L) and culture in the bioreactor integrated with internal adsorption (586.50 mg/L), respectively. Results from this study demonstrated that cultivation in a bioreactor integrated with the internal adsorption column in order to remove ammonium could reduce the inhibitory effect of this by-product and improve the growth performance of mutant gdhA P. multocida B:2.
    Matched MeSH terms: Fermentation
  8. Mustafa SE, Mustafa S, Ismail A, Abas F, Abd Manap MY, Ahmed Hamdi OA, et al.
    Heliyon, 2020 Oct;6(10):e05298.
    PMID: 33134584 DOI: 10.1016/j.heliyon.2020.e05298
    The influence of commercial prebiotics (fructo-oligosaccharides and inulin) and sugars (glucose and sucrose) on enhancing equol production from soymilk isoflavones by Bifidobacterium longum BB536 and Bifidobacterium breve ATCC 15700 was evaluated in vitro. Sterilized soymilk was inoculated with each bacterial species at 37 °C for 48 h. The growth and β-glucosidase enzyme activity for the two Bifidobacterium species in soymilk throughout fermentation were assessed. The highest viable count for B. breve (8.75 log CFU/ml) was reached at 36 h and for B. longum (8.55 log CFU/ml) at 24 h. Both bacterial species displayed β-glucosidase activity. B. breve showed increased enzyme activity (4.126 U) at 36 h, while B. longum exhibited maximum activity (3.935 U) at 24 h of fermentation. Among the prebiotics screened for their effect in isoflavones transformation to equol, inulin delivered the highest effect on equol production. The co-culture of B. longum BB536 and B. breve ATCC15700 in soymilk supplemented with inulin produced the highest level (11.49 mmol/l) of equol at 48 h of fermentation process. Level of daidzin declined whereas that of daidzein increased, and then gradually decreased due to formation of equol when soymilk was fermented using bifidobacterial. This suggests that the nutritional value of soymilk may be increased by increasing bioavailability of the bioactive ingredients. Collectively these data identify probiotics and prebiotic combinations suitable for inclusion in soymilk to enhance equol production.
    Matched MeSH terms: Fermentation
  9. Wu Y, Ge S, Xia C, Cai L, Mei C, Sonne C, et al.
    Bioresour Technol, 2020 Oct;313:123675.
    PMID: 32563796 DOI: 10.1016/j.biortech.2020.123675
    An innovative approach was developed by incorporating high-pressure CO2 into the separate hydrolysis-fermentation of aspen leftover branches, aiming to enhance the bioethanol production efficiency. The high-pressure CO2 significantly increased the 72-h enzymatic hydrolysis yield of converting aspen into glucose from 53.8% to 82.9%. The hydrolysis process was performed with low enzyme loading (10 FPU g-1 glucan) with the aim of reducing the cost of fuel bioethanol production. The ethanol yield from fermentation of the hydrolyzed glucose using yeast (Saccharomyces cerevisiae) was 8.7 g L-1, showing increment of 10% compared with the glucose control. Techno-economic analysis indicated that the energy consumption of fuel bioethanol production from aspen branch chips was reduced by 35% and the production cost was cut 44% to 0.615 USD L-1, when 68 atm CO2 was introduced into the process. These results furtherly emphasized the low carbon footprint of this sustainable energy production approach.
    Matched MeSH terms: Fermentation
  10. Jawan R, Abbasiliasi S, Tan JS, Mustafa S, Halim M, Ariff AB
    Microorganisms, 2020 Sep 23;8(10).
    PMID: 32977375 DOI: 10.3390/microorganisms8101454
    Antibacterial peptides or bacteriocins produced by many strains of lactic acid bacteria have been used as food preservatives for many years without any known adverse effects. Bacteriocin titres can be modified by altering the physiological and nutritional factors of the producing bacterium to improve the production in terms of yield and productivity. The effects of culture conditions (initial pH, inoculum age and inoculum size) and medium compositions (organic and inorganic nitrogen sources; carbon sources) were assessed for the production of bacteriocin-like inhibitory substances (BLIS) by Lactococcus lactis Gh1 in shake flask cultures. An inoculum of the mid-exponential phase culture at 1% (v/v) was the optimal age and size, while initial pH of culture media at alkaline and acidic state did not show a significant impact on BLIS secretion. Organic nitrogen sources were more favourable for BLIS production compared to inorganic sources. Production of BLIS by L. lactis Gh1 in soytone was 1.28-times higher as compared to that of organic nitrogen sources ((NH4)2SO4). The highest cell concentration (XmX = 0.69 ± 0.026 g·L-1) and specific growth rate (μmax = 0.14 h-1) were also observed in cultivation using soytone. By replacing carbon sources with fructose, BLIS production was increased up to 34.94% compared to BHI medium, which gave the biomass cell concentration and specific growth rate of 0.66 ± 0.002 g·L-1 and 0.11 h-1, respectively. It can be concluded that the fermentation factors have pronounced influences on the growth of L. lactis Gh1 and BLIS production. Results from this study could be used for subsequent application in process design and optimisation for improving BLIS production by L. lactis Gh1 at larger scale.
