Displaying publications 61 - 80 of 765 in total

Abstract:
Sort:
  1. Ovenden SPB, Webster RL, Micich E, McDowall LJ, McGill NW, Williams J, et al.
    Talanta, 2020 May 01;211:120753.
    PMID: 32070627 DOI: 10.1016/j.talanta.2020.120753
    The organophosphorous nerve agent VX is classified by the Chemical Warfare Convention (CWC) as a Schedule 1 chemical; namely a substance that is highly toxic with no use that is of benefit to society. Even with this classification, the nefarious use of the Schedule 1 chemical VX has been observed, as demonstrated in 2017 in Malaysia. Therefore, undertaking chemical analysis on samples of VX to identify chemical attribution signatures (CAS) for chemical forensics is required. To further understand the chemical profile of VX, and to aid in the identification of potential CAS, three in house synthesised stocks of VX were investigated. The three VX stocks analysed were synthesised in 2014, 2017 and 2018 using the same method, allowing for a comparison of data between each of the stocks at different stages of storage. As opposed to a majority of literature reports, these agent stocks were not stabilised, nor were they subjected to forced degradation. Using NMR, high resolution (HR) LC-HRMS, GC-(EI)MS and GC-(CI)MS to gain a full insight into the CAS profile, a total of 44 compounds were identified. Of these compounds, 30 were readily identified through accurate mass measurement and NIST library matches. A further seven were identified through extensive LC-HRMS/MS studies, with seven remaining unresolved. Several compounds, identified in minor amounts, were able to be traced back to impurities in the precursor compounds used in the synthesis of VX, and hence may be useful as CAS for source attribution.
    Matched MeSH terms: Magnetic Resonance Imaging
  2. Mohd Ali, A., Jahidin, A.H., Abdul Wahab, I., Mohsin, H.F., Mizaton, H.H.
    MyJurnal
    In this study, the unprecedented extraction of the Vitex pouch was performed. The compounds from
    methanolic and chloroform extracts were isolated by using thin layer chromatography (TLC). The
    compound of interest was investigated by using 1H-Nuclear Magnetic Resonance (NMR, 500 MHz)
    spectroscopy. From the NMR spectral examination, the compound from the methanolic extract was
    suggested as glucononitol. Indeed, there are some parameters that could enhance the attainment of this
    research, which include high performance liquid chromatographic supplies. Nevertheless, more
    information and understanding on the pharmaceutical and chemical analysis of the Vitex species were
    obtained. To sum up, it is anticipated that incoming research with advanced technology for this
    natural product could be explored in the future.
    Matched MeSH terms: Magnetic Resonance Imaging
  3. Lau H, Shahar S, Mohamad M, Rajab NF, Yahya HM, Din NC, et al.
    BMC Complement Med Ther, 2020 Oct 19;20(1):315.
    PMID: 33076878 DOI: 10.1186/s12906-020-03092-2
    BACKGROUND: Persicaria minor extract exhibits antioxidant and anti-inflammatory properties and has potential effects on cognitive function and mood. However, the effects of P.minor on brain activation and biomarkers have not been studied among older adults. This multicentre, randomized, double-blinded, placebo-controlled study aimed to investigate the effect of 6 months P.minor extract supplement (Biokesum®) on cognition, mood, biomarkers, and brain activation among older adults with Mild Cognitive Impairment (MCI).

    METHOD: A total of 36 Malaysian community-dwelling older adults with MCI (60-75-year-old) were randomized into Biokesum® (n = 18) and placebo group (n = 18). Each subject consumed one capsule of Biokesum® (250 mg/capsule) or placebo (maltodextrin, 280 mg/capsule) twice daily for 6 months. Cognitive function and mood were assessed at baseline, 3rd, and 6th-month using neuropsychological tests (MMSE, Digit Span, RAVLT, Digit Symbol, and Visual Reproduction) and Profile of Mood State (POMS) questionnaire. Blood lipid profile, fasting blood glucose, and biomarkers (MDA, LPO, COX-2, iNOS, and BDNF) were measured at baseline and 6th month. By the end of the intervention, there were 30 compliers (Biokesum®: N = 15; Placebo: N = 15) and 6 dropouts. For brain activation assessment, 15 subsamples (Biokesum®: N = 8; Placebo: N = 7) completed N-back and Stroop tasks during fMRI scanning at baseline and 6th month. The dorsolateral prefrontal cortex (Brodmann's area 9 and 46) was identified as a region of interest (ROI) for brain activation analysis using SPM software.

