Displaying publications 61 - 80 of 118 in total

Abstract:
Sort:
  1. Maimunah, W., Kwong, CS, Siti Rozana, M.S., Shahariah, A.
    MyJurnal
    Objective : This scientific writing is meant for describing the problems faced by pharmacy staffs during heavy flood situations in Johore and the actions to be taken for solving these problems.
    Methodology : This finding is in accordance to the observations, experiences and interview of staffs (through questionnaires), who are involved directly and indirectly in preparations of emergency during flood. Efficiency of pharmaceutical services provided during flood is evaluated.
    Result : Several problems were identified when providing pharmaceutical services, such as purchasing and supplying of items, pre-packing, preparing drug charts, visit to relief centers, post-flood health campaign, and doctors from NGOs prescibing medicines out of MOH drug formulary. During the period of flood, usage of drug and non-drug items increases drastically resulting in the current stock in store were not sufficient to compensate for the high demand. Moreover, inaccessibility of certain roads in districts such as Segamat and Kota Tinggi, aggravated and worsen the problems of obtaining goods from suppliers. Workload of pharmacy staffs increased especially in activities such as pre-packing and preparing drug charts due to shortage of manpower.
    Conclusion : Even though workload increased drastically during flood, pharmaceutical services provided by the state pharmacy are still able to maintain good quality services to cater for the need of healthcare professionals and patients. Throughout the flood period, all the difficulties and hurdles faced by us had been solved; due to the cooperation from other agencies. Besides, by writing this article, a disaster preparedness guideline is produced for the purpose of improving management of future disasters.
    Matched MeSH terms: Floods
  2. Norzaida Abas, Zalina Mohd Daud, Norazizi Mohamed, Syafrina Abdul Halim
    MyJurnal
    Climate change is undeniably the greatest issue facing our society. Around the globe,
    increasingly unpredictable weather patterns and extreme weather events are
    observed, causing considerable risks to human lives, properties and health safety and
    also on the natural ecosystem. The magnitude and impacts of climate change are
    growing, and particularly in Malaysia, studies show increases in temperature and
    changes in rainfall regimes. Such changes have profound implications, especially for
    coastal communities. Since knowledge and perceptions of the public on climate change
    could affect the success of implemented adaptation and mitigation options, it is
    essential to conduct assessments to gather such information. A public awareness and
    perception study was conducted at Sabak and Tanjung Karang, two coastal
    communities which were affected by changes in sea level and flooding incidences. The
    knowledge level and perceptions of climate change among respondents were assessed
    covering areas such as level of awareness of the respondents, their perceptions of
    climate change issues, their sentiments on climate change and adaptation measures,
    their socio-economic activity and the effect on their lives. Results show that majority
    of respondents were aware of climate change issues and challenges. High levels of
    concern about climate change were expressed with the majority were worried and
    uncertain about the climate change impact and hoped for government measures.
    Almost half of respondents cited significant damage to their properties and reduction
    in income generation. Overall, the results of the present study gave insights of the
    affected parties on perceptions and awareness pertaining to climate change, which
    could potentially be used to promote greater awareness of climate change matters and
    to gauge the public response to related policies and strategies.
    Matched MeSH terms: Floods
  3. Masum KM, Mansor A, Sah SAM, Lim HS
    J Environ Manage, 2017 Sep 15;200:468-474.
    PMID: 28618318 DOI: 10.1016/j.jenvman.2017.06.009
    Forest ownership is considered as a vital aspect for sustainable management of forest and its associated biodiversity. The Global Forest Resources Assessment 2015 reported that privately owned forest area are increasing on a global scale, but deforestation was found very active in privately owned hill forest areas of Malaysia. Penang State was purposively chosen as it has been experiencing rapid and radical changes due to urban expansion over the last three decades. In this study, analyses of land-use changes were done by PCI Geomatica using Landsat images from 1991 to 2015, future trends of land-use change were assessed using EXCEL forecast function, and its impact on the surrounding environment were conducted by reviewing already published articles on changing environment of the study area. This study revealed an annual deforestation rate of 1.4% in Penang Island since 1991. Trend analysis forecasted a forest area smaller than the current forest reserves by the year 2039. Impact analysis revealed a rapid biodiversity loss with increasing landslides, mudflows, water pollution, flash flood, and health hazard. An immediate ban over hill-land development is crucial for overall environmental safety.
    Matched MeSH terms: Floods
  4. Malek, M. A., Heyrani, M., Juneng, Liew
    ASM Science Journal, 2015;9(1):8-19.
