Displaying publications 61 - 80 of 2091 in total

Abstract:
Sort:
  1. Ahmad S, Israf DA, Lajis NH, Shaari K, Mohamed H, Wahab AA, et al.
    Eur J Pharmacol, 2006 May 24;538(1-3):188-94.
    PMID: 16650843
    Some chalcones, such as hydroxychalcones have been reported previously to inhibit major pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumor necrosis factor-alpha (TNF-alpha) and reactive oxygen species production by suppressing inducible enzyme expression via inhibition of the mitogen-activated protein kinase (MAPK) pathway and nuclear translocation of critical transcription factors. In this report, the effects of cardamonin (2',4'-dihydroxy-6'-methoxychalcone), a chalcone that we have previously isolated from Alpinia rafflesiana, was evaluated upon two cellular systems that are repeatedly used in the analysis of anti-inflammatory bioactive compounds namely RAW 264.7 cells and whole blood. Cardamonin inhibited NO and PGE(2) production from lipopolysaccharide- and interferon-gamma-induced RAW cells and whole blood with IC(50) values of 11.4 microM and 26.8 microM, respectively. Analysis of thromboxane B(2) (TxB(2)) secretion from whole blood either stimulated via the COX-1 or COX-2 pathway revealed that cardamonin inhibits the generation of TxB(2) via both pathways with IC(50) values of 2.9 and 1.1 microM, respectively. Analysis of IC(50) ratios determined that cardamonin was more COX-2 selective in its inhibition of TxB(2) with a ratio of 0.39. Cardamonin also inhibited the generation of intracellular reactive oxygen species and secretion of TNF-alpha from RAW 264.7 cells in a dose responsive manner with IC(50) values of 12.8 microM and 4.6 microM, respectively. However, cardamonin was a moderate inhibitor of lipoxygenase activity when tested in an enzymatic assay system, in which not a single concentration tested was able to cause an inhibition of more than 50%. Our results suggest that cardamonin acts upon major pro-inflammatory mediators in a similar fashion as described by previous work on other closely related synthetic hydroxychalcones and strengthens the conclusion of the importance of the methoxyl moiety substitution on the 4' or 6' locations of the A benzene ring.
    Matched MeSH terms: Mice
  2. Ahmad S, Valli H, Salvage SC, Grace AA, Jeevaratnam K, Huang CL
    Clin Exp Pharmacol Physiol, 2018 02;45(2):174-186.
    PMID: 28949414 DOI: 10.1111/1440-1681.12863
    Increasing evidence implicates chronic energetic dysfunction in human cardiac arrhythmias. Mitochondrial impairment through Pgc-1β knockout is known to produce a murine arrhythmic phenotype. However, the cumulative effect of this with advancing age and its electrocardiographic basis have not been previously studied. Young (12-16 weeks) and aged (>52 weeks), wild type (WT) (n = 5 and 8) and Pgc-1β-/- (n = 9 and 6), mice were anaesthetised and used for electrocardiographic (ECG) recordings. Time intervals separating successive ECG deflections were analysed for differences between groups before and after β1-adrenergic (intraperitoneal dobutamine 3 mg/kg) challenge. Heart rates before dobutamine challenge were indistinguishable between groups. The Pgc-1β-/- genotype however displayed compromised nodal function in response to adrenergic challenge. This manifested as an impaired heart rate response suggesting a functional defect at the level of the sino-atrial node, and a negative dromotropic response suggesting an atrioventricular conduction defect. Incidences of the latter were most pronounced in the aged Pgc-1β-/- mice. Moreover, Pgc-1β-/- mice displayed electrocardiographic features consistent with the existence of a pro-arrhythmic substrate. Firstly, ventricular activation was prolonged in these mice consistent with slowed action potential conduction and is reported here for the first time. Additionally, Pgc-1β-/- mice had shorter repolarisation intervals. These were likely attributable to altered K+ conductance properties, ultimately resulting in a shortened QTc interval, which is also known to be associated with increased arrhythmic risk. ECG analysis thus yielded electrophysiological findings bearing on potential arrhythmogenicity in intact Pgc-1β-/- systems in widespread cardiac regions.
