Displaying publications 61 - 80 of 100 in total

Abstract:
Sort:
  1. Lim SP, Pandikumar A, Lim YS, Huang NM, Lim HN
    Sci Rep, 2014;4:5305.
    PMID: 24930387 DOI: 10.1038/srep05305
    This paper reports a rapid and in-situ electrochemical polymerization method for the fabrication of polypyrrole nanoparticles incorporated reduced graphene oxide (rGO@PPy) nanocomposites on a ITO conducting glass and its application as a counter electrode for platinum-free dye-sensitized solar cell (DSSC). The scanning electron microscopic images show the uniform distribution of PPy nanoparticles with diameter ranges between 20 and 30 nm on the rGO sheets. The electrochemical studies reveal that the rGO@PPy has smaller charge transfer resistance and similar electrocatalytic activity as that of the standard Pt counter electrode for the I₃(-)/I(-) redox reaction. The overall solar to electrical energy conversion efficiency of the DSSC with the rGO@PPy counter electrode is 2.21%, which is merely equal to the efficiency of DSSC with sputtered Pt counter electrode (2.19%). The excellent photovoltaic performance, rapid and simple fabrication method and low-cost of the rGO@PPy can be potentially exploited as a alternative counter electrode to the expensive Pt in DSSCs.
    Matched MeSH terms: Polymerization
  2. Yusof NA, Zakaria ND, Maamor NA, Abdullah AH, Haron MJ
    Int J Mol Sci, 2013;14(2):3993-4004.
    PMID: 23429189 DOI: 10.3390/ijms14023993
    Molecularly imprinted polymers (MIPs) were prepared by bulk polymerization in acetonitrile using 2,4-dinitrophenol, acrylamide, ethylene glycol dimethacrylate, and benzoyl peroxide, as the template, functional monomer, cross-linker, and initiator, respectively. The MIP membrane was prepared by hybridization of MIP particles with cellulose acetate (CA) and polystyrene (PS) after being ground and sieved. The prepared MIP membrane was characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters studied for the removal of 2,4-dinitrophenol included the effect of pH, sorption kinetics, and the selectivity of the MIP membrane. Maximum sorption of 2,4-nitrophenol by the fabricated CA membrane with MIP (CA-MIP) and the PS membrane with MIP (PS-MIP) was observed at pH 7.0 and pH 5.0, respectively. The sorption of 2,4-dinitrophenol by CA-MIP and PS-MIP followed a pseudo-second-order kinetic model. For a selectivity study, 2,4-dichlorophenol, 3-chlorophenol, and phenol were selected as potential interferences. The sorption capability of CA-MIP and PS-MIP towards 2,4-dinitrophenol was observed to be higher than that of 2,4-dichlorophenol, 3-chlorophenol, or phenol.
    Matched MeSH terms: Polymerization
  3. Haron MJ, Wan Md ZW, Desa MZ, Kassim A
    Talanta, 1994 May;41(5):805-7.
    PMID: 18966002
    Poly(hydroxamic acid) chelating ion-exchange resin was prepared from crosslinked poly(methacrylate) beads. The starting polymer was prepared by a suspension polymerization of methacrylate and divinyl benzene. Conversion of the ester groups into the hydroxamic acid was carried out by treatment with hydroxylamine in an alkaline solution. Hydroxamic acid capacity of the product was 2.71 mmol/g. The resin exhibited high affinity towards Fe(III) and Pb ions and its capacities for Fe(III), Pb, Cu, Ni and Co ions were pH dependent. The ability of the resin to carry out the separation of Fe(III)CuCo/Ni and PbNi ions is also reported.
    Matched MeSH terms: Polymerization
  4. Mulyati S, Muchtar S, Arahman N, Syamsuddin Y, Mat Nawi NI, Yub Harun N, et al.
    Polymers (Basel), 2020 Sep 09;12(9).