    MyJurnal
    In this study, the implementation of the Regional Climate Model into the hydrodynamic model has been applied for streamflow projection on a river located at the south of Peninsular Malaysia within the years 2070 till 2099. The data has been obtained from a Regional Climate Model (RCM), named Précis, on a daily basis. It begins by comparing historical rainfall data generated from Précis versus the actual gauged recorded rainfall data from Department of Irrigation and Drainage Malaysia (DID). The bias of the generated rainfall data has been reduced by statistical techniques. The same has been applied to the future generated rainfall data from 2070 to 2099. Using the generated precipitation data as input to the hydrological model, results in the daily output of river discharge identified as the main contributor of flood occurrences. Based on the results of the hydrological model utilised, e.g. HEC-HMS, comparison was made between the future and historical generated discharge data using Précis between the years 1960 till 1998. Dividing a year into three segments, e.g. January-April, May-August, SeptemberDecember, the results show that there would be a significant drop of peak discharge in the third segment and an increase in discharge during the second segment. The first part remains almost with no changes. As an addition, the drop of the peak shows reduction in the probability of flood occurrences. It also indicates the reduction in water storage capacity which coherently affects the water supply scheme
    Matched MeSH terms: Floods
  5. Bathrellos GD, Skilodimou HD, Chousianitis K, Youssef AM, Pradhan B
    Sci Total Environ, 2017 Jan 01;575:119-134.
    PMID: 27736696 DOI: 10.1016/j.scitotenv.2016.10.025
    Preparation of natural hazards maps are vital and essential for urban development. The main scope of this study is to synthesize natural hazard maps in a single multi-hazard map and thus to identify suitable areas for the urban development. The study area is the drainage basin of Xerias stream (Northeastern Peloponnesus, Greece) that has frequently suffered damages from landslides, floods and earthquakes. Landslide, flood and seismic hazard assessment maps were separately generated and further combined by applying the Analytical Hierarchy Process (AHP) and utilizing a Geographical Information System (GIS) to produce a multi-hazard map. This map represents the potential suitability map for urban development in the study area and was evaluated by means of uncertainty analysis. The outcome revealed that the most suitable areas are distributed in the southern part of the study area, where the landslide, flood and seismic hazards are at low and very low level. The uncertainty analysis shows small differences on the spatial distribution of the suitability zones. The produced suitability map for urban development proves a satisfactory agreement between the suitability zones and the landslide and flood phenomena that have affected the study area. Finally, 40% of the existing urban pattern boundaries and 60% of the current road network are located within the limits of low and very low suitability zones.
    Matched MeSH terms: Floods
  6. Chen W, Li Y, Xue W, Shahabi H, Li S, Hong H, et al.
    Sci Total Environ, 2020 Jan 20;701:134979.
    PMID: 31733400 DOI: 10.1016/j.scitotenv.2019.134979
    Floods are one of the most devastating types of disasters that cause loss of lives and property worldwide each year. This study aimed to evaluate and compare the prediction capability of the naïve Bayes tree (NBTree), alternating decision tree (ADTree), and random forest (RF) methods for the spatial prediction of flood occurrence in the Quannan area, China. A flood inventory map with 363 flood locations was produced and partitioned into training and validation datasets through random selection with a ratio of 70/30. The spatial flood database was constructed using thirteen flood explanatory factors. The probability certainty factor (PCF) method was used to analyze the correlation between the factors and flood occurrences. Consequently, three flood susceptibility maps were produced using the NBTree, ADTree, and RF methods. Finally, the area under the curve (AUC) and statistical measures were used to validate the flood susceptibility models. The results indicated that the RF method is an efficient and reliable model in flood susceptibility assessment, with the highest AUC values, positive predictive rate, negative predictive rate, sensitivity, specificity, and accuracy for the training (0.951, 0.892, 0.941, 0.945, 0.886, and 0.915, respectively) and validation (0.925, 0.851, 0.938, 0.945, 0.835, and 0.890, respectively) datasets.
    Matched MeSH terms: Floods
  7. Nguyen KA, Liou YA, Terry JP
    Sci Total Environ, 2019 Sep 10;682:31-46.
