Displaying publications 61 - 80 of 88 in total

Abstract:
Sort:
  1. Rajendran S, Blanco A, Gnanasekaran L, Jalil AA, Chen WH, Gracia F
    Chemosphere, 2023 Dec;345:140418.
    PMID: 37844702 DOI: 10.1016/j.chemosphere.2023.140418
    Carbon-integrated binary metal oxide semiconductors have gained prominence in the last decade as a better material for photocatalytic wastewater treatment technology. In this regard, this research describes the investigation of the binary metal oxide TiO2@Fe3O4 embedded on reduced graphene oxide (rGO) nanosheets synthesized through a combination of sol-gel, chemical precipitation, and Hummer's processes. Besides, the catalyst is applied for the photocatalytic degradation of organic chlorophenol pollutants. The characterized diffraction results showed the peak broadening of the rGO-TiO2@Fe3O4 composite formed with tetragonal and cubic structures having small crystallite sizes. The TEM observation shows an enormous miniature of TiO2@Fe3O4 nanospheres spread on the folded 2D-rGO nanosheets with a large BET surface area. The XPS result holds the mixed phases of Fe3O4 and Fe2O3. Finally, the catalyst demonstrated a low band gap with extended light absorption towards visible light irradiation. The synergistic interactions between Fe3+ and Fe2+ improved the visible light activity due to the incorporation of rGO, and also possessed good recycling capacity. The increased mobility of electrons at the interfaces of TiO2 and Fe3O4 due to the mixing of rGO results in the separation of charge carriers by elevating the photocatalytic degradation efficiency of chlorophenol.
    Matched MeSH terms: Oxides/chemistry
  2. Rashidi Nodeh H, Wan Ibrahim WA, Kamboh MA, Sanagi MM
    Chemosphere, 2017 Jan;166:21-30.
    PMID: 27681257 DOI: 10.1016/j.chemosphere.2016.09.054
    A new graphene-based tetraethoxysilane-methyltrimethoxysilane sol-gel hybrid magnetic nanocomposite (Fe3O4@G-TEOS-MTMOS) was synthesised, characterized and successfully applied in magnetic solid-phase extraction (MSPE) for simultaneous analysis of polar and non-polar organophosphorus pesticides from several water samples. The Fe3O4@G-TEOS-MTMOS nanocomposite was characterized using Fourier transform-infrared spectroscopy, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy and X-ray diffraction. Separation, determination and quantification were achieved using gas chromatography coupled with micro electron capture detector. Adsorption capacity of the sorbent was calculated using Langmuir equation. MSPE was linear in the range 100-1000 pg mL(-1) for phosphamidon and dimethoate, and 10-100 pg mL(-1) for chlorpyrifos and diazinon, with limit of detection (S/N = 3) of 19.8, 23.7, 1.4 and 2.9 pg mL(-1) for phosphamidon, dimethoate, diazinon and chlorpyrifos, respectively. The LODs obtained is well below the maximum residual level (100 pg mL(-1)) as set by European Union for pesticides in drinking water. Acceptable precision (%RSD) was achieved for intra-day (1.3-8.7%, n = 3) and inter-day (7.6-17.8%, n = 15) analyses. Fe3O4@G-TEOS-MTMOS showed high adsorption capacity (54.4-76.3 mg g(-1)) for the selected OPPs. No pesticide residues were detected in the water samples analysed. Excellent extraction recoveries (83-105%) were obtained for the spiked OPPs from tap, river, lake and sea water samples. The newly synthesised Fe3O4@G-TEOS-MTMOS showed high potential as adsorbent for OPPs analysis.
    Matched MeSH terms: Oxides/chemistry
  3. Rashidi Nodeh H, Wan Ibrahim WA, Ali I, Sanagi MM
    Environ Sci Pollut Res Int, 2016 May;23(10):9759-73.
