Displaying publications 61 - 80 of 1819 in total

Abstract:
Sort:
  1. Teng ST, Lim PT, Lim HC, Rivera-Vilarelle M, Quijano-Scheggia S, Takata Y, et al.
    J Phycol, 2015 Aug;51(4):706-25.
    PMID: 26986792 DOI: 10.1111/jpy.12313
    A new species of Pseudo-nitzschia (Bacillariophyceae) is described from plankton samples collected from Port Dickson (Malacca Strait, Malaysia) and Manzanillo Bay (Colima, Mexico). The species possesses a distinctive falcate cell valve, from which they form sickle-like colonies in both environmental samples and cultured strains. Detailed observation of frustules under TEM revealed ultrastructure that closely resembles P. decipiens, yet the new species differs by the valve shape and greater ranges of striae and poroid densities. The species is readily distinguished from the curve-shaped P. subcurvata by the presence of a central interspace. The morphological distinction is further supported by phylogenetic discrimination. We sequenced and analyzed the nuclear ribosomal RNA genes in the LSU and the second internal transcribed spacer, including its secondary structure, to infer the phylogenetic relationship of the new species with its closest relatives. The results revealed a distinct lineage of the new species, forming a sister cluster with its related species, P. decipiens and P. galaxiae, but not with P. subcurvata. We examined the domoic acid (DA) production of five cultured strains from Malaysia by Liquid chromatography-mass spectrometry (LC-MS), but they showed no detectable DA. Here, we present the taxonomic description of the vegetative cells, document the sexual reproduction, and detail the molecular phylogenetics of Pseudo-nitzschia sabit sp. nov.
    Matched MeSH terms: Phylogeny
  2. Zhu Y, Hu Z, Lv X, Huang R, Gu X, Zhang C, et al.
    Transbound Emerg Dis, 2022 Jul;69(4):1782-1793.
    PMID: 33993639 DOI: 10.1111/tbed.14155
    Since 2010, several duck Tembusu viruses (DTMUVs) have been isolated from infected ducks in China, and these virus strains have undergone extensive variation over the years. Although the infection rate is high, the mortality rate is usually relatively low-~5%-30%; however, since fall 2019, an infectious disease similar to DTMUV infection but with a high mortality rate of ~50% in goslings has been prevalent in Anhui Province, China. The present study identified a new Tembusu virus, designated DTMUV/Goose/China/2019/AQ-19 (AQ-19), that is believed to be responsible for the noticeably high mortality in goslings. To investigate the genetic variation of this strain, its entire genome was sequenced and analysed for specific variations, and goslings and mice were challenged with the isolated virus to investigate its pathogenicity. The AQ-19 genome shared only 94.3%-96.9% and 90.9% nucleotide identity with other Chinese and Malaysian DTMUVs, respectively; however, AQ-19 has high homology with Thailand DTMUVs (97.2%-98.1% nucleotide identity). Phylogenetic analysis of the E gene revealed that AQ-19 and most of Thailand DTMUVs form a branch separate from any of the previously reported DTMUV strains in China. After the challenge, some goslings and mice showed typical clinical signs of DTMUV, particularly severe neurological dysfunction. AQ-19 has high virulence in goslings and mice, resulting in 60% and 70% mortality through intramuscular and intracerebral routes, respectively. Pathological examination revealed severe histological lesions in the brain and liver of the infected goslings and mice. Taken together, these results demonstrated the emergence of a novel Tembusu virus with high virulence circulating in goslings in China for the first time, and our findings highlight the high genetic diversity of DTMUVs in China. Further study of the pathogenicity and host range of this novel Tembusu virus is particularly important.
    Matched MeSH terms: Phylogeny
  3. Matsumoto T, Sato M, Nishizono A, Ahmed K
    Arch Virol, 2019 Aug;164(8):2179-2182.
    PMID: 31111258 DOI: 10.1007/s00705-019-04286-x
    We identified two novel circoviruses, HK02976 and HK00220, in oral swabs from bats. The size of their full genome was 2,010 nucleotides (nt). The full-genome sequence of our strains shared 96.1% nucleotide sequence identity with each other, and 39.9%-69.5% identity with bat-associated circoviruses (BatACVs)1-9. Based on the species demarcation threshold for viruses of the family Circoviridae, which is 80% genome-wide nucleotide sequence identity, we have tentatively named this group of viruses "bat-associated circovirus 10" (BatACV10).