    RESULTS: Two-way mixed ANOVA analysis showed significant improvements in Visual Reproduction II (p = 0.012, partial η2 = 0.470), tension (p = 0.042, partial η2 = 0.147), anger (p = 0.010, partial η2 = 0.207), confusion (p = 0.041, partial η2 = 0.148), total negative subscales (p = 0.043, partial η2 = 0.145), BDNF (p = 0.020, partial η2 = 0.179) and triglyceride (p = 0.029, partial η2 = 0.237) following 6 months of Biokesum® supplementation. Preliminary finding also demonstrated significant improvement at 0-back task-induced right DLPFC activation (p = 0.028, partial η2 = 0.652) among subsamples in Biokesum® group. No adverse events were reported at the end of the study.

    CONCLUSION: Six months Biokesum® supplementation potentially improved visual memory, negative mood, BDNF, and triglyceride levels among older adults with MCI. Significant findings on brain activation at the right DPLFC must be considered as preliminary.

    TRIAL REGISTRATION: Retrospectively registered on 30th August 2019 [ ISRC TN12417552 ].

    Matched MeSH terms: Magnetic Resonance Imaging
  4. Mohamad, M., Yusoff, A.N., Mukari, S.Z.M., Abdullah, A., Abd Hamid, A.I.
    MyJurnal
    This study was carried out to investigate the effects of noisy background on brain activation during a working memory task. Fourteen healthy male subjects underwent silent functional Magnetic Resonance Imaging (fMRI) scans while listening to words presented verbally against quiet (WIS) and noisy (WIN) backgrounds. The stimuli were binaurally presented to the subjects at 70 dB sound pressure level (SPL) in both conditions. Group results indicated significant (p < 0.001) bilateral widespread of brain activations in the primary auditory cortex, superior temporal gyrus, inferior frontal gyrus, supramarginal gyrus and inferior parietal lobes during WIS. Additional significant activation was observed in the middle cingulate cortex and anterior cingulate cortex during WIN, suggesting the involvement of cingulate cortex in working memory processing against a noisy background. The mean percentage of signal change in all regions was higher during WIN as compared to WIS. Right hemispheric predominance was observed for both conditions in primary auditory cortex and middle frontal gyrus and this could be attributed to the increased difficulty of the tasks. The results obtained from this study demonstrated that background noise increased task demand and difficulty. Task demand was found to play an important role in determining the activation magnitude in the brain areas during working memory task.
    Matched MeSH terms: Magnetic Resonance Imaging
  5. Manan HA, Franz EA, Yusoff AN, Mukari SZ
    Aging Clin Exp Res, 2015 Feb;27(1):27-36.
    PMID: 24906677 DOI: 10.1007/s40520-014-0240-0
    In the present study, brain activation associated with speech perception processing was examined across four groups of adult participants with age ranges between 20 and 65 years, using functional MRI (fMRI). Cognitive performance demonstrates that performance accuracy declines with age. fMRI results reveal that all four groups of participants activated the same brain areas. The same brain activation pattern was found in all activated areas (except for the right superior temporal gyrus and right middle temporal gyrus); brain activity was increased from group 1 (20-29 years) to group 2 (30-39 years). However, it decreased in group 3 (40-49 years) with further decreases in group 4 participants (50-65 years). Result also reveals that three brain areas (superior temporal gyrus, Heschl's gyrus and cerebellum) showed changes in brain laterality in the older participants, akin to a shift from left-lateralized to right-lateralized activity. The onset of this change was different across brain areas. Based on these findings we suggest that, whereas all four groups of participants used the same areas in processing, the engagement and recruitment of those areas differ with age as the brain grows older. Findings are discussed in the context of corroborating evidence of neural changes with age.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  6. Sa'don NA, Rahim AA, Hussin MH
    Int J Biol Macromol, 2017 May;98:701-708.
    PMID: 28174085 DOI: 10.1016/j.ijbiomac.2017.01.137