    Matched MeSH terms: Mice, Knockout; Mice
  3. Ahmad S, Valli H, Edling CE, Grace AA, Jeevaratnam K, Huang CL
    Pflugers Arch., 2017 Dec;469(12):1579-1590.
    PMID: 28821956 DOI: 10.1007/s00424-017-2054-3
    A range of chronic clinical conditions accompany cardiomyocyte energetic dysfunction and constitute independent risk factors for cardiac arrhythmia. We investigated pro-arrhythmic and arrhythmic phenotypes in energetically deficient C57BL mice with genetic ablation of the mitochondrial promoter peroxisome proliferator-activated receptor-γ coactivator-1β (Pgc-1β), a known model of ventricular arrhythmia. Pro-arrhythmic and cellular action potential (AP) characteristics were compared in intact Langendorff-perfused hearts from young (12-16 week) and aged (> 52 week), wild-type (WT) and Pgc-1β -/- mice. Simultaneous electrocardiographic and intracellular microelectrode recordings were made through successive trains of 100 regular stimuli at progressively incremented heart rates. Aged Pgc-1β -/- hearts displayed an increased incidence of arrhythmia compared to other groups. Young and aged Pgc-1β -/- hearts showed higher incidences of alternans in both AP activation (maximum AP upshoot velocity (dV/dt)max and latency), recovery (action potential duration (APD90) and resting membrane potential (RMP) characteristics compared to WT hearts. This was particularly apparent at lower pacing frequencies. These findings accompanied reduced (dV/dt)max and increased AP latency values in the Pgc-1β -/- hearts. APs observed prior to termination of the protocol showed lower (dV/dt)max and longer AP latencies, but indistinguishable APD90 and RMPs in arrhythmic compared to those in non-arrhythmic hearts. APD restitution analysis showed that Pgc-1β -/- and WT hearts showed similar limiting gradients. However, Pgc-1β -/- hearts had shortened plateau AP wavelengths, particularly in aged Pgc-1β -/- hearts. Pgc-1β -/- hearts therefore show pro-arrhythmic instabilities attributable to altered AP conduction and activation rather than recovery characteristics.
    Matched MeSH terms: Mice, Inbred C57BL; Mice
  4. Ahmad S, Valli H, Smyth R, Jiang AY, Jeevaratnam K, Matthews HR, et al.
    J Cell Physiol, 2019 Apr;234(4):3921-3932.
    PMID: 30146680 DOI: 10.1002/jcp.27183
    Peroxisome proliferator-activated receptor-γ coactivator-1 deficient (Pgc-1β-/- ) murine hearts model the increased, age-dependent, ventricular arrhythmic risks attributed to clinical conditions associated with mitochondrial energetic dysfunction. These were accompanied by compromised action potential (AP) upstroke rates and impaired conduction velocities potentially producing arrhythmic substrate. We tested a hypothesis implicating compromised Na+ current in these electrophysiological phenotypes by applying loose patch-clamp techniques in intact young and aged, wild-type (WT) and Pgc-1β-/- , ventricular cardiomyocyte preparations for the first time. This allowed conservation of their in vivo extracellular and intracellular conditions. Depolarising steps elicited typical voltage-dependent activating and inactivating inward Na+ currents with peak amplitudes increasing or decreasing with their respective activating or preceding inactivating voltage steps. Two-way analysis of variance associated Pgc-1β-/- genotype with independent reductions in maximum peak ventricular Na+ currents from -36.63 ± 2.14 (n = 20) and -35.43 ± 1.96 (n = 18; young and aged WT, respectively), to -29.06 ± 1.65 (n = 23) and -27.93 ± 1.63 (n = 20; young and aged Pgc-1β-/- , respectively) pA/μm2 (p 
    Matched MeSH terms: Mice, Inbred C57BL; Mice, Knockout
  5. Ahmad S, Valli H, Chadda KR, Cranley J, Jeevaratnam K, Huang CL
    Mech Ageing Dev, 2018 Jul;173:92-103.