    PMID: 26850098 DOI: 10.1007/s11356-016-6137-z
    New-generation adsorbent, Fe3O4@SiO2/GO, was developed by modification of graphene oxide (GO) with silica-coated (SiO2) magnetic nanoparticles (Fe3O4). The synthesized adsorbent was characterized using Fourier transform infrared spectroscopy, X-ray diffractometry, energy-dispersive X-ray spectroscopy, and field emission scanning electron microscopy. The developed adsorbent was used for the removal and simultaneous preconcentration of As(III) and As(V) from environmental waters prior to ICP-MS analysis. Fe3O4@SiO2/GO provided high adsorption capacities, i.e., 7.51 and 11.46 mg g(-1) for As(III) and As(V), respectively, at pH 4.0. Adsorption isotherm, kinetic, and thermodynamic were investigated for As(III) and As(V) adsorption. Preconcentration of As(III) and As(V) were studied using magnetic solid-phase extraction (MSPE) method at pH 9.0 as the adsorbent showed selective adsorption for As(III) only in pH range 7-10. MSPE using Fe3O4@SiO2/GO was developed with good linearities (0.05-2.0 ng mL(-1)) and high coefficient of determination (R (2) = 0.9992 and 0.9985) for As(III) and As(V), respectively. The limits of detection (LODs) (3× SD/m, n = 3) obtained were 7.9 pg mL(-1) for As(III) and 28.0 pg mL(-1) for As(V). The LOD obtained is 357-1265× lower than the WHO maximum permissible limit of 10.0 ng mL(-1). The developed MSPE method showed good relative recoveries (72.55-109.71 %) and good RSDs (0.1-4.3 %, n = 3) for spring water, lake, river, and tap water samples. The new-generation adsorbent can be used for the removal and simultaneous preconcentration of As(III) and As(V) from water samples successfully. The adsorbent removal for As(III) is better than As(V).
    Matched MeSH terms: Oxides/chemistry
  4. Rizwan Z, Zakaria A, Ghazali MS
    Int J Mol Sci, 2011;12(3):1625-32.
    PMID: 21673911 DOI: 10.3390/ijms12031625
    Photopyroelectric (PPE) spectroscopy is a nondestructive tool that is used to study the optical properties of the ceramics (ZnO + 0.4MnO(2) + 0.4Co(3)O(4) + xV(2)O(5)), x = 0-1 mol%. Wavelength of incident light, modulated at 10 Hz, was in the range of 300-800 nm. PPE spectrum with reference to the doping level and sintering temperature is discussed. Optical energy band-gap (E(g)) was 2.11 eV for 0.3 mol% V(2)O(5) at a sintering temperature of 1025 °C as determined from the plot (ρhυ)(2)versushυ. With a further increase in V(2)O(5), the value of E(g) was found to be 2.59 eV. Steepness factor 'σ(A)' and 'σ(B)', which characterize the slope of exponential optical absorption, is discussed with reference to the variation of E(g). XRD, SEM and EDAX are also used for characterization of the ceramic. For this ceramic, the maximum relative density and grain size was observed to be 91.8% and 9.5 μm, respectively.
    Matched MeSH terms: Oxides/chemistry*
  5. Rohaizu R, Wanrosli WD
    Ultrason Sonochem, 2017 01;34:631-639.
    PMID: 27773290 DOI: 10.1016/j.ultsonch.2016.06.040
    Highly stable and dispersible nanocrystalline cellulose (NCC) was successfully isolated from oil palm empty fruit bunch microcrystalline cellulose (OPEFB-MCC), with yields of 93% via a sono-assisted TEMPO-oxidation and a subsequent sonication process. The sono-assisted treatment has a remarkable effect, resulting in an increase of more than 100% in the carboxylate content and a significant increase of approximately 39% in yield compared with the non-assisted process. TEM images reveal the OPEFB-NCC to have rod-like crystalline morphology with an average length and width of 122 and 6nm, respectively. FTIR and solid-state 13C-NMR analyses suggest that oxidation of cellulose chain hydroxyl groups occurs at C6. XRD analysis shows that OPEFB-NCC consists primarily of a crystalline cellulose I structure. Both XRD and 13C-NMR indicate that the OPEFB-NCC has a lower crystallinity than the OPEFB-MCC starting material. Thermogravimetric analysis illustrates that OPEFB-NCC is less thermally stable than OPEFB-MCC but has a char content of 46% compared with 7% for the latter, which signifies that the carboxylate functionality acts as a flame retardant.