    PMID: 31121354 DOI: 10.1016/j.scitotenv.2019.04.069
    Typhoons have devastating impacts across many Asian countries. Vietnam is presently one of the most disaster-prone nations. Typhoons regularly disrupt human lives and livelihoods in various ways and cause significant damage. Making efficient policy decisions to minimize the vulnerability of affected communities is crucial. This requires a deep understanding of the factors that make a society vulnerable to extreme events and natural disasters. An appropriate approach is integrating the three dimensions of hazard, exposure and sensitivity, and community adaptive capacity. However, the vulnerability and adaptive capacity response to typhoons within Vietnam is poorly investigated. Here, we develop a conceptual framework that incorporates 21 indicators to identify vulnerability and adaptive capacity (VAC) using geospatial techniques at regional scales, applied over Vietnam. We find large spatial differences in VAC and are able to identify the top-priority regions that need to enhance their adaptation to typhoons. The Southern Coastal area, South East and Red River Delta demonstrate high and very high vulnerability because of their physical features and the intensity of typhoons that frequently cross these parts of Vietnam. The lower Mekong Delta and Northern Coastal areas are vulnerable to typhoon-driven flood threats, in particular where compounded by sea-level rise. Our framework successfully identified the spatial distribution and different levels of VAC within acceptable limits of uncertainty. It can therefore serve as a template to tackle national issues in disaster risk reduction in Vietnam and assist in the development of suitable mitigation strategies to achieve sustainable outcomes.
    Matched MeSH terms: Floods
  8. Nyanti L, Nur 'Asikin R, Ling T, Jongkar G
    Sains Malaysiana, 2012;41:1517-1525.
    This study aimed to document the fish diversity and water quality at Semariang mangrove area, Kuching, Sarawak, which is located at the eastern part of Kuching Wetland National Park. Field samplings were carried out in 2009 during the construction of the flood mitigation channel at the eastern part of the park. A total of 21 families represented by 37 species of fish were caught from the area. The six dominant families in terms of the number of individuals caught were Mugilidae (16%), Leiognathidae (16%), Ambassidae (11%), Ariidae (9%), Lutjanidae (8%) and Plotosidae (6%). In terms of the percentage of six dominant genera based on the number of individuals caught, 16% was represented by Valamugil, 11% by Ambassis, 10% by Gazza, 9% by Arius, 8% by Lutjanus and 6% by Plotosus. The values of diversity and richness indices were lower at stations located close to the flood mitigation channel. Similarly, the concentrations of dissolved oxygen were lower and total suspended solids were significantly higher at stations close to the channel and sand mining area. Therefore, fish fauna and water quality at Semariang mangrove area were affected during the construction of the flood mitigation channel.
    Matched MeSH terms: Floods
  9. Shamsul Azhar Shah, Suzuki H, Mohd Rohaizat Hassan, Saito R, Nazarudin Safian, Shaharudin Idrus
    Sains Malaysiana, 2012;41:911-919.
    The determination of the high-risk area and clusters of typhoid cases is critical in typhoid control. The purpose of this study was to identify and describe the epidemiology and spatial distribution of typhoid in four selected districts in Kelantan using GIS (geographical information system). A total of 1215 (99%) of the cases were coordinated with GPS (global positioning system) and mapping was done using ArcGIS 9.2. Spatial analysis was performed to determine the cluster and high-risk area of typhoid. Results showed that typhoid incidence was not associated with race and sex. Most affected were from the age group of 5-14 followed by 15-24 year olds. Nine sub-districts were categorized as highly endemic. In addition typhoid has shown a significant tendency to cluster and a total of 22 hotspots were found in Kota Bharu, Bachok and Tumpat with a few sub districts identified as high risk for typhoid. No significant relationships between the treated water ratio and flood risk area were found with the cluster of cases. The cluster of typhoid cases in the endemic area did not appear to be related to environmental risk factors. Understanding the characteristics of these clusters would enable the prevention of typhoid disease in the future.
    Matched MeSH terms: Floods
  10. Khairil M, Wan Juliana WA, Nizam M, Razi Idris W
    Sains Malaysiana, 2014;43:1635-1643.