    PMID: 29763629 DOI: 10.1016/j.mad.2018.05.004
    INTRODUCTION: Ageing and age-related bioenergetic conditions including obesity, diabetes mellitus and heart failure constitute clinical ventricular arrhythmic risk factors.

    MATERIALS AND METHODS: Pro-arrhythmic properties in electrocardiographic and intracellular recordings were compared in young and aged, peroxisome proliferator-activated receptor-γ coactivator-1β knockout (Pgc-1β-/-) and wild type (WT), Langendorff-perfused murine hearts, during regular and programmed stimulation (PES), comparing results by two-way ANOVA.

    RESULTS AND DISCUSSION: Young and aged Pgc-1β-/- showed higher frequencies and durations of arrhythmic episodes through wider PES coupling-interval ranges than WT. Both young and old, regularly-paced, Pgc-1β-/- hearts showed slowed maximum action potential (AP) upstrokes, (dV/dt)max (∼157 vs. 120-130 V s-1), prolonged AP latencies (by ∼20%) and shortened refractory periods (∼58 vs. 51 ms) but similar AP durations (∼50 ms at 90% recovery) compared to WT. However, Pgc-1β-/- genotype and age each influenced extrasystolic AP latencies during PES. Young and aged WT ventricles displayed distinct, but Pgc-1β-/- ventricles displayed similar dependences of AP latency upon (dV/dt)max resembling aged WT. They also independently increased myocardial fibrosis. AP wavelengths combining activation and recovery terms paralleled contrasting arrhythmic incidences in Pgc-1β-/- and WT hearts. Mitochondrial dysfunction thus causes pro-arrhythmic Pgc-1β-/- phenotypes by altering AP conduction through reducing (dV/dt)max and causing age-dependent fibrotic change.

    Matched MeSH terms: Mice, Knockout; Mice
  6. Ahmad Z, Rasouli M, Azman AZ, Omar AR
    BMC Biotechnol, 2012 Sep 19;12:64.
    PMID: 22989329 DOI: 10.1186/1472-6750-12-64
    BACKGROUND: Gene therapy could provide an effective treatment of diabetes. Previous studies have investigated the potential for several cell and tissue types to produce mature and active insulin. Gut K and L-cells could be potential candidate hosts for gene therapy because of their special features.

    RESULTS: In this study, we isolated gut K and L-cells to compare the potential of both cell types to produce insulin when exposed to similar conditions. The isolated pure K and L-cells were transfected with recombinant plasmids encoding insulin and with specific promoters for K or L-cells. Insulin expression was studied in response to glucose or meat hydrolysate. We found that glucose and meat hydrolysate efficiently induced insulin secretion from K and L-cells. However, the effects of meat hydrolysate on insulin secretion were more potent in both cells compared with glucose. Results of enzyme-linked immunosorbent assays showed that L-cells secreted more insulin compared with K-cells regardless of the stimulator, although this difference was not statistically significant.

    CONCLUSION: The responses of K and L-cells to stimulation with glucose or meat hydrolysate were generally comparable. Therefore, both K and L-cells show similar potential to be used as surrogate cells for insulin gene expression in vitro. The potential use of these cells for diabetic gene therapy warrants further investigation.

    Matched MeSH terms: Mice
  7. Ahmad-Raus R, Ali AM, Tan WS, Salleh HM, Eshaghi M, Yusoff K
    Res Vet Sci, 2009 Feb;86(1):174-82.