    Matched MeSH terms: Cyclic N-Oxides/chemistry*
  6. Rosid SJM, Toemen S, Iqbal MMA, Bakar WAWA, Mokhtar WNAW, Aziz MMA
    Environ Sci Pollut Res Int, 2019 Dec;26(36):36124-36140.
    PMID: 31748998 DOI: 10.1007/s11356-019-06607-8
    A rapid growth in the development of power generation and transportation sectors would result in an increase in the carbon dioxide (CO2) concentration in the atmosphere. As it will continue to play a vital role in meeting current and future needs, significant efforts have been made to address this problem. Over the past few years, extensive studies on the development of heterogeneous catalysts for CO2 methanation have been investigated and reported in the literatures. In this paper, a comprehensive overview of methanation research studies over lanthanide oxide catalysts has been reviewed. The utilisation of lanthanide oxides as CO2 methanation catalysts performed an outstanding result of CO2 conversion and improvised the conversion of acidity from CO2 gas to CH4 gas. The innovations of catalysts towards the reaction were discussed in details including the influence of preparation methods, the structure-activity relationships as well as the mechanism with the purpose of outlining the pathways for future development of the methanation process.
    Matched MeSH terms: Oxides/chemistry*
  7. Rosli AN, Zabidi NA, Kassim HA, Shrivastava KN
    PMID: 21571582 DOI: 10.1016/j.saa.2011.04.051
    We have calculated the vibrational frequencies of clusters of atoms from the first principles by using the density-functional theory in the local density approximation (LDA). We are also able to calculate the electronic binding energy for all of the clusters of atoms from the optimized structure. We have made clusters of BanOm (n, m=1-6) and have determined the bond lengths, vibrational frequencies as well as intensities in each case. We find that the peroxide cluster BaO2 occurs with the O-O vibrational frequency of 836.3 cm(-1). We also find that a glass network occurs in the material which explains the vibrational frequency of 67 cm(-1). The calculated values agree with those measured from the Raman spectra of barium peroxide and Ba-B-oxide glass. We have calculated the vibrational frequencies of BaO4, GeO4 and SiO4 each in tetrahedral configuration and find that the vibrational frequencies in these systems depend on the inverse square root of the atomic mass.
    Matched MeSH terms: Oxides/chemistry*
  8. Rusi, Majid SR
    PLoS One, 2016;11(5):e0154566.
    PMID: 27182595 DOI: 10.1371/journal.pone.0154566
    Nanostructured network-like MnO2-NiO composite electrodes were electrodeposited onto stainless steel substrates via different electrodeposition modes, such as chronopotentiometry, chronoamperometry, and cyclic voltammetry, and then subjected to heat treatment at 300°C for metal oxide conversion. X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy were used to study the crystalline natures and morphologies of the deposited films. The electrochemical properties were investigated using cyclic voltammetry and charge/discharge tests. The results revealed that the electrochemical performance of the as-obtained composite electrodes depended on the electrodeposition mode. The electrochemical properties of MnO2-NiO composite electrodes prepared using cyclic voltammetry exhibited the highest capacitance values and were most influenced by the deposition cycle number. The optimum specific capacitance was 3509 Fg-1 with energy and power densities of 1322 Wh kg-1 and 110.5 kW kg-1, respectively, at a current density of 20 Ag-1 in a mixed KOH/K3Fe(CN)6 electrolyte.
    Matched MeSH terms: Oxides/chemistry*
  9. Rusi, Chan PY, Majid SR
    PLoS One, 2015;10(7):e0129780.
    PMID: 26158447 DOI: 10.1371/journal.pone.0129780
    The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm(-2). The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg(-1) at current density of 1.85 Ag(-1) in 0.5 M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5 M KOH and 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 10(3) Fg(-1) and an energy density of 309 Whkg(-1) in a 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolyte at a current density of 10 Ag(-1). The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications.
    Matched MeSH terms: Oxides/chemistry*
  10. Saifullah B, Maitra A, Chrzastek A, Naeemullah B, Fakurazi S, Bhakta S, et al.
    Molecules, 2017 Oct 12;22(10).