    Matched MeSH terms: Phylogeny
  4. Low VL, Tan TK, Tohiran KA, Lim YAL, AbuBakar S, Nasir DM
    Vet Microbiol, 2022 Jan;264:109284.
    PMID: 34826649 DOI: 10.1016/j.vetmic.2021.109284
    Bartonelloses are emerging infectious diseases that are common in humans and animals worldwide. Several Bartonella species associated with companion animals such as Bartonella henselae and Bartonella rochalimae are species with zoonotic implications and have become a global concern. Other Bartonella species associated with wild animals, however, remain underappreciated particularly in the developing regions of the world. To explore further on this neglected bacterial agent, Leptocyclopodia ferrari (Nycteribiidae) bat flies collected from Cynopterus brachyotis (Pteropodidae), an endemic fruit bat species in Southeast Asia, were molecularly examined for the presence of Bartonella. Both 16 S-23 S ribosomal RNA intergenic spacer region and citrate synthase gene sequences exhibited less than 95 % similarity to all previously reported Bartonella spp. Further phylogenetic analysis revealed a novel clade of this Bartonella sp. with high bootstrap support. The vectorial capacity of bat flies in transmitting this novel pathogen merits further investigation.
    Matched MeSH terms: Phylogeny
  5. Liu M, Chen YY, Twu NC, Wu MC, Fang ZS, Dubruel A, et al.
    Poult Sci, 2024 Feb;103(2):103332.
    PMID: 38128459 DOI: 10.1016/j.psj.2023.103332
    In late 2020, an outbreak of Tembusu virus (TMUV)-associated disease occurred in a 45-day-old white Roman geese flock in Taiwan. Here, we present the identification and isolation of a novel goose-origin TMUV strain designated as NTU/C225/2020. The virus was successfully isolated using minimal-pathogen-free duck embryos. Phylogenetic analysis of the polyprotein gene showed that NTU/C225/2020 clustered together with the earliest isolates from Malaysia and was most closely related to the first Taiwanese TMUV strain, TP1906. Genomic analysis revealed significant amino acid variations among TMUV isolates in NS1 and NS2A protein regions. In the present study, we characterized the NTU/C225/2020 culture in duck embryos, chicken embryos, primary duck embryonated fibroblasts, and DF-1 cells. All host systems were susceptible to NTU/C225/2020 infection, with observable lesions. In addition, animal experiments showed that the intramuscular inoculation of NTU/C225/2020 resulted in growth retardation and hyperthermia in day-old chicks. Gross lesions in the infected chicks included hepatomegaly, hyperemic thymus, and splenomegaly. Viral loads and histopathological damage were displayed in various tissues of both inoculated and naïve co-housed chicks, confirming the direct chick-to-chick contact transmission of TMUV. This is the first in vivo study of a local TMUV strain in Taiwan. Our findings provide essential information for TMUV propagation and suggest a potential risk of disease outbreak in chicken populations.
    Matched MeSH terms: Phylogeny
  6. Freeman MA, Yanagida T, Kristmundsson À
    PeerJ, 2020;8:e9529.
    PMID: 32742799 DOI: 10.7717/peerj.9529
    Gastrointestinal myxosporean parasites from the genus Enteromyxum are known to cause severe disease, resulting in high mortalities in numerous species of cultured marine fishes globally. Originally described as Myxidium spp., they were transferred to a new genus, Enteromyxum, to emphasize their novel characteristics. Their retention in the family Myxidiidae at the time was warranted, but more comprehensive phylogenetic analyses have since demonstrated the need for a new family for these parasites. We discovered a novel Enteromyxum in wild fish from Malaysia and herein describe the fourth species in the genus and erect a new family, the Enteromyxidae n. fam., to accommodate them. Enteromyxum caesio n. sp. is described infecting the tissues of the stomach in the redbelly yellowtail fusilier, Caesio cuning, from Malaysia. The new species is distinct from all others in the genus, as the myxospores although morphologically similar, are significantly smaller in size. Furthermore, small subunit ribosomal DNA sequence data reveal that E. caesio is <84% similar to others in the genus, but collectively they form a robust and discrete clade, the Enteromyxidae n. fam., which is placed as a sister taxon to other histozoic marine myxosporeans. In addition, we describe, using transmission electron microscopy, the epicellular stages of Enteromyxum fugu and show a scanning electron micrograph of a mature myxospore of E. caesio detailing the otherwise indistinct sutural line, features of the polar capsules and spore valve ridges. The Enteromyxidae n. fam. is a commercially important group of parasites infecting the gastrointestinal tract of marine fishes and the histozoic species can cause the disease enteromyxosis in intensive finfish aquaculture facilities. Epicellular and sloughed histozoic stages are responsible for fish-to-fish transmission in net pen aquaculture systems but actinospores from an annelid host are thought to be necessary for transmission to fish in the wild.