    PMID: 32916778 DOI: 10.3390/polym12092051
    Polydopamine has been widely used as an additive to enhance membrane fouling resistance. This study reports the effects of two-step dopamine-to-polydopamine modification on the permeation, antifouling, and potential anti-UV properties of polyethersulfone (PES)-based ultrafiltration membranes. The modification was performed through a two-step mechanism: adding the dopamine additive followed by immersion into Tris-HCl solution to allow polymerization of dopamine into polydopamine (PDA). The results reveal that the step of treatment, the concentration of dopamine in the first step, and the duration of dipping in the Tris solution in the second step affect the properties of the resulting membranes. Higher dopamine loadings improve the pure water flux (PWF) by more than threefold (15 vs. 50 L/m2·h). The extended dipping period in the Tris alkaline buffer leads to an overgrowth of the PDA layer that partly covers the surface pores which lowers the PWF. The presence of dopamine or polydopamine enhances the hydrophilicity due to the enrichment of hydrophilic catechol moieties which leads to better anti-fouling. Moreover, the polydopamine film also improves the membrane resistance to UV irradiation by minimizing photodegradation's occurrence.
    Matched MeSH terms: Polymerization
  5. Chek MF, Kim SY, Mori T, Tan HT, Sudesh K, Hakoshima T
    iScience, 2020 May 22;23(5):101084.
    PMID: 32388399 DOI: 10.1016/j.isci.2020.101084
    Biodegradable polyester polyhydroxyalkanoate (PHA) is a promising bioplastic material for industrial use as a replacement for petroleum-based plastics. PHA synthase PhaC forms an active dimer to polymerize acyl moieties from the substrate acyl-coenzyme A (CoA) into PHA polymers. Here we present the crystal structure of the catalytic domain of PhaC from Chromobacterium sp. USM2, bound to CoA. The structure reveals an asymmetric dimer, in which one protomer adopts an open conformation bound to CoA, whereas the other adopts a closed conformation in a CoA-free form. The open conformation is stabilized by the asymmetric dimerization and enables PhaC to accommodate CoA and also to create the product egress path. The bound CoA molecule has its β-mercaptoethanolamine moiety extended into the active site with the terminal SH group close to active center Cys291, enabling formation of the reaction intermediate by acylation of Cys291.
    Matched MeSH terms: Polymerization
  6. Chiao YH, Sengupta A, Ang MBMY, Chen ST, Haan TY, Almodovar J, et al.
    Polymers (Basel), 2021 Feb 15;13(4).
    PMID: 33672026 DOI: 10.3390/polym13040583
    Forward osmosis (FO) is an important desalination method to produce potable water. It was also used to treat different wastewater streams, including industrial as well as municipal wastewater. Though FO is environmentally benign, energy intensive, and highly efficient; it still suffers from four types of fouling namely: organic fouling, inorganic scaling, biofouling and colloidal fouling or a combination of these types of fouling. Membrane fouling may require simple shear force and physical cleaning for sufficient recovery of membrane performance. Severe fouling may need chemical cleaning, especially when a slimy biofilm or severe microbial colony is formed. Modification of FO membrane through introducing zwitterionic moieties on the membrane surface has been proven to enhance antifouling property. In addition, it could also significantly improve the separation efficiency and longevity of the membrane. Zwitterion moieties can also incorporate in draw solution as electrolytes in FO process. It could be in a form of a monomer or a polymer. Hence, this review comprehensively discussed several methods of inclusion of zwitterionic moieties in FO membrane. These methods include atom transfer radical polymerization (ATRP); second interfacial polymerization (SIP); coating and in situ formation. Furthermore, an attempt was made to understand the mechanism of improvement in FO performance by zwitterionic moieties. Finally, the future prospective of the application of zwitterions in FO has been discussed.
    Matched MeSH terms: Polymerization
  7. Kee SY, Munusamy Y, Ong KS, Lai KC
    Polymers (Basel), 2017 Jun 18;9(6).
    PMID: 30970908 DOI: 10.3390/polym9060230
    In this study, reduced graphene oxide (RGO)/polymethyl methacrylate (PMMA) nanocomposites were prepared by employing in situ polymerization and solution blending methods. In terms of mechanical properties, RGO loading increased the Young's modulus but decreased the elongation at break for RGO/PMMA nanocomposites. Tensile strength for solution blended RGO/PMMA nanocomposites increased after adding 0.5 wt % RGO, which was attributed to the good dispersion of RGO in the nanocomposites as evidenced from SEM and TEM. Solar energy conversion efficiency measurement results showed that the optimum concentration of RGO in the RGO/PMMA nanocomposites was found to be 1.0 wt % in order to achieve the maximum solar energy conversion efficiency of 25%. In the present study, the solution blended nanocomposites exhibited better overall properties than in situ polymerized nanocomposites owing to the better dispersion of RGO in solution blending. These findings would contribute to future work in search of higher conversion efficiency using nanocomposites.