    PMID: 29023384 DOI: 10.3390/molecules22101697
    Tuberculosis (TB) is a dreadful bacterial disease, infecting millions of human and cattle every year worldwide. More than 50 years after its discovery, ethambutol continues to be an effective part of the World Health Organization's recommended frontline chemotherapy against TB. However, the lengthy treatment regimens consisting of a cocktail of antibiotics affect patient compliance. There is an urgent need to improve the current therapy so as to reduce treatment duration and dosing frequency. In this study, we have designed a novel anti-TB multifunctional formulation by fabricating graphene oxide with iron oxide magnetite nanoparticles serving as a nano-carrier on to which ethambutol was successfully loaded. The designed nanoformulation was characterised using various analytical techniques. The release of ethambutol from anti-TB multifunctional nanoparticles formulation was found to be sustained over a significantly longer period of time in phosphate buffer saline solution at two physiological pH (7.4 and 4.8). Furthermore, the nano-formulation showed potent anti-tubercular activity while remaining non-toxic to the eukaryotic cells tested. The results of this in vitro evaluation of the newly designed nano-formulation endorse its further development in vivo.
    Matched MeSH terms: Oxides/chemistry*
  11. Saifullah B, Chrzastek A, Maitra A, Naeemullah B, Fakurazi S, Bhakta S, et al.
    Molecules, 2017 Oct 12;22(10).
    PMID: 29023399 DOI: 10.3390/molecules22101560
    Tuberculosis (TB) is a bacterial disease responsible for millions of infections and preventable deaths each year. Its treatment is complicated by patients' noncompliance due to dosing frequency, lengthy treatment, and adverse side effects associated with current chemotherapy. However, no modifications to the half-a-century old standard chemotherapy have been made based on a nanoformulation strategy to improve pharmacokinetic efficacy. In this study, we have designed a new nanodelivery formulation, using graphene oxide as the nanocarrier, loaded with the anti-TB antibiotic, ethambutol. The designed formulation was characterized using a number of molecular analytical techniques. It was found that sustained release of the drug resulted in better bioavailability. In addition, the designed formulation demonstrated high biocompatibility with mouse fibroblast cells. The anti-TB activity of the nanodelivery formulation was determined using whole-cell resazurin microtiter plate assay, modified-spot culture growth inhibition assay, and biofilm inhibition assay. The nanodelivery formulation showed good anti-mycobacterial activity. The anti-mycobacterial activity of Ethambutol was unaffected by the drug loading and release process. The results of this study demonstrated the potential of this new nanodelivery formulation strategy to be considered for modifying existing chemotherapy to yield more efficacious antibiotic treatment against TB.
    Matched MeSH terms: Oxides/chemistry*
  12. Shahid MM, Rameshkumar P, Numan A, Shahabuddin S, Alizadeh M, Khiew PS, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Jul;100:388-395.
    PMID: 30948075 DOI: 10.1016/j.msec.2019.02.107
    Cobalt oxide nanocubes incorporated with reduced graphene oxide (rGO-Co3O4) was prepared by using simple one-step hydrothermal route. Crystallinity and structural characteristics of the nanocomposite were analyzed and confirmed using X-ray diffraction (XRD) and Raman analysis, respectively. The cubical shape of the Co3O4 nanostructures and the distribution of Co3O4 nanocubes on the surface of rGO sheets were identified through field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) mapping analysis, respectively. Raman spectra depicted the presence of D and G bands for GO and rGO with different ID/IG values and thus confirmed the reduction of GO into rGO. The electrochemical study reflects that the rGO-Co3O4 nanocomposite shows good electrocatalytic activity in oxidation of depression biomarker serotonin (5-HT) in phosphate buffer (pH 7.2). The detection of 5-HT was carried out by using rGO-Co3O4 nanocomposite modified glassy carbon electrode under dynamic condition using amperometry technique with a linear range of 1-10 μM. The limit of detection and limit of quantification were calculated and found to be 1.128 and 3.760 μM, respectively with a sensitivity value of 0.133 μΑ·μM-1. The sensor showed selectivity in the presence of different interferent species such as ascorbic acid, dopamine and uric acid.