    This article reports on the structural characteristics and antioxidant activity of unmodified autohydrolyzed ethanol organosolv lignin (AH EOL) extracted from oil palm fronds (OPF) and modified autohydrolyzed ethanol organosolv lignin via incorporation of p-nitrophenol (AHNP EOL). The isolated lignin were analyzed by FTIR, (1)H and (13)C NMR spectroscopy, 2D NMR; HSQC and HMBC, CHN analysis, molecular weight distribution using GPC analyzer, thermal analysis; TGA and DSC. The chemical modification by utilizing an organic scavenger during delignification process provided smaller lignin fragments and enhanced the solubility of lignin by reducing its hydrophobicity properties. It was revealed that the antioxidant properties increased as compared to the unmodified organosolv lignin. Additionally, the modified lignin has better solubility in water (DAHNP EOL=35%>DAH EOL=25%).
    Matched MeSH terms: Magnetic Resonance Imaging
  7. Ahmad AH, Abdul Aziz CB
    Malays J Med Sci, 2014 Dec;21(Spec Issue):46-54.
    PMID: 25941463 MyJurnal
    Pain, while salient, is highly subjective. A sensation perceived as painful by one person may be perceived as uncomfortable, not painful or even pleasant to others. Within the same person, pain may also be modulated according to its threat value and the context in which it is presented. Imaging techniques, such as functional magnetic resonance imaging and positron emission tomography, have identified a distributed network in the brain, the pain-relevant brain regions, that encode the sensory-discriminative aspect of pain, as well as its cognitive and affective/emotional factors. Current knowledge also implicates the prefrontal cortex as the modulatory area for pain, with its subdivisions forming the cortico-cortical pathway, an alternative pain modulatory pathway distinct from the descending modulatory pathway of pain. These findings from neuroimaging in human subjects have paved the way for the molecular mechanisms of pain modulation to be explored in animal studies.
    Matched MeSH terms: Magnetic Resonance Imaging
  8. Dewey RS, Francis ST, Guest H, Prendergast G, Millman RE, Plack CJ, et al.
    Neuroimage, 2020 01 01;204:116239.
    PMID: 31586673 DOI: 10.1016/j.neuroimage.2019.116239
    In animal models, exposure to high noise levels can cause permanent damage to hair-cell synapses (cochlear synaptopathy) for high-threshold auditory nerve fibers without affecting sensitivity to quiet sounds. This has been confirmed in several mammalian species, but the hypothesis that lifetime noise exposure affects auditory function in humans with normal audiometric thresholds remains unconfirmed and current evidence from human electrophysiology is contradictory. Here we report the auditory brainstem response (ABR), and both transient (stimulus onset and offset) and sustained functional magnetic resonance imaging (fMRI) responses throughout the human central auditory pathway across lifetime noise exposure. Healthy young individuals aged 25-40 years were recruited into high (n = 32) and low (n = 30) lifetime noise exposure groups, stratified for age, and balanced for audiometric threshold up to 16 kHz fMRI demonstrated robust broadband noise-related activity throughout the auditory pathway (cochlear nucleus, superior olivary complex, nucleus of the lateral lemniscus, inferior colliculus, medial geniculate body and auditory cortex). fMRI responses in the auditory pathway to broadband noise onset were significantly enhanced in the high noise exposure group relative to the low exposure group, differences in sustained fMRI responses did not reach significance, and no significant group differences were found in the click-evoked ABR. Exploratory analyses found no significant relationships between the neural responses and self-reported tinnitus or reduced sound-level tolerance (symptoms associated with synaptopathy). In summary, although a small effect, these fMRI results suggest that lifetime noise exposure may be associated with central hyperactivity in young adults with normal hearing thresholds.
    Matched MeSH terms: Magnetic Resonance Imaging
  9. Duc NM, Huy HQ, Nadarajan C, Keserci B
    Anticancer Res, 2020 May;40(5):2975-2980.
    PMID: 32366451 DOI: 10.21873/anticanres.14277
    BACKGROUND/AIM: Even though advanced magnetic resonance imaging (MRI) can effectively differentiate between medulloblastoma and ependymoma, it is not readily available throughout the world. This study aimed to investigate the role of simple quantified basic MRI sequences in the differentiation between medulloblastoma and ependymoma in children.