    Matched MeSH terms: Phylogeny
  7. Arockiaraj J, Kumaresan V, Bhatt P, Palanisamy R, Gnanam AJ, Pasupuleti M, et al.
    Peptides, 2014 Mar;53:79-88.
    PMID: 24269604 DOI: 10.1016/j.peptides.2013.11.008
    In this study, we reported a complete molecular characterization including bioinformatics features, gene expression, peptide synthesis and its antimicrobial activities of an anti-lipopolysaccharide (LPS) factor (ALF) cDNA identified from the established cDNA library of freshwater prawn Macrobrachium rosenbergii (named as MrALF). The mature protein has an estimated molecular weight of 11.240 kDa with an isoelectric point of 9.46. The bioinformatics analysis showed that the MrALF contains an antimicrobial peptide (AMP) region between T54 and P77 with two conserved cysteine residues (Cys55 and Cys76) which have an anti-parallel β-sheet confirmation. The β-sheet is predicted as cationic with hydrophobic nature containing a net charge of +5. The depicted AMP region is determined to be amphipathic with a predicted hydrophobic face 'FPVFI'. A highest MrALF gene expression was observed in hemocytes and is up-regulated with virus [white spot syndrome baculovirus (WSBV)], bacteria (Aeromonas hydrophila) and Escherichia coli LPS at various time points. The LPS binding region of MrALF peptide was synthesized to study the antimicrobial property, bactericidal efficiency and hemolytic capacity. The peptide showed antimicrobial activity against both the Gram-negative and Gram-positive bacteria. The bactericidal assay showed that the peptide recognized the LPS of bacterial cell walls and binding on its substrate and thereby efficiently distinguishing the pathogens. The hemolytic activity of MrALF peptide is functioning in a concentration dependant manner. In summary, the comprehensive analysis of MrALF showed it to be an effective antimicrobial peptide and thus it plays a crucial role in the defense mechanism of M. rosenbergii.
    Matched MeSH terms: Phylogeny
  8. Noman AE, Al-Barha NS, Sharaf AM, Al-Maqtari QA, Mohedein A, Mohammed HHH, et al.
    Sci Rep, 2020 08 11;10(1):13527.
    PMID: 32782276 DOI: 10.1038/s41598-020-70404-4
    A novel bacterial strain of acetic acid bacteria capable of producing riboflavin was isolated from the soil sample collected in Wuhan, China. The isolated strain was identified as Gluconobacter oxydans FBFS97 based on several phenotype characteristics, biochemicals tests, and 16S rRNA gene sequence conducted. Furthermore, the complete genome sequencing of the isolated strain has showed that it contains a complete operon for the biosynthesis of riboflavin. In order to obtain the maximum concentration of riboflavin production, Gluconobacter oxydans FBFS97 was optimized in shake flask cultures through response surface methodology employing Plackett-Burman design (PBD), and Central composite design (CCD). The results of the pre-experiments displayed that fructose and tryptone were found to be the most suitable sources of carbon and nitrogen for riboflavin production. Then, PBD was conducted for initial screening of eleven minerals (FeSO4, FeCl3, KH2PO4, K2HPO4, MgSO4, ZnSO4, NaCl, CaCl2, KCl, ZnCl2, and AlCl3.6H2O) for their significances on riboflavin production by Gluconobacter oxydans strain FBFS97. The most significant variables affecting on riboflavin production are K2HPO4 and CaCl2, the interaction affects and levels of these variables were optimized by CCD. After optimization of the medium compositions for riboflavin production were determined as follows: fructose 25 g/L, tryptone 12.5 g/L, K2HPO4 9 g/L, and CaCl2 0.06 g/L with maximum riboflavin production 23.24 mg/L.