    Matched MeSH terms: Polymerization
  8. Lee SC, Lintang HO, Yuliati L
    Chem Asian J, 2012 Sep;7(9):2139-44.
    PMID: 22733646 DOI: 10.1002/asia.201200383
    A urea precursor was used for the first time to prepare mesoporous carbon nitride (MCN) by a thermal polymerization process with silica nanospheres as a hard template. Although the prepared MCN samples have similar structures and optical properties, it was revealed that the specific surface area, pore-size distribution, and morphology of the MCN samples depend on the initial mass ratio of urea to silica. Compared to the bulk carbon nitride (BCN) that only gave 20% phenol removal (6 h of irradiation), the activities can be enhanced up to 74% on MCN samples for photocatalytic removal of phenol under visible-light irradiation. The highest conversion was obtained on MCN with an initial mass ratio of urea to silica of 5, which has high surface area of 191 m(2) g(-1) and a nanoporous structure with uniform pore-size distribution of 7 nm. In addition to the high activity, the MCN sample also showed high photocatalytic stability.
    Matched MeSH terms: Polymerization
  9. Ismail N, Nazri NK, Abdullah AA, Wan Nik WMN, Wright LJ
    Data Brief, 2021 Feb;34:106738.
    PMID: 33521179 DOI: 10.1016/j.dib.2021.106738
    Polychloropolymethylstyrene (PCMS) polymers were synthesized with clay Cloisite and without clay Cloisite and chloromethylstyrene (CMS) combine with styrene (1:1) v/v or known as copolymer and clay Cloisite by the polymerization process. The attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra of each polymer synthesized are reported. The spectra of IR shows the different value of the wavenumber and intensity for each set of different sample. The spectra can be as a reference for others to use in synthesizing this polymer and clay Cloisite for different type of application.
    Matched MeSH terms: Polymerization
  10. Ali Khan M, Govindasamy R, Ahmad A, Siddiqui MR, Alshareef SA, Hakami AAH, et al.
    Polymers (Basel), 2021 Jan 28;13(3).
    PMID: 33525497 DOI: 10.3390/polym13030419
    Agglomeration and restacking can reduce graphene oxide (GO) activity in a wide range of applications. Herein, GO was synthesized by a modified Hummer's method. To minimize restacking and agglomeration, in situ chemical oxidation polymerization was carried out to embed polyaniline (PANI) chains at the edges of GO sheets, to obtain GO-PANI nanocomposite. The GO-PANI was tested for the adsorptive removal of brilliant green (BG) from an aqueous solution through batch mode studies. Infrared (FT-IR) analysis revealed the dominance of hydroxyl and carboxylic functionalities over the GO-PANI surface. Solution pH-dependent BG uptake was observed, with maximum adsorption at pH 7, and attaining equilibrium in 30 min. The adsorption of BG onto GO-PANI was fit to the Langmuir isotherm, and pseudo-second-order kinetic models, with a maximum monolayer adsorption capacity (qm) of 142.8 mg/g. An endothermic adsorption process was observed. Mechanistically, π-π stacking interaction and electrostatic interaction played a critical role during BG adsorption on GO-PANI.
    Matched MeSH terms: Polymerization
  11. Pakalapati H, Tariq MA, Arumugasamy SK
    Enzyme Microb Technol, 2019 Mar;122:7-18.