    Matched MeSH terms: Oxides/chemistry*
  13. Siriviriyanun A, Tsai YJ, Voon SH, Kiew SF, Imae T, Kiew LV, et al.
    Mater Sci Eng C Mater Biol Appl, 2018 Aug 01;89:307-315.
    PMID: 29752102 DOI: 10.1016/j.msec.2018.04.020
    In this study, nanohybrid materials consisting of graphene oxide (GO), β‑cyclodextrin (CD) and poly(amido amine) dendrimer (DEN) were successfully prepared by covalent bonding. GO-CD and GO-CD-DEN were found to be potential nanocarriers for anticancer drugs including chemotherapeutics (doxorubicin (DOX), camptothecin (CPT)) and photosensitizer (protoporphyrin IX (PpIX)). GO-CD possessed 1.2 times higher DOX-loading capacity than GO due to inclusion of additional DOX to the CD. The drug loading on GO-CD-DEN increased in the order: DOX 
    Matched MeSH terms: Oxides/chemistry
  14. Syahir A, Kajikawa K, Mihara H
    Protein Pept Lett, 2018;25(1):34-41.
    PMID: 29237369 DOI: 10.2174/0929866525666171214111957
    BACKGROUND: Direct bio-monitoring essentially involves optical means since photon has insignificant effects over biomolecules. Over the years, laser induced surface Plasmon resonance method with various modifications as well as versatile localized Plasmon excited by incoherent light have facilitated in recording many nanobiological activities. Yet, monitoring interactions of small molecules including drugs requires signal amplification and improvement on signal-to-noise ratio.

    OBJECTIVES: This paper focused on how the refractive index based nanobio-sensoring gold platform can produce more efficient, adaptable and more practical detection techniques to observe molecular interactions at high degree of sensitivity. It discusses surface chemistry approach, optimisation of the refractive index of gold platform and manipulation of gold geometry augmenting signal quality.

    METHODS: In a normal-incidence reflectivity, r0 can be calculated using the Fresnel equation. Particularly at λ = 470 nm the ratio of r / r0 showed significant amplitude reduction mainly stemmed from the imaginary part of the Au refractive index. Hence, the fraction of reduction, Δr = 1 - r / r0. Experimentally, in a common reference frame reflectivity of a bare gold surface, R0 is compared with the reflectivity of gold surface in the presence of biolayer, R. The reduction rate (%) of reflectivity, ΔR = 1 - R / R0 is denoted as the AR signal. The method therefore enables quantitative measurement of the surface-bound protein by converting ΔR to the thickness, d, and subsequently the protein mass. We discussed four strategies to improve the AR signal by changing the effective refractive index of the biosensing platform. They are; a) Thickness optimisation of Au thin layer, b) Au / Ag bimetallic layer, c) composing alloy or Au composite, and d) Au thinlayer with nano or micro holes.

    RESULTS: As the result we successfully 'move' the refractive index, ε of the AR platform (gold only) to ε = -0.948 + 3.455i, a higher sensitivity platform. This was done by composing Au-Ag2O composite with ratio = 1:1. The results were compared to the potential sensitivity improvement of the AR substrate using other that could be done by further tailoring the ε advanced method.

    CONCLUSION: We suggested four strategies in order to realize this purpose. It is apparent that sensitivity has been improved through Au/Ag bimetallic layer or Au-Ag2O composite thin layer, This study is an important step towards fabrication of sensitive surface for detection of biomolecular interactions.