    Matched MeSH terms: Phylogeny*
  9. Nandi JS, Bhavalkar-Potdar V, Tikute S, Raut CG
    Virology, 2000 Nov 10;277(1):6-13.
    PMID: 11062030
    As a simian species, the langurs are not known to harbor simian retroviruses, except for one report on a simian Type D endogenous retrovirus from the spectacled langur (Trachypithecus obscurus) from Malaysia. The present report describes for the first time natural infection of the common Hanuman langur (Semnopithecus entellus) from India by a novel simian retrovirus (SRV). The new SRV is phylogenetically related to but distinct from the three molecularly characterized serotypes, SRV 1-3, of the five known serotypes of SRVs, based on sequence analyses from the 3'orf and env regions of the viral genome. The novel SRV isolated from the Indian Hanuman langur is provisionally named SRV-6.
    Matched MeSH terms: Phylogeny*
  10. Ng BL, Omarzuki M, Lau GS, Pannell CM, Yeo TC
    Mol Biotechnol, 2014 Jul;56(7):671-9.
    PMID: 24623047 DOI: 10.1007/s12033-014-9746-0
    Members of the genus Aglaia have been reported to contain bioactive phytochemicals. The genus, belonging to the Meliaceae family, is represented by at least 120 known species of woody trees or shrubs in the tropical rain forest. As some of these species are very similar in their morphology, taxonomic identification can be difficult. A reliable and definitive molecular method which can identify Aglaia to the level of the species will hence be useful in comparing the content of specific bioactive compounds between the species of this genus. Here, we report the analysis of DNA sequences in the internal transcribed spacer (ITS) of the nuclear ribosomal DNA and the observation of a unique nucleotide signature in the ITS that can be used for the identification of Aglaia stellatopilosa. The nucleotide signature consists of nine bases over the length of the ITS sequence (654 bp). This uniqueness was validated in 37 samples identified as Aglaia stellatopilosa by an expert taxonomist, whereas the nucleotide signature was lacking in a selection of other Aglaia species and non-Aglaia genera. This finding suggests that molecular typing could be utilized in the identification of Aglaia stellatopilosa.
    Matched MeSH terms: Phylogeny*
  11. Murphy B, Forest F, Barraclough T, Rosindell J, Bellot S, Cowan R, et al.
    Mol Phylogenet Evol, 2020 03;144:106668.
    PMID: 31682924 DOI: 10.1016/j.ympev.2019.106668
    Nepenthaceae is one of the largest carnivorous plant families and features ecological and morphological adaptations indicating an impressive adaptive radiation. However, investigation of evolutionary and taxonomic questions is hindered by poor phylogenetic understanding, with previous molecular studies based on limited loci and taxa. We use high-throughput sequencing with a target-capture methodology based on a 353-loci, probe set to recover sequences for 197 samples, representing 151 described or putative Nepenthes species. Phylogenetic analyses were performed using supermatrix and maximum quartet species tree approaches. Our analyses confirm five Western outlier taxa, followed by N. danseri, as successively sister to the remainder of the group. We also find mostly consistent recovery of two major Southeast Asian clades. The first contains common or widespread lowland species plus a Wallacean-New Guinean clade. Within the second clade, sects. Insignes and Tentaculatae are well supported, while geographically defined clades representing Sumatra, Indochina, Peninsular Malaysia, Palawan, Mindanao and Borneo are also consistently recovered. However, we find considerable conflicting signal at the site and locus level, and often unstable backbone relationships. A handful of Bornean taxa are inconsistently placed and require further investigation. We make further suggestions for a modified infra-generic classification of genus Nepenthes.
    Matched MeSH terms: Phylogeny*
  12. Tan JL, Khang TF, Ngeow YF, Choo SW
    BMC Genomics, 2013;14:879.