    PMID: 30638510 DOI: 10.1016/j.enzmictec.2018.12.001
    Recently enzymatic catalysts have replaced organic and organometallic catalysts in the synthesis of bio-resorbable polymers. Enzymatic polymerization is considered as an alternative to conventional polymerization as they are less toxic, environmental friendly and can operate under mild conditions. In this research, the enzymatic ring-opening polymerization (e-ROP) of e-caprolactone (e-CL) using Candida Antartica Lipase B (CALB) as catalyst to produce the Polycaprolactone. Two modelling techniques namely response surface methodology (RSM) and artificial neural network (ANN) have been used in this work. RSM is used to optimize the parameters and to develop a model of the process. ANN is used to develop the model to predict the results obtained from the experiment. The parameters involved are time, reaction temperature, mixing speed and enzyme-solvent ratio. The experimental result is Polydispersity index (PDI) of the polymer. The experimental data obtained was adequately fitted into second-order polynomial models. Simulation was done using artificial neural network model developed with Mean absolute error (MAD) value of 1.65 in comparison with MAD value of 7.4 for RSM. The Regression value (R2) values of RSM and ANN were found to be 0.96 and 0.93 respectively. The predictive models were validated experimentally and were found to be in agreement with the experimental values.
    Matched MeSH terms: Polymerization
  12. Sulaiman, E., Yeo, Y.M., Chong, Y.T.
    Ann Dent, 2007;14(1):39-45.
    MyJurnal
    Purpose of the study: The objective of this study was to investigate the flexural strengths of five commercially available tooth-coloured restorative materials – Alpha-Dent (composite resin, Dental Technologies Inc.), Solare Anterior (composite resin, GC), F2000 (polyacid-modified composite resin, 3M), Beautifil (giomer, Shofu) and Fuji II LC (resin- modified glass ionomer cement, GC] using the ISO 4049 specifications. Materials and Method: Ten specimens of (25±0.2)mm x (2±0.1)mm x (2±0.1)mm from each material were prepared at 22-23ºC using a customized metal mould. After light polymerization, the specimens were stored in distilled water at 37ºC for 24 hours. The specimens were subsequently blotted dry, measured and subjected to flexural testing using an Instron Universal Testing Machine with a crosshead speed of 0.5mm/min. The flexural strengths were calculated from the maximum load exerted on the specimens. Data were analysed using one way ANOVA and scheffe’s post-hoc multiple comparison tests at a significance level of 0.05.Results: The results showed that the mean flexural strengths of Beautifil, Solare Anterior and Alpha-Dent were above 80 MPa and those of F2000 and Fuji II LC were below 80 MPa. The results of one-way ANOVA and Scheffe’s post-host tests demonstrated that Beautifil had significantly higher mean flexural strength compared to Fuji II LC, F2000 and Alpha-Dent (P
    Matched MeSH terms: Polymerization
  13. Tajau, R., Wan Yunus, W.M.Z., Mohd Dahlan, K.Z., Mahmood, M.H., Hashim, K., Ismail, M., et al.
    MyJurnal
    This study demonstrated the utilization of radiation-induced initiator methods for the formation of
    nanoparticles of Acrylated Palm Oil (APO) using aqueous Pluronic F-127 (PF-127) microemulsion
    system. This microemulsion system was subjected to gamma irradiation to form the crosslinked APO
    nanoparticles. Dynamic light scattering (DLS), Fourier Transform Infrared (FTIR) spectroscopy and
    Transmission Electron Microscopy (TEM) were used to characterize the size and the chemical structure
    of the nanoparticles. As a result, the size of the APO nanoparticle was decreased when the irradiation
    dose increased. The decrease in size might be due to the effects of intermolecular crosslinking and
    intramolecular crosslinking reactions of the APO nanoparticles during irradiation process. The size of the
    nanoparticle is in the range of 98 to 200 nanometer (nm) after irradiation using gamma irradiator. This radiation-induced method provides a free initiator
    induced and easy to control process as compared
    to the classical or chemical initiator process. The
    study has shown that radiation-induced initiator
    methods, namely, polymerization and crosslinking
    in the microemulsion, were promising for the
    synthesis of nanoparticles.
    Matched MeSH terms: Polymerization
  14. Lui, J.L., Chan, C.L., Yap, K.T.
    Ann Dent, 2006;13(1):6-11.