    PATIENTS AND METHODS: The institutional review board approved this prospective study. The brain MRI protocol, including sagittal T1-weighted, axial T2-weighted, coronal fluid-attenuated inversion recovery, and axial T1-weighted with contrast enhancement (T1WCE) sequences, was assessed in 26 patients divided into two groups: Medulloblastoma (n=22) and ependymoma (n=4). The quantified region of interest (ROI) values of tumors and their ratios to parenchyma were compared between the two groups. Multivariate logistic regression analysis was utilized to find significant factors influencing the differential diagnosis between the two groups. A generalized estimating equation (GEE) was used to create the predictive model for the discrimination of medulloblastoma from ependymoma.

    RESULTS: Multivariate logistic regression analysis showed that the T2- and T1WCE-ROI values of tumors and the ratios of T1WCE-ROI values to parenchyma were the most significant factors influencing the diagnosis between these two groups. GEE produced the model: y=exn/(1+exn) with predictor xn=-8.773+0.012x1 - 0.032x2 - 13.228x3, where x1 was the T2-weighted signal intensity (SI) of tumor, x2 the T1WCE SI of tumor, and x3 the T1WCE SI ratio of tumor to parenchyma. The sensitivity, specificity, and area under the curve of the GEE model were 77.3%, 100%, and 92%, respectively.

    CONCLUSION: The GEE predictive model can discriminate between medulloblastoma and ependymoma clinically. Further research should be performed to validate these findings.

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  10. Yusof MI, Hassan MN, Abdullah MS
    Malays Orthop J, 2018 Mar;12(1):21-25.
    PMID: 29725508 MyJurnal DOI: 10.5704/MOJ.1803.004
    Introduction: The vertical diameter of the foramen is dependent upon the vertical diameter of the corresponding intervertebral disc. A decrease in disc vertical diameter has direct anatomic consequences to the foraminal diameter and area available for the nerve root passing through it. This study is to establish the relationship amongst the intervertebral disc vertical diameter, lateral foramen diameters and nerve root compression in the lumbar vertebra. Materials and Methods: Measurements of the study parameters were performed using sagittal MRI images. The parameters studied were: intervertebral disc vertical diameter (DVD), foraminal vertical diameter (FVD), foraminal transverse diameter (FTD) and nerve root diameter (NRD) of both sides. The relationship between the measured parameters were then analyzed. Results: A total of 62 MRI images were available for this study. Statistical analysis showed moderate to strong correlation between DVD and FVD at all the lumbar levels except at left L23 and L5S1 and right L3L4 and L4L5. Correlation between DVD and FTD were not significant at all lumbar levels. Regression analysis showed that a decrease of 1mm of DVD was associated with 1.3, 1.7, 3.3, 3.3 and 1.3mm reduction of FVD at L1L2, L2L3, L3L4, L4L5 and L5S1 respectively. Conclusion: Reduction of DVD was associated with reduction of FVD. However, FVD was relatively wide for the nerve root even with complete loss of DVD. FTD was much narrower than the FVD making it more likely to cause nerve root compression at the exit foramina. These anatomical details should be given consideration in treating patients with lateral canal stenosis.
    Matched MeSH terms: Magnetic Resonance Imaging
  11. Tan WJ, Suz CS, Azza O, Zuki M
    Med J Malaysia, 2021 03;76(2):241-244.
    PMID: 33742636
    Sarcoidosis is a chronic, multisystem disorder. A 38 years old lady presented at Hospital Raja Perempuan Zainab II, Kota Bharu ,Malaysia with cough and breathless for 2 months and constitutional symptoms of weight loss and loss of appetite. She was initially treated as smear negative pulmonary tuberculosis for 5 months. However, her clinical condition deteriorated with worsening New York Heart Association (NYHA) class 1 to class 3. Subsequently, workout of computed tomography( CT) thorax showed multiple perilymphatic distribution of nodules and multiple mediastinal lymphadenopathy coupled with pleura biopsy showed non caseating granuloma and cardiac magnetic resonance imaging (MRI) with positive late gadolinium enhancement revised the diagnosis of pulmonary sarcoidosis with cardiac involvement. Patient's functional status and cough improved with immunosuppresant was given in tapering dose fashion.
    Matched MeSH terms: Magnetic Resonance Imaging
  12. Li Z, Abdul Manan H, Heitmann H, Witte V, Wirkner K, Riedel-Heller S, et al.
    Neuroscience, 2023 May 21;519:31-37.
    PMID: 36934780 DOI: 10.1016/j.neuroscience.2023.03.017
    OBJECTIVE: The present study aimed to investigate the relationship between olfactory sulcus (OS) depth and olfactory function considering age and gender and to provide normative data on OS depth in a population with normal olfactory function.