    PMID: 24330254 DOI: 10.1186/1471-2164-14-879
    Mycobacterium abscessus is a rapidly growing mycobacterium that is often associated with human infections. The taxonomy of this species has undergone several revisions and is still being debated. In this study, we sequenced the genomes of 12 M. abscessus strains and used phylogenomic analysis to perform subspecies classification.
    Matched MeSH terms: Phylogeny*
  13. Kitano YF, Benzoni F, Arrigoni R, Shirayama Y, Wallace CC, Fukami H
    PLoS One, 2014;9(5):e98406.
    PMID: 24871224 DOI: 10.1371/journal.pone.0098406
    The family Poritidae formerly included 6 genera: Alveopora, Goniopora, Machadoporites, Porites, Poritipora, and Stylaraea. Morphologically, the genera can be differentiated based on the number of tentacles, the number of septa and their arrangement, the length of the polyp column, and the diameter of the corallites. However, the phylogenetic relationships within and between the genera are unknown or contentious. On the one hand, Alveopora has been transferred to the Acroporidae recently because it was shown to be more closely related to this family than to the Poritidae by previous molecular studies. On the other hand, Goniopora is morphologically similar to 2 recently described genera, Machadoporites and Poritipora, particularly with regard to the number of septa (approximately 24), but they have not yet been investigated at the molecular level. In this study, we analyzed 93 samples from all 5 poritid genera and Alveopora using 2 genetic markers (the barcoding region of the mitochondrial COI and the ITS region of the nuclear rDNA) to investigate their phylogenetic relationships and to revise their taxonomy. The reconstructed molecular trees confirmed that Alveopora is genetically distant from all poritid genera but closely related to the family Acroporidae, whereas the other genera are genetically closely related. The molecular trees also revealed that Machadoporites and Poritipora were indistinguishable from Goniopora. However, Goniopora stutchburyi was genetically isolated from the other congeneric species and formed a sister group to Goniopora together with Porites and Stylaraea, thus suggesting that 24 septa could be an ancestral feature in the Poritidae. Based on these data, we move G. stutchburyi into a new genus, Bernardpora gen. nov., whereas Machadoporites and Poritipora are merged with Goniopora.
    Matched MeSH terms: Phylogeny*
  14. Frias L, Hasegawa H, Stark DJ, Lynn MS, Nathan SK, Chua TH, et al.
    PMID: 30619706 DOI: 10.1016/j.ijppaw.2018.11.009
    Lemuricola (Protenterobius) nycticebi is the only pinworm species known to infect strepsirrhine primates outside Africa, and the only pinworm species yet described in slow lorises. Here, we provided a detailed morphological comparison of female and male worms, and a first description of fourth-stage larvae collected from free-living slow lorises (Nycticebus menagensis) in Sabah, Malaysian Borneo. Using mitochondrial and nuclear markers, we also reconstructed the species' phylogenetic relationship with other pinworms infecting primates. Both morphological and molecular results indicated a distinct association between L. (P.) nycticebi and its host. However, while taxonomy identified this species as a member of the Lemuricola clade and grouped pinworms infecting lemurs and slow lorises together, phylogenetic reconstruction split them, placing L. (P.) nycticebi within the Enterobius clade. Our results suggest that L. (P.) nycticebi may represent a different taxon altogether, and that it is more closely related to pinworm species infecting Old World primates outside Madagascar. Pongobius pongoi (Foitová et al., 2008) n. comb. is also proposed.
    Matched MeSH terms: Phylogeny
  15. Chaurasia MK, Palanisamy R, Bhatt P, Kumaresan V, Gnanam AJ, Pasupuleti M, et al.
    Microbiol Res, 2015 Jan;170:78-86.