    MyJurnal
    The aim of the study was to determine the depth of cure of a new nanocomposite when exposed to different curing times and also when different shades were polymerized. The nanocomposite, Filtek Supreme (3M ESPE), was packed into 96 plastic cylindrical moulds measuring 4 mm in internal diameter and 8 mm in length and then polymerized using a conventional quartz-tungsten-halogen light curing unit. The first part of the study involved curing 16 samples each of A2 shade of the nanocomposite at exposure times of 20s, 40s, 60s and 120s. For the second part, a similar number of samples of the dentinal opacity shades of A2, B3 and A4 of the nanocomposite were polymerized at a constant exposure time of 40s. The depth of polymerization of the nanocomposite in each sample was measured using a digimatic indicator. Curing depths were found to increase significantly (P < 0.05) with longer exposure time (20s < 40s < 60s < 120s) and decrease significantly with darker shades (A2 > B3 > A4).
    Matched MeSH terms: Polymerization
  15. Wan Md Zin Wan Yunus, Tajau, Rida, Khairul Zaman Mohd Dahlan, Mohd Hilmi Mahmood, Kamaruddin Hashim, Mohd Yusof Hamzah
    MyJurnal
    The use of microemulsion in the development of nanoparticle based on acrylated palm oil product is demonstrated. Acr ylated palm oil microemulsions were prepared using ionic surfactant. Combination methods of emulsion polymerization and radiation crosslinking were applied to the microemulsion system for synthesizing nanoparticle. The ionizing radiat ion technique was introduced to generate a crosslinking reaction in the development of nanoparticle. The nanoparticle was evaluated in terms of particle diameter, surface charge, pH and conductance. Their image was captured using Tra nsmission electron microscopy (TEM). Results show that the size, charge and shape of the particles are influenced by c oncentration of surfactants, monomer concentration, radiation dose and time of storage. The study showed a promising method to produced nanoparticle. This nano-sized product has the potential to be utilized as controlled-drug-release-carrier.
    Matched MeSH terms: Polymerization
  16. Ong CS, Al-Anzi B, Lau WJ, Goh PS, Lai GS, Ismail AF, et al.
    Sci Rep, 2017 07 31;7(1):6904.
    PMID: 28761159 DOI: 10.1038/s41598-017-07369-4
    Despite its attractive features for energy saving separation, the performance of forward osmosis (FO) has been restricted by internal concentration polarization and fast fouling propensity that occur in the membrane sublayer. These problems have significantly affected the membrane performance when treating highly contaminated oily wastewater. In this study, a novel double-skinned FO membrane with excellent anti-fouling properties has been developed for emulsified oil-water treatment. The double-skinned FO membrane comprises a fully porous sublayer sandwiched between a highly dense polyamide (PA) layer for salt rejection and a fairly loose dense bottom zwitterionic layer for emulsified oil particle removal. The top dense PA layer was synthesized via interfacial polymerization meanwhile the bottom layer was made up of a zwitterionic polyelectrolyte brush - (poly(3-(N-2-methacryloxyethyl-N,N-dimethyl) ammonatopropanesultone), abbreviated as PMAPS layer. The resultant double-skinned membrane exhibited a high water flux of 13.7 ± 0.3 L/m2.h and reverse salt transport of 1.6 ± 0.2 g/m2.h under FO mode using 2 M NaCl as the draw solution and emulsified oily solution as the feed. The double-skinned membrane outperforms the single-skinned membrane with much lower fouling propensity for emulsified oil-water separation.
    Matched MeSH terms: Polymerization
  17. Ashley J, Shukor Y, Tothill IE
    Analyst, 2016 Nov 14;141(23):6463-6470.
    PMID: 27813538
    The development of molecularly imprinted polymer nanoparticles (MIP-NPs), which specifically bind biomolecules, is of great interest in the area of biosensors, sample purification, therapeutic agents and biotechnology. Polymerisation techniques such as precipitation polymerisation, solid phase synthesis and core shell surface imprinting have allowed for significant improvements to be made in developing MIP-NPs which specifically recognise proteins. However, the development of MIP-NPs for protein templates (targets) still require lengthy optimisation and characterisation using different ratios of monomers in order to control their size, binding affinity and specificity. In this work we successfully demonstrated that differential scanning fluorimetry (DSF) can be used to rapidly determine the optimum imprinting conditions and monomer composition required for MIP-NP design and polymerisation. This is based on the stability of the protein template and shift in apparent melting points (Tm) upon interaction with different functional acrylic monomers. The method allows for the characterisation of molecularly imprinted nanoparticles (MIP-NPs) due to the observed differences in melting point profiles between, protein-MIP-NPs complexes, pre-polymerisation mixtures and non-imprinted nanoparticles (NIP-NPs) without the need for prior purification. The technique is simple, rapid and can be carried out on most quantitative polymerase chain reaction (qPCR) thermal cyclers which have the required filters for SYPRO
    Matched MeSH terms: Polymerization
  18. Agi A, Junin R, Alqatta AYM, Gbadamosi A, Yahya A, Abbas A
    Ultrason Sonochem, 2019 Mar;51:214-222.