    Three forest types were recognized at Chini watershed namely inland, seasonal flood and riverine forests. The soil physico-chemical characteristics from the three forest types were investigated to determine the soil properties variation within a landscape scale. Thirty sampling stations were established, represented by fourteen inland, nine stations in seasonal flood forest and seven in riverine forest. In each station, three soil samples were taken at 0-15 cm depth by using an auger. The study showed 71% of the soil in the inland forest was found to be dominated by clay, 44% of the soil in the seasonal flood forest by clay loam and 42% of the soil in the riverine forest was dominated by silty clay. The pH of all three types of forest studied was acidic and insignificantly different. Organic matter content in the study sites was moderate. The mean of electric conductivity (EC) and cation exchange capacity (CEC) values in the studied soils were low. Based on ANOVA, there were significant differences of the available P and K, K+, Ca2+ and Mg2+ cations and electrical conductivity amongst the three forest types (p<0.05). Cluster analysis showed that the variations of the soil physico-chemical characteristics between the three forest types were low thus indicating that the soil physico-chemical investigated in this study were not the only main contributing factors in floristic variation of the three forest types in Chini watershed.
    Matched MeSH terms: Floods
  11. Othman A.K., Othman J., Sharifah Mastura S.A.
    This paper focuses on Langat River basin which is experiencing fast pace land use changes and accelerated soil erosion associated with land clearing and earthwork activities. Land use changes detected from Landsat imageries from 1989-1999 show that urban expansion is the most active, i.e. recording an expansion of 180% over that time period. The major land use reduction is the tropical dipterocarp rainforest located along the upper catchment of the Langat River and the mangrove forest found along Kuala Langat in the west. The 11% decline in the trend of the forest over that decade is anticipated to contribute in the near future. Results from logistic regression on the casual factors of rapid land use changes are attributed to three significant variables namely transport accessibility, population dynamics and agriculture. The eroded material due to land use changes enters into the Langat River systems as suspended sediments and contributed as non point source of pollution. Some finer sediment is being discharged offshore forming sediment plumes at the river estuary. Sediment plumes detected by Landsat TM imageries were analysed. It is found that the dispersion was not extensive and generally the suspended solids existed at low concentration (varying from 10-50 mg/l). This result is unexpected considering the rapid land use and land cover change that is occurring within the basins. These are mainly due to the loss of sediments during flooding into flood plain and active dredging of the river channels.
    Matched MeSH terms: Floods
  12. Tangang FT, Liew Juneng, Ester Salimun, Kwan MS, Loh JL, Halimatun Muhamad
    Sains Malaysiana, 2012;41:1355-1366.
    This paper provides an overview of the current available scientific knowledge pertaining to climate change and climate variability over Malaysia. Malaysia is situated in the western part of the Maritime Continent of the Southeast Asian region. Hence, regional climate change and climate variability over this region are of central importance to the understanding of climate change in Malaysia. The latest regional climate downscaling study indicates that, depending on the emission scenario, the mean surface temperature over Malaysia would increase by 3-5oC by the end of the 21st century. The mean precipitation is projected to decrease (increase) during Northern Hemisphere winter (summer). However, future variabilities associated with regional phenomena such as the monsoon, El Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Madden-Julian Oscillation (MJO) are largely unknown. Current knowledge on the intensity and frequency of future extreme events (drought and flood) is limited. This is also the case for regional sea level rise and long-term changes in regional seas, especially in the southern region of the South China Sea. We conclude that knowledge gap in the science of climate change over Malaysia and the surrounding region remains wide.
    Matched MeSH terms: Floods
  13. Phuchiwan Suriyawong, Elizabeth A. Bergey
    Sains Malaysiana, 2018;47:1379-1386.
    A series of check dams (or small dams in shallow streams) have been placed on many streams throughout Thailand and
    the number of them continue to increase. Check dam construction activities have been emphasized by the government
    and private sector entities over the last decade to prevent severe flood or drought due to changes in rainfall patterns. This
    study evaluated distribution of functional feeding groups (FFG) in a stream with a high density of check dams. Twelve
    sampling sites at three altitudes (500, 900 and 1500 m asl) included undammed and nearby dammed sections (above
    and below check dams) were used. Aquatic insects were collected monthly at each site for a year and categorized into
    FFG. Aquatic insect composition of undammed and above dam sites was different. Abundance within each FFG at above
    dam sites significantly differed from undammed sites. Taxonomic richness at 1500 and 900 m altitudes was decreased
    at above dam sites compared with the corresponding undammed sites, whereas above dam sites of 500 m altitude had
    higher richness than undammed site. High abundance of predators and collector-gatherers associated with reservoirs
    and fine sediment accumulation above dams, where filter-feeders were scarce. Shredder abundance varied among sites
    and was highest where leaf packs were most abundant. Scrapers were least abundant group and inconsistent with the
    dams. Distribution of FFG was similar to changes in other regulated streams. The composition of FFG reflected the
    stream ecosystem conditions through adaptation of communities to stream habitat and food resources, including those
    associated with check dam construction.