    PMID: 25271126 DOI: 10.1016/j.micres.2014.08.011
    This study investigates the complete molecular characterization including bioinformatics characterization, gene expression, synthesis of N and C terminal peptides and their antimicrobial activity of the core histone 4 (H4) from freshwater giant prawn Macrobrachium rosenbergii (Mr). A cDNA encoding MrH4 was identified from the constructed cDNA library of M. rosenbergii during screening and the sequence was obtained using internal sequencing primers. The MrH4 coding region possesses a polypeptide of 103 amino acids with a calculated molecular weight of 11kDa and an isoelectric point of 11.5. The bioinformatics analysis showed that the MrH4 polypeptide contains a H4 signature at (15)GAKRH(19). Multiple sequence alignment of MrH4 showed that the N-terminal (21-42) and C-terminal (87-101) antimicrobial peptide regions and the pentapeptide or H4 signature (15-19) are highly conserved including in humans. The phylogenetic tree formed two separate clades of vertebrate and invertebrate H4, wherein MrH4 was located within the arthropod monophyletic clade of invertebrate H4 groups. Three-dimensional model of MrH4 was established using I-TASSER program and the model was validated using Ramachandran plot analysis. Schiffer-Edmundson helical wheel modeling was used to predict the helix propensity of N (21-42) and C (87-101) terminal derived Mr peptides. The highest gene expression was observed in gills and is induced by viral [white spot syndrome baculovirus (WSBV) and M. rosenbergii nodovirus (MrNV)] and bacterial (Aeromonas hydrophila and Vibrio harveyi) infections. The N and C terminal peptides were synthesized and their antimicrobial and hemolytic properties were examined. Both peptides showed activity against the tested Gram negative and Gram positive bacteria; however, the highest activity was noticed against Gram negative bacteria. Among the two peptides used in this study, C-terminal peptide yielded better results than the N-terminal peptide. Therefore, C terminal peptide can be recommended for the development of an antimicrobial agent.
    Matched MeSH terms: Phylogeny
  16. Suzana M., Siti Azizah M. N., Devakie, M. N.
    MyJurnal
    This paper reports on a preliminary genetic investigation of two commercially cultured oyster species, white and black scar oysters, Crassostrea belcheri and C. iredalei, respectively. A total
    of 68 individuals from three different areas in Malaysia namely a C. belcheri sample from Semporna (Sabah) and two populations of C. iredalei from Trai (Sabah) and Setiu (Terengganu) were
    collected and analysed based on sequence analysis of cytochrome oxidase subunit I (COI). Alignment of COI gene was done using Alignment Explorer/CLUSTAL in Mega4.1. Genetic distances
    within and between populations were calculated using Kimura 2-parameter. Phylogenetic dendograms were generated by Neighbour-Joining (NJ) and Maximum Parsimony (MP) methods.
    The ingroup taxa were divided into two main clusters separating C. iredalei and C. belcheri with 99% bootstrap value. The two C. iredalei populations were homogeneous suggesting high
    connectivity in the South China Sea for this species. The common central haplotype in the minimum spanning networks programme is believed to be the ancestral variant for the two species. The
    findings from this study provides important baseline data for the aquaculture, management and monitoring of cultured populations of the oyster species.
    Matched MeSH terms: Phylogeny
  17. Draisma SG, van Reine WF, Sauvage T, Belton GS, Gurgel CF, Lim PE, et al.
    J Phycol, 2014 Dec;50(6):1020-34.
    PMID: 26988784 DOI: 10.1111/jpy.12231
    The siphonous green algal family Caulerpaceae includes the monotypic genus Caulerpella and the species-rich genus Caulerpa. A molecular phylogeny was inferred from chloroplast tufA and rbcL DNA sequences analyzed together with a five marker dataset of non-caulerpacean siphonous green algae. Six Caulerpaceae lineages were revealed, but relationships between them remained largely unresolved. A Caulerpella clade representing multiple cryptic species was nested within the genus Caulerpa. Therefore, that genus is subsumed and Caulerpa ambigua Okamura is reinstated. Caulerpa subgenus status is proposed for the six lineages substantiated by morphological characters, viz., three monotypic subgenera Cliftonii, Hedleyi, and Caulerpella, subgenus Araucarioideae exhibiting stolons covered with scale-like appendages, subgenus Charoideae characterized by a verticillate branching mode, and subgenus Caulerpa for a clade regarded as the Caulerpa core clade. The latter subgenus is subdivided in two sections, i.e., Sedoideae for species with pyrenoids and a species-rich section Caulerpa. A single section with the same name is proposed for each of the other five subgenera. In addition, species status is proposed for Caulerpa filicoides var. andamanensis (W.R. Taylor). All Caulerpa species without sequence data were examined (or data were taken from species descriptions) and classified in the new classification scheme. A temporal framework of Caulerpa diversification is provided by calibrating the phylogeny in geological time. The chronogram suggests that Caulerpa diversified into subgenera and sections after the Triassic-Jurassic mass extinction and that infra-section species radiation happened after the Cretaceous-Tertiary mass extinction.