    MATERIALS AND METHODS: OS depth was obtained using T1 magnetic resonance imaging scans. Participants (mean age ± sd = 57 ± 16 years, ranging from 20 to 80 years) were screened for olfactory function using the Sniffin' Sticks Screening 12 test. They were divided into an olfactory dysfunction group (n = 604) and a normosmia group (n = 493). Participants also completed questionnaires measuring depression, anxiety and quality of life.

    RESULTS: The right OS was deeper than the left side in all age groups. On the left side, women had deeper OS compared with men, exhibiting a higher degree of symmetry in left and right OS depth in women. Variance of olfactory function was largely determined by age, OS depth explained only minor portions of this variance. Normative data for minimum OS depth was 7.55 mm on the left and 8.78 mm on the right for participants aged between 18 and 35 years (n = 144), 6.47 mm on the left and 6.99 mm on the right for those aged 36-55 years (n = 120), and 5.28 mm on the left and 6.19 mm on the right for participants older than 55 years (n = 222).

    CONCLUSION: Considering the limited resolution of the presently used T1 weighted MR scans and the nature of the olfactory screening test, OS depth explained only minor portions of the variance of olfactory function, which was largely determined by age. Age-related normative data of OS depth are presented as a reference for future work.

    Matched MeSH terms: Magnetic Resonance Imaging
  13. Yusuf, A.N., Abdul Hamid, K., Mohamad, M., Abd hamid, A.I.
    Medicine & Health, 2008;3(2):300-317.
    MyJurnal
    In this study, functional magnetic resonance imaging (fMRI) is used to investigate func-tional specialisation in human auditory cortices during listening. A silent fMRI paradigm was used to reduce the scanner sound artefacts on functional images. The subject was instructed to pay attention to the white noise stimulus binaurally given at an inten-sity level of 70 dB higher than the hearing level for normal people. Functional speciali-sation was studied using the Matlab-based Statistical Parametric Mapping (SPM5) software by means of fixed effects (FFX), random effects (RFX) and conjunction analyses. Individual analyses on all subjects indicated asymmetrical bilateral activation of the left and right hemispheres in Brodmann areas (BA) 22, 41 and 42, involving the primary and secondary auditory cortices. The percentage of signal change is larger in the BA22, 41 and 42 on the right as compared to the ones on the left (p>0.05). The average number of activated voxels in all the respective Brodmann areas are higher in the right hemisphere than in the left (p>0.05). FFX results showed that the point of maximum intensity was in the right BA41 whereby 599±1 activated voxels were ob-served in the right temporal lobe as compared to 485±1 in the left temporal lobe. The RFX results were consistent with that of FFX. The analysis of conjunction which fol-lowed, showed that the right BA41 and left BA22 as the common activated areas in all subjects. The results confirmed the specialisation of the right auditory cortices in pro-cessing non verbal stimuli.