    Matched MeSH terms: Floods
  14. Arifin H, Kayode J, Arifin K, Zahir Z, Abdullah M, Azmi A
    Data Brief, 2020 Jun;30:105491.
    PMID: 32373680 DOI: 10.1016/j.dib.2020.105491
    The Transient Electro-Magnetic (TEM) geophysical technique was deployed to map and characterized the subsurface of Pahang River Basin along the East Coast Peninsula Malaysia. The data aimed at differentiating between the massive zones and the weak zones within the region, to also assess and differentiate the subsurface structures and comes up with recommendations for policy decision, formulation and plans on the flooding impact, surface water and groundwater managements, in addition to other environmental related issues ravaging the area. The data presented in this paper, showed the properties of the subsurface rocks underlain the region as beneficial to the Agriculturists; Climatologists; Engineers; Environmentalists; Geoscientists, Hydrologists and Policy formulation officers. The TEM data collection utilized a 100 m x 100 m single loop coil for both the Transmitter (Tx) loop and the Receiver (Rx) loop to produce a total surface area coverage of 10,000 m2 per survey line along a single profile. The total area covered in the data extended across an average area of 30 km x 40 km in parts of Maran, Temerloh and Jerantut districts, within the State of Pahang, East Coast, Peninsula Malaysia. The conductivity data recorded varied from -20 mS/m to about 440 mS/m at a maximum depth of about 375 m. On the other hand, the resistivity data recorded varied from 0 Oh-m to about 1000 Oh-m. The information derived from the data are intended for potential abstraction by the Malaysian Groundwater Management Board; the Department of Mineral and Geoscience; Department of Irrigation and Drainage; the Pahang State Water Board, and the Department of Agriculture.
    Matched MeSH terms: Floods
  15. Lupascu M, Varkkey H, Tortajada C
    Sci Total Environ, 2020 Jun 25;723:137988.
    PMID: 32392686 DOI: 10.1016/j.scitotenv.2020.137988
    Tropical peatland degradation due to oil palm plantation development has reduced peat's ability to naturally regulate floods. In turn, more severe and frequent flooding on peatlands could seriously impair plantation productivity. Understanding the roles of peatland ecosystems in regulating floods has become essential given the continued pressure on land resources, especially in Southeast Asia. However, the limited knowledge on this topic has resulted in the oversimplifications of the relationships between floods, commercial plantations and peatland sustainability, creating major disagreement among policymakers at different levels in governments, companies, NGOs and society. Hence, this study identifies whether flood policies are integrated within peatland management through a qualitative policy analysis of publicly available papers, government reports, and other official documents that discuss flooding, and/or more in general, hydrology in peatlands. Document analysis was then triangulated with data obtained from several semi-structured discussions. The analysis indicates that the industry on peatlands and the peatland's environmental sustainability could be threatened by increased flooding. We show that, in spite of this, flood policies in SE Asian countries like Malaysia and Indonesia have not been well-integrated into peatland management. We also discuss how the countries could move forward to overcome this problem.
    Matched MeSH terms: Floods
  16. Nurulhuda K, Gaydon DS, Jing Q, Zakaria MP, Struik PC, Keesman KJ
    J Sci Food Agric, 2018 Feb;98(3):865-871.
    PMID: 28940491 DOI: 10.1002/jsfa.8683
    Extensive modelling studies on nitrogen (N) dynamics in flooded soil systems have been published. Consequently, many N dynamics models are available for users to select from. With the current research trend, inclined towards multidisciplinary research, and with substantial progress in understanding of N dynamics in flooded soil systems, the objective of this paper is to provide an overview of the modelling concepts and performance of 14 models developed to simulate N dynamics in flooded soil systems. This overview provides breadth of knowledge on the models, and, therefore, is valuable as a first step in the selection of an appropriate model for a specific application. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
    Matched MeSH terms: Floods
  17. Qureshi MI, Yusoff RM, Hishan SS, Alam AF, Zaman K, Rasli AM
    Environ Sci Pollut Res Int, 2019 May;26(15):15496-15509.