    Matched MeSH terms: Fermentation
  11. Tan HT, Chek MF, Lakshmanan M, Foong CP, Hakoshima T, Sudesh K
    Int J Biol Macromol, 2020 Sep 15;159:250-257.
    PMID: 32417540 DOI: 10.1016/j.ijbiomac.2020.05.064
    Among the various types of polyhydroxyalkanoate (PHA), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] has a high potential to serve as commercial bioplastic due to its striking resemblance to petroleum-based plastics. In this study, five different genotypes of Cupriavidusnecator transformants harbouring the phaCBP-M-CPF4 gene (including PHB¯4/pBBR1-CBP-M-CPF4) were developed to evaluate the efficiency of 3HHx monomer incorporation. The fraction of 3-hydroxyhexanoate (3HHx) monomer that was incorporated into the PHA synthesized by these C. necator transformants using palm oil as the sole carbon source, was examined. Overall, co-expression of enoyl-CoA hydratase gene (phaJ1) from Pseudomonas aeruginosa, along with PHA synthase (PhaC), increased the 3HHx composition in the PHA copolymer. The differences in the enzyme activities of β-ketothiolase (PhaACn) and NADPH-dependent acetoacetyl-CoA reductase (PhaBCn) of the C. necator mutant hosts used in this study, were observed to alter the 3HHx composition and molecular weight of the PHA copolymer produced. The 3HHx fractions in the P(3HB-co-3HHx) produced by these C. necator transformants ranged between 1 and 18 mol%, while the weight-average molecular weight ranged from 0.7 × 106 to 1.8 × 106 Da. PhaCBP-M-CPF4 displayed a typical initial lag-phase and a relatively low synthase activity in the in vitro enzyme assay, which is thought to be the reason for the higher molecular weights of PHA obtained in this study.
    Matched MeSH terms: Fermentation*
  12. Nawawi KNM, Belov M, Goulding C
    Eur J Nutr, 2020 Aug;59(5):2237-2248.
    PMID: 31520160 DOI: 10.1007/s00394-019-02074-6
    INTRODUCTION: There is growing evidence that a diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP) improves symptoms in irritable bowel syndrome (IBS) patients. We aimed to retrospectively investigate the effects of this diet in Irish IBS cohort over a 12-month follow-up period, including after re-introduction of the high FODMAP foods.

    METHODS: All the tertiary referrals seen by an FODMAP-trained dietician were reviewed (2013-2016). Patients were evaluated for IBS symptoms by a questionnaire (four-point Likert scale). Subsequently, advice regarding the low FODMAP diet was given. Symptoms' response was assessed at 3-, 6-, and 12-month follow-up, by use of the same questionnaire. Re-introduction of high FODMAP foods was aimed to commence at the subsequent follow-up.

    RESULTS: A total of 164 patients were identified. Thirty-seven patients were excluded due to failure to attend for follow-up. Hundred and twenty-seven patients (77% patients, of which 85% were female) completed the initial 3-month follow-up. Forty-five percent (74/164) and twenty-five percent (41/164) of the patients had continued follow-up at 6 and 12 months, respectively. Of the 127 patients who returned for follow-up, their commonest baseline symptoms were lethargy (92%), bloating (91%), flatulence (91%), and abdominal pain (89%). All symptoms were significantly improved at the initial follow-up (p 

    Matched MeSH terms: Fermentation
  13. Chen PW, Cui ZY, Ng HS, Chi-Wei Lan J
    J Biosci Bioeng, 2020 Aug;130(2):195-199.
    PMID: 32370929 DOI: 10.1016/j.jbiosc.2020.03.011
    Ectoine production using inexpensive and renewable biomass resources has attracted great interest among the researchers due to the low yields of ectoine in current fermentation approaches that complicate the large-scale production of ectoine. In this study, ectoine was produced from corn steep liquor (CSL) and soybean hydrolysate (SH) in replacement to yeast extract as the nitrogen sources for the fermentation process. To enhance the bacterial growth and ectoine production, biotin was added to the Halomonas salina fermentation media. In addition, the effects addition of surfactants such as Tween 80 and saponin on the ectoine production were also investigated. Results showed that both the CSL and SH can be used as the nitrogen source substitutes in the fermentation media. Higher amount of ectoine (1781.9 mg L-1) was produced in shake flask culture with SH-containing media as compared to CSL-containing media. A total of 2537.0 mg L-1 of ectoine was produced at pH 7 when SH-containing media was applied in the 2 L batch fermentation. Moreover, highest amount of ectoine (1802.0 mg L-1) was recorded in the SH-containing shake flask culture with addition of 0.2 μm mL-1 biotin. This study demonstrated the efficacy of industrial waste as the nutrient supplement for the fermentation of ectoine production.