    PMID: 18599098 DOI: 10.1016/j.rvsc.2008.05.013
    A panel of six monoclonal antibodies (mAbs) against the nucleocapsid (NP) protein of Newcastle disease virus (NDV) was produced by immunization of Balb/c mice with purified recombinant NP protein. Western Blot analysis showed that all the mAbs recognized linearized NP epitopes. Three different NP antigenic sites were identified using deleted truncated NP mutants purified from Escherichia coli. One of the antigenic sites was located at the C-terminal end (residues 441 to 489) of the NP protein. Two other antigenic sites were located within the N-terminal end (residues 26-121 and 122-375). This study demonstrates that the N- and C-terminal ends of the NP proteins are responsible in eliciting immune response, thus it is most likely that these ends are exposed on the NP.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  8. Ahmadi N, Mohamed S, Sulaiman Rahman H, Rosli R
    J Food Biochem, 2019 07;43(7):e12868.
    PMID: 31353737 DOI: 10.1111/jfbc.12868
    The anti-leukemia mechanisms of Morinda citrifolia L. leaf extract were investigated on human Jurkat leukemia cells and in leukemia-induced BALB/c mice. The leukemia-induced mice were fed daily with the extract (100 or 200 mg/kg BW) and compared to ATRA (All-trans-retinoic-acid; 5 mg/kg BW). After 4 weeks' treatment, the extract (standardized to epicatechin and scopoletin), arrested Jurkat cell-cycle at the G0/G1 phase and activated the caspase-3 and caspase-8 (death-receptor extrinsic pathways). The extract dose-dependently reduced the blood and bone marrow myeloblasts levels of leukemia-induced mice; upregulated cancer suppressor genes CSF3, SOCS1, PTEN and TRP53; increased anti-inflammatory IL10 and IL4; downregulated anti-apoptotic or proliferation genes; decreased the pro-inflammatory NF-κβ; suppressed pro-angiogenesis VEGFA mRNA expressions, and restored the homeostatic immune or leukocytes levels. The extract directly ameliorated leukemia via cancer cells apoptosis, suppressed inflammation and angiogenesis; and mitigated bone marrow myeloblasts imbalance, without any observable toxicity on the animals. PRACTICAL APPLICATIONS: The scopoletin (coumarin) and epicatechin (flavonoid)-rich Morinda citrifolia (Noni) leaves may be used as functional food ingredient, vegetables, or dietary supplements to treat and suppress leukemia progression by directly killing the cancer cells and preventing new cancer cells development and bone marrow myeloblast imbalance in the bone marrow, without being toxic to normal cells. The M. citrifolia leaf extract suppressed inflammation, and potential metastasis by inhibiting new cancer-related blood vessel formation.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  9. Ahmed Atia, Nadia Salem Alrawaiq, Azman Abdullah
    Sains Malaysiana, 2018;47:2799-2809.
    Glutathione S-transferase isoenzymes (GSTs) catalyze the conjugation reaction between glutathione and electrophilic
    compounds. GSTs are involved in the detoxification of toxic and carcinogenic compounds, thus protecting the body from
    toxic injuries. Tocotrienols are part of the vitamin E family and is believed to possess potent antioxidant activity. The
    objective of this study was to determine the effect of increasing doses of tocotrienol rich fraction (TRF) supplementation
    on liver GSTs gene and protein expression. A total of 30 male ICR white mice were divided into five groups (n=6 for each
    group) and given treatment for 14 days through oral supplementation. Groups were divided as follows: - three groups
    administered with TRF at doses of 200, 500 and 1000 mg/kg, respectively, a positive control group administered with 100
    mg/kg butylated hydroxyanisole (BHA) and a control group administered with only the vehicle (corn oil). At day 15, the
    mice were sacrificed and their livers isolated. Total RNA was extracted from the liver and quantitative real-time polymerase
    chain reaction (qPCR) assays were performed to analyze GSTs gene expression. Total liver protein was also extracted
    and the protein expression of GSTs was determined by Western blotting. The results showed that TRF oral supplementation
    caused a significant dose-dependent increase in liver GST isoenzymes gene and protein expression, compared to controls.