    Matched MeSH terms: Magnetic Resonance Imaging
  14. Ng SY, Pua KC, Zahirrudin Z
    Med J Malaysia, 2015 Dec;70(6):367-8.
    PMID: 26988214 MyJurnal
    Temporal bone squamous cell carcinoma (TBSCC) is rare and poses difficulties in diagnosing, staging and management. We describe a case series with six patients who were diagnosed TBSCC, from January 2009 to June 2014, with median age of 62 years old. All patients presented with blood-stain discharge and external auditory canal mass, showing that these findings should highly alert the diagnosis of TBSCC. Three patients staged T3 and another three with T4 disease. High-resolution CT (HRCT) temporal findings were noted to be different from intraoperative findings and therefore we conclude that MRI should be done to look for middle ear involvement or other soft tissue invasion for more accurate staging. Lateral temporal bone resection (LTBR) and parotidectomy was done for four patients with or without neck dissection. Patients with positive margin, perineural invasion or parotid and glenoid involvement carry poorer prognosis and postoperative radiotherapy may improve the survival rate. One patient had successful tumor resection via piecemeal removal approach in contrast with the recommended en bloc resection shows that with negative margin achieved, piecemeal removal approach can be a good option for patients with T2-3 disease. In general, T4 tumor has dismal outcome regardless of surgery or radiotherapy given.
    Matched MeSH terms: Magnetic Resonance Imaging
  15. Yusof ANM, Thong HK, Kamalden TMIT
    Med Arch, 2020 Aug;74(4):312-314.
    PMID: 33041452 DOI: 10.5455/medarh.2020.74.312-314
    INTRODUCTION: Chondroblastoma is an uncommon benign, locally destructive tumor that usually arises from epiphyses of the long bones. Temporal bone chondroblastoma is an extremely rare occurrence. Chondroblastoma arise from immature cartilage cells and it may display certain malignant features by invading surrounding structures and metastasizing to adjacent sites.

    AIM: To present a case of extradural temporal bone chondroblastoma and discuss the clinical presentation, radiographic findings, histology and particularly the surgical management of the case.

    CASE REPORT: We report a case of a 31-year-old man who presented with a painless left temporal swelling and left sided hearing loss for four months. Computed tomography (CT) scan revealed an aggressive mass involving the left preauricular region with temporal mastoid bone erosion. Magnetic resonance imaging (MRI) showed an extra-axial left temporal mastoid mass pushing the left temporal lobe superiorly. The patient underwent complete excision of the temporal bone tumor. The final histopathological diagnosis was in keeping with chondroblastoma.

    CONCLUSION: Temporal bone chondroblastoma is rare but an aggressive condition. Complete tumor resection via an appropriate approach that enables adequate exposure will lead to a favorable outcome.