    Matched MeSH terms: Oxides/chemistry
  15. Teh SJ, Yeoh SL, Lee KM, Lai CW, Abdul Hamid SB, Thong KL
    PMID: 27203568 DOI: 10.1016/j.jphotobiol.2016.05.013
    The immobilization of photocatalyst nanoparticles on a solid substrate is an important aspect for improved post-treatment separation and photocatalyst reactor design. In this study, we report the simple preparation of reduced graphene oxide (rGO)-hybridized zinc oxide (ZnO) thin films using a one-step electrochemical deposition, and investigated the effect of rGO-hybridization on the photoinactivation efficiency of ZnO thin films towards Staphylococcus aureus (S. aureus) and Salmonella enterica serovar Typhi (S. Typhi) as target bacterial pathogens. Field-emission scanning electron microscopy (FESEM) revealed the formation of geometric, hexagonal flakes of ZnO on the ITO glass substrate, as well as the incorporation of rGO with ZnO in the rGO/ZnO thin film. Raman spectroscopy indicated the successful incorporation of rGO with ZnO during the electrodeposition process. Photoluminescence (PL) spectroscopy indicates that rGO hybridization with ZnO increases the amount of oxygen vacancies, evidenced by the shift of visible PL peak at 650 to 500nm. The photoinactivation experiments showed that the thin films were able to reduce the bacterial cell density of Staph. aureus and S. Typhi from an initial concentration of approximately 10(8) to 10(3)CFU/mL within 15min. The rGO/ZnO thin film increased the photoinactivation rate for S. aureus (log[N/No]) from -5.1 (ZnO) to -5.9. In contrast, the application of rGO/ZnO thin film towards the photoinactivation of S. Typhi did not improve its photoinactivation rate, compared to the ZnO thin film. We may summarise that (1) rGO/ZnO was effective to accelerate the photoinactivation of S. aureus but showed no difference to improve the photoinactivation of S. Typhi, in comparison to the performance of ZnO thin films, and (2) the photoinactivation in the presence of ZnO and rGO/ZnO was by ROS damage to the extracellular wall.
    Matched MeSH terms: Oxides/chemistry
  16. Teow SY, Wong MM, Yap HY, Peh SC, Shameli K
    Molecules, 2018 06 06;23(6).
    PMID: 29882775 DOI: 10.3390/molecules23061366
    Nanoparticles (NPs) are nano-sized particles (generally 1⁻100 nm) that can be synthesized through various methods. The wide range of physicochemical characteristics of NPs permit them to have diverse biological functions. These particles are versatile and can be adopted into various applications, particularly in biomedical field. In the past five years, NPs’ roles in biomedical applications have drawn considerable attentions, and novel NPs with improved functions and reduced toxicity are continuously increasing. Extensive studies have been carried out in evaluating antibacterial potentials of NPs. The promising antibacterial effects exhibited by NPs highlight the potential of developing them into future generation of antimicrobial agents. There are various methods to synthesize NPs, and each of the method has significant implication on the biological action of NPs. Among all synthetic methods, green technology is the least toxic biological route, which is particularly suitable for biomedical applications. This mini-review provides current update on the antibacterial effects of NPs synthesized by green technology using plants. Underlying challenges in developing NPs into future antibacterials in clinics are also discussed at the present review.
    Matched MeSH terms: Oxides/chemistry*
  17. Thavanathan J, Huang NM, Thong KL
    Biosens Bioelectron, 2014 May 15;55:91-8.
    PMID: 24368225 DOI: 10.1016/j.bios.2013.11.072
    The unique property of gold nanoparticles (Au NP) to induce colour change and the versatility of graphene oxides (GO) in surface modification makes them ideal in the application of colorimetric biosensor. Thus we developed a label free optical method to detect DNA hybridization through a visually observed colour change. The Au NP is conjugated to a DNA probe and is allowed to hybridize with the DNA target to the GO thus causing a change in colour from pinkish-red to purplish blue. Spectrophometry analysis gave a wavelength shift of 22 nm with 1 µM of DNA target. Sensitivity testing using serially diluted DNA conjugated GO showed that the optimum detection was at 63 nM of DNA target with the limit at 8 nM. This proves the possibility for the detection of DNA hybridization through the use of dual nanoparticle system by visual observation.
    Matched MeSH terms: Oxides/chemistry
  18. Thongprapai P, Cheewasedtham W, Chong KF, Rujiralai T
    J Sep Sci, 2018 Dec;41(23):4348-4354.