    In conclusion, TRF oral supplementation for 14 days resulted in increased gene and protein expression of GST isoenzymes
    in mice liver dose-dependently, with the highest expression seen in mice treated with 1000 mg/kg TRF.
    Matched MeSH terms: Mice, Inbred ICR; Mice
  10. Ahmed IM, Khairani-Bejo S, Hassan L, Bahaman AR, Omar AR
    BMC Vet Res, 2015;11:275.
    PMID: 26530141 DOI: 10.1186/s12917-015-0587-2
    Brucella melitensis is the most important pathogenic species of Brucella spp. which affects goats and sheep and causes caprine and ovine brucellosis, respectively. Serological tests for diagnosis of brucellosis such as Rose Bengal plate test (RBPT) and enzyme-linked immunosorbent assay (ELISA) usually utilize smooth lipopolysaccharides (S-LPS) as a diagnostic antigen which could give false positive serological reactions. Outer membrane proteins (OMP) of B. melitensis have been used as alternative diagnostic antigens rather than S-LPS for differential serological diagnosis of brucellosis, mainly in ELISA with single recombinant OMP (rOMP) as a diagnostic antigen. Nevertheless, the use of single format mainly showed lack of sensitivity against the desired rOMP. Therefore, this study aimed to determine whether a newly developed rOMPs indirect ELISA (rOMPs I-ELISA), based on combination of rOMP25, rOMP28 and rOMP31of B. melitensis, has a potential benefit for use in the serodiagnosis of brucellosis.
    Matched MeSH terms: Mice
  11. Ahmed, QU, Radhiyah I, Siti Zaiton MS
    MyJurnal
    Leaves of Thottea dependens have been used as folk medicine in Malaysia for the treatment of
    several conditions involving pain and inflammation with accompanying pyrexia. However, there is no scientific
    evidence for its effectiveness to treat fever. Hence, the purpose of this study was to evaluate the anti-pyretic
    activity of methanol (MeOH) and aqueous (Aq) extracts of T. dependens leaves in albino mice (ICR strain).
    Matched MeSH terms: Mice, Inbred ICR; Mice
  12. Ahn M, Anderson DE, Zhang Q, Tan CW, Lim BL, Luko K, et al.
    Nat Microbiol, 2019 05;4(5):789-799.
    PMID: 30804542 DOI: 10.1038/s41564-019-0371-3
    Bats are special in their ability to host emerging viruses. As the only flying mammal, bats endure high metabolic rates yet exhibit elongated lifespans. It is currently unclear whether these unique features are interlinked. The important inflammasome sensor, NLR family pyrin domain containing 3 (NLRP3), has been linked to both viral-induced and age-related inflammation. Here, we report significantly dampened activation of the NLRP3 inflammasome in bat primary immune cells compared to human or mouse counterparts. Lower induction of apoptosis-associated speck-like protein containing a CARD (ASC) speck formation and secretion of interleukin-1β in response to both 'sterile' stimuli and infection with multiple zoonotic viruses including influenza A virus (-single-stranded (ss) RNA), Melaka virus (PRV3M, double-stranded RNA) and Middle East respiratory syndrome coronavirus (+ssRNA) was observed. Importantly, this reduction of inflammation had no impact on the overall viral loads. We identified dampened transcriptional priming, a novel splice variant and an altered leucine-rich repeat domain of bat NLRP3 as the cause. Our results elucidate an important mechanism through which bats dampen inflammation with implications for longevity and unique viral reservoir status.
    Matched MeSH terms: Mice
  13. Ai L, Hu W, Zhang RL, Huang DN, Chen SH, Xu B, et al.
    Trop Biomed, 2020 Dec 01;37(4):947-962.