    Matched MeSH terms: Phylogeny
  18. Wang D, Tang G, Huang Y, Yu C, Li S, Zhuang L, et al.
    J Med Case Rep, 2015;9:109.
    PMID: 25962780 DOI: 10.1186/s13256-015-0580-1
    Human infection with avian influenza A (H7N9) virus was first reported on March, 2013 in the Yangtze River Delta region of China. The majority of human cases were detected in mainland China; other regions out of mainland China reported imported human cases, including Hong Kong SAR, Taiwan (the Republic of China) and Malaysia, due to human transportation. Here, we report the first human case of H7N9 infection imported into Guizhou Province during the Spring Festival travel season in January 2014.
    Matched MeSH terms: Phylogeny
  19. Last PR, Naylor GJ, Manjaji-Matsumoto BM
    Zootaxa, 2016 Jul 21;4139(3):345-68.
    PMID: 27470808 DOI: 10.11646/zootaxa.4139.3.2
    The higher-level taxonomy of the stingrays (Dasyatidae) has never been comprehensively reviewed. Recent phylogenetic studies, supported by morphological data, have provided evidence that the group is monophyletic and consists of four major subgroups, the subfamilies Dasyatinae, Neotrygoninae, Urogymninae and Hypolophinae. A morphologically based review of 89 currently recognised species, undertaken for a guide to the world's rays, indicated that most of the currently recognised dasyatid genera are not monophyletic groups. These findings were supported by molecular analyses using the NADH2 gene for about 77 of these species, and this topology is supported by preliminary analyses base on whole mitochondrial genome comparisons. These molecular analyses, based on data generated from the Chondrichthyan Tree of Life project, are the most taxon-rich data available for this family. Material from all of the presently recognised genera (Dasyatis, Pteroplatytrygon and Taeniurops [Dasyatinae]; Neotrygon and Taeniura [Neotrygoninae]; Himantura and Urogymnus [Urogymninae]; and Makararaja and Pastinachus [Hypolophinae]), are included and their validity largely supported. Urogymnus and the two most species rich genera, Dasyatis and Himantura, are not considered to be monophyletic and were redefined based on external morphology. Seven new genus-level taxa are erected (Megatrygon and Telatrygon [Dasyatinae]; Brevitrygon, Fluvitrygon, Fontitrygon, Maculabatis and Pateobatis [Urogymninae], and an additional three (Bathytoshia, Hemitrygon and Hypanus [Dasyatinae]) are resurrected from the synonymy of Dasyatis. The monotypic genus Megatrygon clustered with 'amphi-American Himantura' outside the Dasyatidae, and instead as the sister group of the Potamotrygonidae and Urotrygonidae. Megatrygon is provisionally retained in the Dasyatinae pending further investigation of its internal anatomy. The morphologically divergent groups, Bathytoshia and Pteroplatytrygon, possibly form a single monophyletic group so further investigation is needed to confirm the validity of Pteroplatytrygon. A reclassification of the family Dasyatidae is provided and the above taxa are defined based on new morphological data.
    Matched MeSH terms: Phylogeny
  20. Srisonchai R, Enghoff H, Likhitrakarn N, Panha S
    Zookeys, 2018.