    Matched MeSH terms: Fermentation*
  14. Loh WLC, Huang KC, Ng HS, Lan JC
    J Biosci Bioeng, 2020 Aug;130(2):187-194.
    PMID: 32334990 DOI: 10.1016/j.jbiosc.2020.03.007
    Carotenoids serve as one of the most important group of naturally-occurring lipid-soluble pigments which exhibit great biological activities such as antioxidant, anti-inflammatory and provitamin A activities. Owing to their advantageous health effects, carotenoids are widely applied in various industries. Microbial carotenoids synthesis therefore has attracted increasing attention in recent years. In the present study, a marine microorganism originally isolated from seawater in northern Taiwan was determined to be a strain of Gordonia terrae based on its 16S rRNA gene sequence. The strain G. terrae TWRH01 has the ability to synthesize and accumulate the intracellular pigments was identified by gas chromatography-mass spectrometry (GC-MS). The biochemical production characteristics of this strain were studied by employing different fermentation strategies. Findings suggested that G. terrae TWRH01 can actively grow and efficiently synthesize carotenoids in medium adjusted to pH 7 containing 16 g L-1 sucrose as the carbon source, 16 g L-1 yeast extract as the nitrogen source, 0.6 M NaCl concentration, and supplemented with 0.45% (v/v) 1 M CaCl2. Results revealed that the optimization of fermentation yielded 15.29 g L-1 dry biomass and 10.58 μmol L-1 relative β-carotene concentration. According to GC-MS analysis, the orange-red colored pigments produced were identified as carotenoid derivatives, mainly echinenone and adonixanthin 3'-β-d-glucoside. Therefore, the new bacterial strain showed a highly potential bioresource for the commercial production of natural carotenoids.
    Matched MeSH terms: Fermentation*
  15. Chen H, Zeng X, Zhou Y, Yang X, Lam SS, Wang D
    J Hazard Mater, 2020 07 15;394:122570.
    PMID: 32244145 DOI: 10.1016/j.jhazmat.2020.122570
    The removal of antibiotics and resistance genes in wastewater treatment plants has attracted widespread attention, but the potential role of residual antibiotics in the disposal of waste activated sludge (WAS) has not been clearly understood. In this study, the effect of roxithromycin (ROX) on volatile fatty acid (VFA) recovery from WAS anaerobic fermentation was investigated. The experimental results showed that ROX made a positive contribution to the production of VFAs. With the increase of ROX dosages from 0 to 100 mg/kg TSS, the maximum accumulation of VFAs increased from 295 to 610 mg COD/L. Mechanism studies revealed that ROX promoted the solubilization of WAS by facilitating the disruption of extracellular polymeric substances. In addition, ROX enhanced the activity of acetate kinase and inhibited the activities of α-glucosidase and coenzyme F420, and showed a stronger inhibitory effect on methane production than the hydrolysis process, thus resulting in an increase in VFA accumulation. These findings provide a new insight for the role of antibiotics in anaerobic fermentation of WAS.
    Matched MeSH terms: Fermentation
  16. Luthfi AAI, Tan JP, Isa NFAM, Bukhari NA, Shah SSM, Mahmod SS, et al.
    Bioprocess Biosyst Eng, 2020 Jul;43(7):1153-1169.
    PMID: 32095989 DOI: 10.1007/s00449-020-02311-x
    This study aimed to enhance the crystallizability of bio-based succinic acid for its efficient recovery while maintaining the end product at the highest purity. Immobilization of Actinobacillus succinogenes was initially evaluated based on three different carriers: volcanic glass, clay pebbles, and silica particles. The adsorption capacity of metabolites with a low concentration (10 g/L) and a high concentration (40 g/L) was investigated. It was demonstrated that clay pebbles adsorbed the least succinic acid (
    Matched MeSH terms: Fermentation*
  17. Wu Y, Han Y, Tao Y, Li D, Xie G, Show PL, et al.
    Food Res Int, 2020 06;132:109098.