    PMID: 33612748 DOI: 10.47665/tb.37.4.947
    Different miRNAs are involved in the life cycles of Schistosoma japonicum. The aim of this study was to examine the expression profile of miRNAs in individual S. japonicum of different sex before and after pairing (18 and 24 dpi). The majority of differential expressed miRNAs were highly abundant at 14 dpi, except for sja-miR-125b and sja-miR-3505, in both male and female. Moreover, it was estimated that sja-miR-125b and sja-miR-3505 might be related to laying eggs. sja-miR-2a-5p and sja-miR-3484-5p were expressed at 14 dpi in males and were significantly clustered in DNA topoisomerase III, Rap guanine nucleotide exchange factor 1 and L-serine/L-threonine ammonia-lyase. Target genes of sja-miR-2d-5p, sja-miR-31- 5p and sja-miR-125a, which were expressed at 14 dpi in males but particularly females, were clustered in kelch-like protein 12, fructose-bisphosphate aldolase, class I, and heat shock protein 90 kDa beta. Predicted target genes of sja-miR-3483-3p (expressed at 28 dpi in females but not in males) were clustered in 26S proteasome regulatory subunit N1, ATPdependent RNA helicase DDX17. Predicted target genes of sja-miR-219-5p, which were differentially expressed at 28 dpi in females but particularly males, were clustered in DNA excision repair protein ERCC-6, protein phosphatase 1D, and ATPase family AAA domaincontaining protein 3A/B. Moreover, at 28 dpi, eight miRNAs were significantly up-regulated in females compared to males. The predicted target genes of these miRNAs were significantly clustered in heat shock protein 90 kDa beta, 26S proteasome regulatory subunit N1, and protein arginine N-methyltransferase 1. To sum up, differentially expressed miRNAs may have an essential role and provide necessary information on clarifying this trematode's growth, development, maturation, and infection ability to mammalian hosts in its complex life cycle, and may be helpful for developing new drug targets and vaccine candidates for schistosomiasis.
    Matched MeSH terms: Mice
  14. Aich K, Goswami S, Das S, Mukhopadhyay CD, Quah CK, Fun HK
    Inorg Chem, 2015 Aug 3;54(15):7309-15.
    PMID: 26192906 DOI: 10.1021/acs.inorgchem.5b00784
    On the basis of the Förster resonance energy transfer mechanism between rhodamine and quinoline-benzothiazole conjugated dyad, a new colorimetric as well as fluorescence ratiometric probe was synthesized for the selective detection of Cd(2+). The complex formation of the probe with Cd(2+) was confirmed through Cd(2+)-bound single-crystal structure. Capability of the probe as imaging agent to detect the cellular uptake of Cd(2+) was demonstrated here using living RAW cells.
    Matched MeSH terms: Mice
  15. Aida HN, Dieng H, Ahmad AH, Satho T, Nurita AT, Salmah MR, et al.
    Asian Pac J Trop Biomed, 2011 Dec;1(6):472-7.
    PMID: 23569816 DOI: 10.1016/S2221-1691(11)60103-2
    OBJECTIVE: To generate life table characteristics for the dengue vector Aedes albopictus (A. albopictus) under uncontrolled conditions, incorporating both the aquatic and the adult stages.

    METHODS: Ten females derived from wild pupae were allowed to fully blood-feed on restrained mice. 774 eggs were hatched in seasoned water. F1 larvae were followed for development until their F2 counterparts emerged as adults. Some population parameters were monitored (F1) or estimated (F2).

    RESULTS: A. albopictus exhibited increased fecundity and egg hatch success. Immature development was quick. Immature survival was high, with lowest rate in the pupal stage. Adult emergence was about 81% and sex ratio was close to 1:1. Generational mortality (K) was about 28%. A high proportion of females completed a reproductive cycle and the obtained parity rate was predicted to lead to higher fecundity in the next generation.