    PMID: 29875597 DOI: 10.3897/zookeys.761.24214
    The dragon millipede genus Desmoxytes s.l. is split into five genera, based on morphological characters and preliminary molecular phylogenetic analyses. The present article includes a review of Desmoxytes s.s., while future articles will deal with Hylomus Cook and Loomis, 1924 and three new genera which preliminarily are referred to as the 'acantherpestes', 'gigas', and 'spiny' groups. Diagnostic morphological characters of each group are discussed. Hylomus is resurrected as a valid genus and the following 33 species are assigned to it: H. asper (Attems, 1937), comb. n., H. cattienensis (Nguyen, Golovatch & Anichkin, 2005), comb. n., H. cervarius (Attems, 1953), comb. n., H. cornutus (Zhang & Li, 1982), comb. n., H. draco Cook & Loomis, 1924, stat. rev., H. enghoffi (Nguyen, Golovatch & Anichkin, 2005), comb. n., H. eupterygotus (Golovatch, Li, Liu & Geoffroy, 2012), comb. n., H. getuhensis (Liu, Golovatch & Tian, 2014), comb. n., H. grandis (Golovatch, VandenSpiegel & Semenyuk, 2016), comb. n., H. hostilis (Golovatch & Enghoff, 1994), comb. n., H. jeekeli (Golovatch & Enghoff, 1994), comb. n., H. lingulatus (Liu, Golovatch & Tian, 2014), comb. n., H. laticollis (Liu, Golovatch & Tian, 2016), comb. n., H. longispinus (Loksa, 1960), comb. n., H. lui (Golovatch, Li, Liu & Geoffroy, 2012), comb. n., H. minutuberculus (Zhang, 1986), comb. n., H. nodulosus (Liu, Golovatch & Tian, 2014), comb. n., H. parvulus (Liu, Golovatch & Tian, 2014), comb. n., H. phasmoides (Liu, Golovatch & Tian, 2016), comb. n., H. pilosus (Attems, 1937), comb. n., H. proximus (Nguyen, Golovatch & Anichkin, 2005), comb. n., H. rhinoceros (Likhitrakarn, Golovatch & Panha, 2015), comb. n., H. rhinoparvus (Likhitrakarn, Golovatch & Panha, 2015), comb. n., H. scolopendroides (Golovatch, Geoffroy & Mauriès, 2010), comb. n., H. scutigeroides (Golovatch, Geoffroy & Mauriès, 2010), comb. n., H. similis (Liu, Golovatch & Tian, 2016), comb. n., H. simplex (Golovatch, VandenSpiegel & Semenyuk, 2016), comb. n., H. simplipodus (Liu, Golovatch & Tian, 2016), comb. n., H. specialis (Nguyen, Golovatch & Anichkin, 2005), comb. n., H. spectabilis (Attems, 1937), comb. n., H. spinitergus (Liu, Golovatch & Tian, 2016), comb. n., H. spinissimus (Golovatch, Li, Liu & Geoffroy, 2012), comb. n. and H. variabilis (Liu, Golovatch & Tian, 2016), comb. n.Desmoxytes s.s. includes the following species: D. breviverpa Srisonchai, Enghoff & Panha, 2016; D. cervina (Pocock,1895); D. delfae (Jeekel, 1964); D. des Srisonchai, Enghoff & Panha, 2016; D. pinnasquali Srisonchai, Enghoff & Panha, 2016; D. planata (Pocock, 1895); D. purpurosea Enghoff, Sutcharit & Panha, 2007; D. takensis Srisonchai, Enghoff & Panha, 2016; D. taurina (Pocock, 1895); D. terae (Jeekel, 1964), all of which are re-described based mainly on type material. Two new synonyms are proposed: Desmoxytes pterygota Golovatch & Enghoff, 1994, syn. n. (= Desmoxytes cervina (Pocock, 1895)), Desmoxytes rubra Golovatch & Enghoff, 1994, syn. n. (= Desmoxytes delfae (Jeekel, 1964)). Six new species are described from Thailand: D. aurata Srisonchai, Enghoff & Panha, sp. n., D. corythosaurus Srisonchai, Enghoff & Panha, sp. n., D. euros Srisonchai, Enghoff & Panha, sp. n., D. flabella Srisonchai, Enghoff & Panha, sp. n., D. golovatchi Srisonchai, Enghoff & Panha, sp. n., D. octoconigera Srisonchai, Enghoff & Panha, sp. n., as well as one from Malaysia: D. perakensis Srisonchai, Enghoff & Panha, sp. n., and one from Myanmar: D. waepyanensis Srisonchai, Enghoff & Panha, sp. n. The species can mostly be easily distinguished by gonopod structure in combination with other external characters; some cases of particularly similar congeners are discussed. All species of Desmoxytes s.s. seem to be endemic to continental Southeast Asia (except the 'tramp' species D. planata). Some biological observations (relationship with mites, moulting) are recorded for the first time. Complete illustrations of external morphological characters, an identification key, and distribution maps of all species are provided.
    Matched MeSH terms: Phylogeny
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links