    PMID: 30937745 DOI: 10.1007/s11356-019-04866-z
    The natural catastrophic events largely damage the country's sustainability agenda through massive human fatalities and infrastructure destruction. Although it is partially supported the economic growth through the channel of "Schumpeter creative destruction" hypothesis, however, it may not be sustained in the long-run. This study examined the long-run and causal relationships between natural disasters (i.e., floods, storm, and epidemic) and per capita income by controlling FDI inflows and foreign aid in the context of Malaysia, during the period of 1965-2016. The study employed time series cointegration technique, i.e., autoregressive distributed lag (ARDL)-bounds testing approach for robust inferences. The results show that flood, storm, and epidemic disasters substantially decrease the country's per capita income, while FDI inflows and foreign aid largely supported the country's economic growth in the short-run. These results are disappeared in the long-run, where flood and storm disasters exhibit the positive association with the economic growth to support the Schumpeter creative destruction hypothesis. The foreign aid decreases the per capita income and does not maintain the "aid-effectiveness" hypotheses in a given country. The causality estimates confirmed the disaster-led growth hypothesis, as the causality estimates running from (i) storm to per capita income, (ii) epidemic to per capita income, and (iii) storm to foreign aid. The results emphasized for making disaster action plans to reduce human fatalities and infrastructure for sustainable development.
    Matched MeSH terms: Floods
  18. Fears R, Abdullah KAB, Canales-Holzeis C, Caussy D, Haines A, Harper SL, et al.
    PLoS Med, 2021 Jul;18(7):e1003719.
    PMID: 34283834 DOI: 10.1371/journal.pmed.1003719
    Robin Fears and co-authors discuss evidence-informed regional and global policy responses to health impacts of climate change.
    Matched MeSH terms: Floods
  19. Ahmad R, Mohamad Z, Noh AY, Mohamad N, Hamzah MS, Mohammed NA, et al.
    Malays J Med Sci, 2008 Apr;15(2):47-51.
    PMID: 22589626 MyJurnal
    Disaster is a sudden event that associated with ecological changes, disruption of normal daily activities, destruction of infrastructures, loss of properties, and medical disabilities. In disaster, there is a mismatch between available resources and patients need for healthcare service. During flood disaster, the victims were predisposed to different type of illnesses for various reasons such as inadequate supply of clean water, poor sanitation or drainage system, unhealthy foods, and over-crowded relief centers. Mobile clinic is an option for delivering medical care for the disaster victims who often have a difficulty to access to the medical facilities. In this article we would like to share our experiences during the provision of humanitarian services for flood victims at District of Muar Johor. Common illnesses among the flood victims at visited relief centers and advantages of Mobile Medical Relief Team were also highlighted and discussed.
    Matched MeSH terms: Floods
  20. Abram NK, Xofis P, Tzanopoulos J, MacMillan DC, Ancrenaz M, Chung R, et al.
    PLoS One, 2014;9(6):e95388.
    PMID: 24887555 DOI: 10.1371/journal.pone.0095388
    Lowland tropical forests are increasingly threatened with conversion to oil palm as global demand and high profit drives crop expansion throughout the world's tropical regions. Yet, landscapes are not homogeneous and regional constraints dictate land suitability for this crop. We conducted a regional study to investigate spatial and economic components of forest conversion to oil palm within a tropical floodplain in the Lower Kinabatangan, Sabah, Malaysian Borneo. The Kinabatangan ecosystem harbours significant biodiversity with globally threatened species but has suffered forest loss and fragmentation. We mapped the oil palm and forested landscapes (using object-based-image analysis, classification and regression tree analysis and on-screen digitising of high-resolution imagery) and undertook economic modelling. Within the study region (520,269 ha), 250,617 ha is cultivated with oil palm with 77% having high Net-Present-Value (NPV) estimates ($413/ha-yr-$637/ha-yr); but 20.5% is under-producing. In fact 6.3% (15,810 ha) of oil palm is commercially redundant (with negative NPV of $-299/ha-yr-$-65/ha-yr) due to palm mortality from flood inundation. These areas would have been important riparian or flooded forest types. Moreover, 30,173 ha of unprotected forest remain and despite its value for connectivity and biodiversity 64% is allocated for future oil palm. However, we estimate that at minimum 54% of these forests are unsuitable for this crop due to inundation events. If conversion to oil palm occurs, we predict a further 16,207 ha will become commercially redundant. This means that over 32,000 ha of forest within the floodplain would have been converted for little or no financial gain yet with significant cost to the ecosystem. Our findings have globally relevant implications for similar floodplain landscapes undergoing forest transformation to agriculture such as oil palm. Understanding landscape level constraints to this crop, and transferring these into policy and practice, may provide conservation and economic opportunities within these seemingly high opportunity cost landscapes.
    Matched MeSH terms: Floods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links