    CONCLUSIONS: It can be concluded that natural A. albopictus populations in Penang seem largely determined by quick development in combination with low immature loss and increased oviposition.

    Matched MeSH terms: Mice
  16. Aisha AF, Ismail Z, Abu-Salah KM, Siddiqui JM, Ghafar G, Abdul Majid AM
    PMID: 23842450 DOI: 10.1186/1472-6882-13-168
    Syzygium campanulatum Korth (Myrtaceae) is an evergreen shrub rich in phenolics, flavonoid antioxidants, and betulinic acid. This study sought to investigate antiangiogenic and anti-colon cancer effects of S.C. standardized methanolic extract.
    Matched MeSH terms: Mice, Nude; Mice
  17. Aisha AF, Abu-Salah KM, Ismail Z, Majid AM
    PMID: 22818000
    BACKGROUND: Xanthones are a group of oxygen-containing heterocyclic compounds with remarkable pharmacological effects such as anti-cancer, antioxidant, anti-inflammatory, and antimicrobial activities.
    METHODS: A xanthones extract (81% α-mangostin and 16% γ-mangostin), was prepared by crystallization of a toluene extract of G. mangostana fruit rinds and was analyzed by LC-MS. Anti-colon cancer effect was investigated on HCT 116 human colorectal carcinoma cells including cytotoxicity, apoptosis, anti-tumorigenicity, and effect on cell signalling pathways. The in vivo anti-colon cancer activity was also investigated on subcutaneous tumors established in nude mice.
    RESULTS: The extract showed potent cytotoxicity (median inhibitory concentration 6.5 ± 1.0 μg/ml), due to induction of the mitochondrial pathway of apoptosis. Three key steps in tumor metastasis including the cell migration, cell invasion and clonogenicity, were also inhibited. The extract and α-mangostin up-regulate the MAPK/ERK, c-Myc/Max, and p53 cell signalling pathways. The xanthones extract, when fed to nude mice, caused significant growth inhibition of the subcutaneous tumor of HCT 116 colorectal carcinoma cells.
    CONCLUSIONS: Our data suggest new mechanisms of action of α-mangostin and the G. mangostana xanthones, and suggest the xanthones extract of as a potential anti-colon cancer candidate.
    Matched MeSH terms: Mice, Nude; Mice
  18. Ait Abderrahim L, Taïbi K, Abderrahim NA, Alomery AM, Abdellah F, Alhazmi AS, et al.
    Toxicon, 2019 Aug 26;169:38-44.
    PMID: 31465783 DOI: 10.1016/j.toxicon.2019.08.005
    Microcystin Leucine-Arginine (MC-LR) is a toxin produced by the cyanobacteria Microcystis aeruginosa. It is the most encountered and toxic type of cyanotoxins. Oxidative stress was shown to play a role in the pathogenesis of microcystin LR by the induction of intracellular reactive oxygen species (ROS) formation that oxidize and damage cellular macromolecules. In the present study we examined the effect of acute MC-LR dose on the cardiac muscle of BALB/c mice. Afterwards, melatonin and N-acetyl cysteine (NAC) were assayed and evaluated as potential protective and antioxidant agents against damages generated by MC-LR. For this purpose, thirty mice were assigned into six groups of five mice each. The effect of MC-LR was first compared to the control group supplied with distilled water, then compared to the other groups supplied with melatonin and NAC. The experiment lasted 10 days after which animals were euthanized. Biomarkers of toxicity such as alkaline phosphatase activity, lipid peroxidation, protein carbonyl content, reduced glutathione content, serum lactate dehydrogenase and serum sorbitol dehydrogenase were assayed. Results showed that toxin treated mice have experienced significant oxidative damage in their myocardial tissue as revealed by noticeable levels of oxidative stress biomarkers and by the reduction in alkaline phosphatase activity. Whereas, melatonin and NAC treated mice manifested lesser oxidative damages. Our findings suggest a potential therapeutic use of melatonin and N-acetyl cysteine as antioxidant protective agents against oxidative damage induced by MC-LR.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  19. Ait Abderrahim L, Taibi K, Boussaid M, Al-Shara B, Ait Abderrahim N, Ait Abderrahim S
    Toxicon, 2021 Sep;200:30-37.