    PMID: 30401623 DOI: 10.1016/j.ultsonch.2018.10.023
    Ultrafiltration has been proven to be very effective in the treatment of oil-in-water emulsions, since no chemical additives are required. However, ultrafiltration has its limitations, the main limits are concentration polarization resulting to permeate flux decline with time. Adsorption, accumulation of oil and particles on the membrane surface which causes fouling of the membrane. Studies have shown that the ultrasonic is effective in cleaning of fouled membrane and enhancing membrane filtration performance. But the effectiveness also, depends on the selection of appropriate membrane material, membrane geometry, ultrasonic module design, operational and processing condition. In this study, a hollow and flat-sheet polyurethane (PU) membranes synthesized with different additives and solvent were used and their performance evaluated with oil-in-water emulsion. The steady-state permeate flux and the rejection of oil in percentage (%) at two different modes were determined. A dry/wet spinning technique was used to fabricate the flat-sheet and hollow fibre membrane (HFMs) using Polyethersulfone (PES) polymer base, Polyvinylpyrrolidone (PVP) additive and N, N-Dimethylacetamide (DMAc) solvent. Ultrasonic assisted cross-flow ultrafiltration module was built to avoid loss of ultrasonic to the surrounding. The polyurethane (PU) was synthesized by polymerization and sulphonation to have an anionic group (-OH; -COOH; and -SO3H) on the membrane surface. Changes in morphological properties of the membrane had a significant effect on the permeate flow rate and oil removal. Generation of cavitation and Brownian motion by the ultrasonic were the dominant mechanisms responsible for ultrafiltration by cracking the cake layers and reducing concentration polarization at the membrane surface. The percentage of oil after ultrafiltration process with ultrasonic is about 90% compared to 49% without ultrasonic. Ultrasonic is effective in enhancing the membrane permeate flux and controlling membrane fouling.
    Matched MeSH terms: Polymerization
  19. Nandini Y, Venkatesh SB
    Contemp Clin Dent, 2019 11 28;9(4):674-677.
    PMID: 31772486 DOI: 10.4103/ccd.ccd_537_18
    Cranial defects lead to unesthetic appearance and are a constant source of apprehension to the patient. Meningioma with calvarial extension requires the excision of the involved bone for complete excision. Such total excision would leave behind a bony defect which would need reconstruction. Presurgical fabrication of acrylic flap helps in reconstruction of such cranial defect following complete excision in single stage, thereby decreasing the cost and morbidity of surgery. Further, it facilitates the reproduction of the contours, and the tissue bed is not exposed to the heat of polymerization or to the free monomer. The authors report a case of hyperostotic convexity meningioma in a middle-aged female where heat-cured acrylic resin alloplastic implant was prefabricated and used successfully.
    Matched MeSH terms: Polymerization
  20. Liow CH, Sahrim Ahmad, Khairiah Badri
    In-situ polymerization method was used to prepare palm-based polyurethane (PU) composites loading with 15 wt% magnetite (Fe3O4), polyaniline (PANI) and Fe3O4 coated with PANI labeled as PU15, PP and PPM, respectively. FTIR spectroscopy analysis indicated a shift in the carbonyl, C=O and NH in PP. The shift of the peak indicated that there was hydrogen bonding between the C=O (proton acceptor) of urethane with NH (proton-donator) of PANI. PPM gave the highest impact and flexural strengths at 4875 kJ/ m2 and 42 MPa, respectively but with the lowest flexural modulus (1050 MPa). Two-stage degradation behavior was observed in the TGA thermogram.
    Matched MeSH terms: Polymerization
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links