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  16. Tee TY, Khoo CS, Raymond AA, Syazarina SO
    Neurology, 2019 08 06;93(6):e626-e627.
    PMID: 31383811 DOI: 10.1212/WNL.0000000000007905
    Matched MeSH terms: Magnetic Resonance Imaging
  17. Ng WM, Chan KY
    Med J Malaysia, 2004 Dec;59 Suppl F:69-71.
    PMID: 15941169
    We report a case of delayed diagnosis of tarsal tunnel syndrome caused by a ganglion arising from the talo-calcaneal joint. Unusually the symptoms were mainly due to the lateral planter nerve compression with a positive Tinel's sign. A surgical decompression was successful in relieving the dysaesthesia in spite of a 7 years history.
    Matched MeSH terms: Magnetic Resonance Imaging
  18. Azhar, N. A. A., Tee, H. S., Yee, Y. Y., Awang, M. N. A., Abdul Manan, H., Yusoff, A. N.
    MyJurnal
    Many studies have been carried out to produce magnetic resonance imaging (MRI) phantoms as alternative to water phantom. Among the important properties of a phantom are the T1 and T2 relaxation times. The objective of this study is to investigate the T1 and T2 characteristics of the agarose gel phantoms with different relaxation modifier (gadolinium (III) oxide, Gd2O3) concentrations or [Gd2O3]. Six agarose gel phantoms were prepared with different [Gd2O3]. The T1 (fixed echo time (TE) and different repetition time (TR)) and T2 (fixed TR and different TE) measurements on all phantoms were conducted using the 3-T MRI system via spin echo (SE) and turbo spin echo (TSE) sequences, respectively. The signal-to-noise ratio (SNR) of all phantoms was calculated using Image-J software by implementing the region of interest (ROI) analysis. The SNR against TR and SNR against TE curves were fitted to the exponential equations for saturation, T1 and T2 determination. For every phantom, T1 curve demonstrated that the SNR increased exponentially with increasing TR, while T2 curves showed that the SNR decreased exponentially with increasing TE. Gd2O3 was found to successfully act as the relaxation modifier for the T1 but not the T2 curves. The T1 curve started to show saturated SNR (SNRo) and increasing SNRo for TR > 1000 ms and [Gd2O3] = 0.005 g/ml or higher. These behaviours are explained based on the dipole-dipole interaction that increases in phantoms with higher [Gd2O3], thus shortening the T1 relaxation. However, a systematic change in the T2 parameters with increasing [Gd2O3] was not observed. While Gd2O3 has significant effects on T1 relaxation parameters, the T2 relaxation parameters were minimally affected. With a shorter T1, the Gd2O3 added agarose gel can potentially be used as test phantom in fast imaging sequence, e.g. gradient echo pulse sequences.
    Matched MeSH terms: Magnetic Resonance Imaging
  19. Suppiah S, Chang WL, Hassan HA, Kaewput C, Asri AAA, Saad FFA, et al.
    World J Nucl Med, 2017 Jul-Sep;16(3):176-185.
    PMID: 28670174 DOI: 10.4103/wjnm.WJNM_31_17
    Ovarian cancer (OC) often presents at an advanced stage with frequent relapses despite optimal treatment; thus, accurate staging and restaging are required for improving treatment outcomes and prognostication. Conventionally, staging of OC is performed using contrast-enhanced computed tomography (CT). Nevertheless, recent advances in the field of hybrid imaging have made positron emission tomography/CT (PET/CT) and PET/magnetic resonance imaging (PET/MRI) as emerging potential noninvasive imaging tools for improved management of OC. Several studies have championed the role of PET/CT for the detection of recurrence and prognostication of OC. We provide a systematic review and meta-analysis of the latest publications regarding the role of molecular imaging in the management of OC. We retrieved 57 original research articles with one article having overlap in both diagnosis and staging; 10 articles (734 patients) regarding the role of PET/CT in diagnosis of OC; 12 articles (604 patients) regarding staging of OC; 22 studies (1429 patients) for detection of recurrence; and 13 articles for prognostication and assessment of treatment response. We calculated pooled sensitivity and specificity of PET/CT performance in various aspects of imaging of OC. We also discussed the emerging role of PET/MRI in the management of OC. We aim to give the readers and objective overview on the role of molecular imaging in the management of OC.
    Matched MeSH terms: Magnetic Resonance Imaging
  20. Choy, Yew Sing, Sinniah, D.
    MyJurnal
    Reported is the first case of syringomyelia and syringobulbia associated with Arnold Chiari I malformation in a Malaysian child. The initial complaint was that of unilateral anhidrosis of the face. The chief presenting features were dissociated sensory loss, asymmetrical weakness of the left upper limb associated with subluxation of left shoulder and signs of upper motor neurone lesion in the left lower limb. One unusual feature was the presence of vesiculation followed by ulceration of the pinnae of both ears. Magnetic resonance imaging (MRI) of the posterior fossa and cervical and thoracic cord facilitated the diagnosis and was the most useful diagnostic procedure in this child.
    Matched MeSH terms: Magnetic Resonance Imaging
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links