    PMID: 34217748 DOI: 10.1016/j.toxicon.2021.06.018
    Microcystins (MCs) are hepatotoxic cyanotoxins implicated in several incidents of human and animal toxicity. Microcystin-(Lysine, Arginine) or MC-LR is the most toxic and encountered variant of MCs where oxidative stress plays a key role in its toxicity. This study investigated the oxidative damages induced in the liver and heart of Balb/C mice by an intraperitoneal injected acute dose of MC-LR. Thereafter, the potential protective effect of garlic (Allium sativum) extract supplementation against such damages was assessed through the evaluation of oxidative stress and cytotoxicity markers. Lipid peroxidation (LPO), carbonyl content (CC), glutathione content (GSH), alkaline phosphatase activity (ALP), lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH) activities were measured. Results showed important oxidative damages in hepatic and cardiac cells of mice injected with the toxin. However, these damages have been significantly reduced in mice supplemented with garlic extract. Thus, this study demonstrated for the first time the effective use of garlic as an antioxidant agent against oxidative damages induced by MC-LR. As well, this study supports the use of garlic as a potential remedy against pathologies related to toxic agents.
    Matched MeSH terms: Mice
  20. Aizuddin NNF, Ganesan N, Ng WC, Ali AH, Ibrahim I, Basir R, et al.
    Trop Biomed, 2020 Dec 01;37(4):1105-1116.
    PMID: 33612762 DOI: 10.47665/tb.37.4.1105
    Malaria is a life-threatening disease caused by the Plasmodium sp. parasite. Infection results in heightened pro-inflammatory response which contributes to the pathophysiology of the disease. To mitigate the overwhelming cytokine response, host-directed therapy is a plausible approach. Glycogen synthase kinase-3β (GSK3β), a serine/threonine kinase plays a pivotal role in the regulation of inflammatory response during pathogenic infections. The present study was conducted to investigate the chemo-suppressive and cytokine-modulating effects of insulin administration in malaria-infected mice and the involvement of GSK3β. Intraperitoneal administrations of 0.3 and 0.5 U/kg body weight insulin each for four consecutive days into Plasmodium berghei NK65 (PbN)-infected mice resulted in chemo-suppression exceeding 60% and improved median survival time of infected mice (20.5 days and 19 days respectively compared to 15.5 days for non-treated control). Western analysis revealed that pGSK3β (Ser9) intensity in brain samples from insulin-treated (0.3 and 0.5 U/kg body weight) infected mice each were 0.6 and 2.2 times respectively than that in control. In liver samples, pGSK3β (Ser9) intensity from insulin-treated infected mice were significantly higher (4.8 and 16.1 fold for 0.3 and 0.5 U/kg bw respectively) than that in control. Insulin administration decreased both brain and liver pNF-κB p65 (Ser536) intensities (to 0.8 and 0.6 times for 0.3 U/kg bw insulin; and to 0.2 and 0.1 times for 0.5 U/kg bw insulin respectively compared to control). Insulin treatment (0.5 U/kg bw) also significantly decreased the serum levels of pro-inflammatory cytokines (TNF-α (3.3 times) and IFN-γ (4.9 times)) whilst significantly increasing the levels of anti-inflammatory cytokines (IL-4 (4.9 fold) and IL-10 (2.1 fold)) in PbN-infected mice. Results from this study demonstrated that the cytokinemodulating effects of insulin at least in part involve inhibition of GSK3β and consequent inhibition of the activation of NF-κB p65 suggesting insulin as a potential adjunctive therapeutic for malaria.
    Matched MeSH terms: Mice, Inbred ICR; Mice
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links