    PMID: 30267469 DOI: 10.1002/jssc.201800441
    A magnetic nanographene oxide sorbent as a selective sorbent for the magnetic solid-phase extraction combined with high-performance liquid chromatography and fluorescence detection was developed and proved to be a robust method for zearalenone determination in corn samples. Optimum extraction of zearalenone (20 mg magnetic nanographene oxide sorbent, extraction for 15 min, desorption time of 15 min using 1 mL of 0.5% formic acid in methanol) resulted in low limits of detection (05 mg/L) and quantitation (0.13 mg/L) and good linearity range of 0.13-1.25 mg/L with the correlation coefficient of 0.9957. Acceptable recoveries (79.3-80.6%) with relative standard deviations below 4% and satisfactory intra- and interday precisions (2-7.4%) were achieved. Additionally, the proposed method has been proved to be good in several aspects: easily prepared sorbent with high affinity to zearalenone, convenient and fast procedure, and high extraction efficiency.
    Matched MeSH terms: Oxides/chemistry*
  19. Tuan DD, Hung C, Da Oh W, Ghanbari F, Lin JY, Lin KA
    Chemosphere, 2020 Dec;261:127552.
    PMID: 32731015 DOI: 10.1016/j.chemosphere.2020.127552
    As cobalt (Co) represents an effective transition metal for activating Oxone to degrade contaminants, tricobalt tetraoxide (Co3O4) is extensively employed as a heterogeneous phase of Co for Oxone activation. Since Co3O4 can be manipulated to exhibit various shapes, 2-dimensional plate-like morphology of Co3O4 can offer large contact surfaces. If the large plate-like surfaces can be even porous, forming porous nanoplate Co3O4 (PNC), such a PNC should be a promising catalyst for Oxone activation. Therefore, a facile but straightforward method is proposed to prepare such a PNC for activating Oxone to degrade pollutants. In particular, a cobaltic coordination polymer with a morphology of hexagonal nanoplate, which is synthesized through coordination between Co2+ and thiocyanuric acid (TCA), is adopted as a precursor. Through calcination, CoTCA could be transformed into hexagonal nanoplate-like Co3O4 with pores to become PNC. This PNC also shows different characteristics from the commercial Co3O4 nanoparticle (NP) in terms of surficial reactivity and textural properties. Thus, PNC exhibits a much higher catalytic activity than the commercial Co3O4 NP towards activation of Oxone to degrade a model contaminant, salicylic acid (SA). Specifically, SA was 100% degraded by PNC activating Oxone within 120 min, and the Ea of SA degradation by PNC-activated Oxone is 70.2 kJ/mol. PNC can also remain stable and effective for SA degradation even in the presence of other anions, and PNC could be reused over multiple cycles without significant loss of catalytic activity. These features validate that PNC is a promising and useful Co-based catalyst for Oxone activation.
    Matched MeSH terms: Oxides/chemistry*
  20. Uppachai P, Srijaranai S, Poosittisak S, Md Isa I, Mukdasai S
    Molecules, 2020 May 29;25(11).
    PMID: 32485804 DOI: 10.3390/molecules25112528
    A new supramolecular electrochemical sensor for highly sensitive detection of dopamine (DA) was fabricated based on supramolecular assemblies of mixed two surfactants, tetra-butylammonium bromide (TBABr) and sodium dodecyl sulphate (SDS), on the electrodeposition of gold nanoparticles on graphene oxide modified on glassy carbon electrode (AuNPs/GO/GCE). Self-assembled mixed surfactants (TBABr/SDS) were added into the solution to increase the sensitivity for the detection of DA. All electrodes were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The supramolecular electrochemical sensor (TBABr/SDS⋅⋅⋅AuNPs/GO/GCE) showed excellent electrocatalytic activity toward the oxidation of DA. Under the optimum conditions, the concentration of DA was obtained in the range from 0.02 µM to 1.00 µM, with a detection limit of 0.01 µM (3s/b). The results displayed that TBABr/SDS⋅⋅⋅AuNPs/GO/GCE exhibited excellent performance, good sensitivity, and reproducibility. In addition, the proposed supramolecular electrochemical sensor was successfully applied to determine DA in human serum samples with satisfactory recoveries (97.26% to 104.21%).
    Matched MeSH terms: Oxides/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links