    PMID: 32331662 DOI: 10.1016/j.foodres.2020.109098
    In this study, four different selected wall materials (namely gelatin, soy protein isolate, maltodextrin and Arabic gum) were applied for blueberry anthocyanin extract encapsulation. The effect of these wall material types on the release and degradation of anthocyanin and the modulation of gut microbiota during in vitro simulated gastrointestinal digestion and colonic fermentation were investigated. It was found that the encapsulation of anthocyanin extract using appropriate wall material could significantly enhance the colonic accessibility of anthocyanins. Soy protein isolate and gelatin delayed the release of anthocyanins, whereas the other two wall materials displayed no significant effect on the release time of anthocyanins. Gut microbiota mainly metabolized some phenolic compounds such as 4-hydroxycinnamic acid and chlorogenic acid. Meanwhile, different fermented anthocyanin extract microcapsule broth could significantly decrease the composition and abundance of Firmicutes and increase that of Bacteroidetes. Furthermore, the presence of anthocyanin extract microcapsules, especially those encapsulated with soy protein isolate, promoted the biosynthesis of short-chain fatty acids by gut microbiota. It is concluded that, amongst the wall materials studied, soy protein isolate appeared to be a functional and suitable candidate to delay anthocyanin release and prevent disease through the promotion of gut health.
    Matched MeSH terms: Fermentation
  18. Hassimi AH, Ezril Hafiz R, Muhamad MH, Sheikh Abdullah SR
    J Environ Manage, 2020 Apr 15;260:110046.
    PMID: 32090804 DOI: 10.1016/j.jenvman.2019.110046
    This study was conducted to examine the production of bioflocculants using agricultural wastewater as a fermentation feedstock under different temperatures and incubation times. The mechanism of flocculation was studied to gain a detailed understanding of the flocculation activity. The highest bioflocculant yield (2.03 g/L) at a temperature of 40 °C was produced in a palm oil mill effluent medium (BioF-POME). Bioflocculant produced from a fermented SME medium (BioF-SME) showed the highest activity. The flocculation tests for colour and turbidity removal from lake water indicated that BioF-SME and BioF-POME performed comparably to commercial alum. Analyses of the bioflocculants using liquid chromatography-mass spectrometry (LC-MS) found that the bioflocculants contained xylose and glucose. The mechanism study showed that flocculation occurred through charge neutralization and interparticle bridging between the bioflocculant polymer and the particles in the lake water. Thus, agricultural wastewater can be used as a fermentation feedstock for high-quality bioflocculants.
    Matched MeSH terms: Fermentation
  19. Abd Rahman NH, Md Jahim J, Abdul Munaim MS, A Rahman R, Fuzi SFZ, Md Illias R
    Enzyme Microb Technol, 2020 Apr;135:109495.
    PMID: 32146929 DOI: 10.1016/j.enzmictec.2019.109495
    E. coli has been engineered to produce xylitol, but the production faces bottlenecks in terms of production yield and cell viability. In this study, recombinant E. coli (rE. coli) was immobilized on untreated and treated multiwalled carbon nanotubes (MWCNTs) for xylitol production. The immobilized rE. coli on untreated MWCNTs gave the highest xylitol production (5.47 g L-1) and a productivity of 0.22 g L-1 h-1. The doubling time for the immobilized cells increased up to 20.40 h and was higher than that of free cells (3.67 h). Cell lysis of the immobilized cells was reduced by up to 73 %, and plasmid stability improved by up to 17 % compared to those of free cells. Xylitol production using the optimum parameters (pH 7.4, 0.005 mM and 29 °C) achieved a xylitol production and productivity of 6.33 g L-1 and 0.26 g L-1 h-1, respectively. A seven-cycle repeated batch fermentation was carried out for up to 168 h, which showed maximum xylitol production of 7.36 g L-1 during the third cycle. Hence, this new adsorption immobilization system using MWCNTs is an alternative to improve the production of xylitol.
    Matched MeSH terms: Fermentation
  20. Packiam KAR, Ramanan RN, Ooi CW, Krishnaswamy L, Tey BT
    Appl Microbiol Biotechnol, 2020 Apr;104(8):3253-3266.
    PMID: 32076772 DOI: 10.1007/s00253-020-10454-w
    Over the past few decades, Escherichia coli (E. coli) remains the most favorable host among the microbial cell factories for the production of soluble recombinant proteins. Recombinant protein production (RPP) via E. coli is optimized at the level of gene expression (expression level) and the process condition of fermentation (process level). Presently, the reported studies do not give a clear view on the selection of methods employed in the optimization of RPP. Here, we have reviewed various optimization methods and their preferences with respect to the factors at expression and process levels to achieve the optimal levels of soluble RPP. With a greater understanding of these optimization methods, we proposed a stepwise methodology linking the factors from both levels for optimizing the production of soluble recombinant protein in E. coli. The proposed methodology is further explained through five sets of examples demonstrating the optimization of RPP at both expression and process levels.Key Points• Stepwise methodology of optimizing recombinant protein production is proposed.• In silico tools can facilitate the optimization of gene- and protein-based factors.• Optimization of gene- and protein-based factors aids host-vector selection.• Statistical optimization is preferred for achieving optimal levels of process factors.
    Matched MeSH terms: Fermentation*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links