Displaying publications 61 - 80 of 141 in total

Abstract:
Sort:
  1. Huwaidi A, Pathak N, Syahir A, Ikeno S
    Biochem Biophys Res Commun, 2018 09 05;503(2):910-914.
    PMID: 29928878 DOI: 10.1016/j.bbrc.2018.06.095
    Ultraviolet (UV) radiation causes damage in all living organisms, including DNA damage that leads to cell death. Herein, we provide a new technique for UV radiation protection through intracellular short peptide expression. The late embryogenesis abundant (LEA) peptide, which functions as a shield that protects macromolecules from various abiotic stress, was obtained from the Polypedilum vanderplanki group 3 LEA protein. Recombinant Escherichia coli BL21 (DE3) expressing functional LEA short peptide in vivo were exposed to UVA and UVC radiation for 4, 6, and 8 h. E. coli transformants expressing the LEA peptide showed higher cell viability under both UVA and UVC treatment at all time points as compared with that of the control. Furthermore, the cells expressing LEA peptide showed a higher number of colony-forming units per dilution under UVA and UVC treatment. These results suggested that expression of the short peptide could be useful for the development of genetically modified organisms and in applications that require resilience of organisms to UV radiation.
    Matched MeSH terms: Ultraviolet Rays*
  2. Alias NH, Jaafar J, Samitsu S, Yusof N, Othman MHD, Rahman MA, et al.
    Chemosphere, 2018 Aug;204:79-86.
    PMID: 29653325 DOI: 10.1016/j.chemosphere.2018.04.033
    Separation and purification of oilfield produced water (OPW) is a major environmental challenge due to the co-production of the OPW during petroleum exploration and production operations. Effective capture of oil contaminant and its in-situ photodegradation is one of the promising methods to purify the OPW. Based on the photocatalytic capability of graphitic carbon nitride (GCN) which was recently rediscovered, photodegradation capability of GCN for OPW was investigated in this study. GCN was synthesized by calcination of urea and further exfoliated into nanosheets. The GCNs were incorporated into polyacrylonitrile nanofibers using electrospinning, which gave a liquid-permeable self-supporting photocatalytic nanofiber mat that can be handled by hand. The photocatalytic nanofiber demonstrated 85.4% degradation of OPW under visible light irradiation, and improved the degradation to 96.6% under UV light. Effective photodegradation of the photocatalytic nanofiber for OPW originates from synergetic effects of oil adsorption by PAN nanofibers and oil photodegradation by GCNs. This study provides an insight for industrial application on purification of OPW through photocatalytic degradation under solar irradiation.
    Matched MeSH terms: Ultraviolet Rays
  3. Liu X, Zhang R, Shi H, Li X, Li Y, Taha A, et al.
    Mol Med Rep, 2018 05;17(5):7227-7237.
    PMID: 29568864 DOI: 10.3892/mmr.2018.8791
    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in skin, resulting in photoaging. Natural botanicals have gained considerable attention due to their beneficial protection against the harmful effects of UV irradiation. The present study aimed to evaluate the ability of curcumin (Cur) to protect human dermal fibroblasts (HDFs) against ultraviolet A (UVA)‑induced photoaging. HDFs were treated with 0‑10 µM Cur for 2 h and subsequently exposed to various intensities of UVA irradiation. The cell viability and apoptotic rate of HDFs were investigated by MTT and flow cytometry assays, respectively. The effect of UVA and Cur on the formation of reactive oxygen species (ROS), malondialdehyde levels, which are an indicator of ROS, and the levels/activity of antioxidative defense proteins, including glutathione, superoxide dismutase and catalase, were evaluated using 2',7'-dichlorofluorescin diacetate and commercial assay kits. Furthermore, western blotting was performed to determine the levels of proteins associated with endoplasmic reticulum (ER) stress, the apoptotic pathway, inflammation and the collagen synthesis pathway. The results demonstrated that Cur reduced the accumulation of ROS and restored the activity of antioxidant defense enzymes, indicating that Cur minimized the damage induced by UVA irradiation in HDFs. Furthermore, western blot analysis demonstrated that Cur may attenuate UVA‑induced ER stress, inflammation and apoptotic signaling by downregulating the protein expression of glucose‑regulated protein 78, C/EBP‑homologous protein, nuclear factor‑κB and cleaved caspase‑3, while upregulating the expression of Bcl‑2. Additionally, it was demonstrated that Cur may regulate collagen metabolism by decreasing the protein expression of matrix metalloproteinase (MMP)‑1 and MMP‑3, and may promote the repair of cells damaged as a result of UVA irradiation through increasing the protein expression of transforming growth factor‑β (TGF‑β) and Smad2/3, and decreasing the expression of the TGF‑β inhibitor, Smad7. In conclusion, the results of the present study indicate the potential benefits of Cur for the protection of HDFs against UVA‑induced photoaging and highlight the potential for the application of Cur in skin photoprotection.
    Matched MeSH terms: Ultraviolet Rays/adverse effects*
  4. Jaganathan SK, Prasath MM
    An Acad Bras Cienc, 2018 4 12;90(1):195-204.
    PMID: 29641759 DOI: 10.1590/0001-3765201820170736
    Demand for medical implants is rising day by day as the world becomes the place for more diseased and older people. Accordingly, in this research, metallocene polyethylene (mPE), a commonly used polymer was treated with UV rays for improving its biocompatibility. Scanning electron microscopy (SEM) images confirmed the formation of crests and troughs, which depicts the improvement of surface roughness of mPE substrates caused by UV etching. Accordingly, the contact angle measurements revealed that the wettability of mPE-2.5 J/cm2 (68.09º) and mPE-5 J/cm2 (57.93º) samples were found to be increased compared to untreated mPE (86.84º) indicating better hydrophilicity. Further, the UV treated surface exhibited enhanced blood compatibility as determined in APTT (untreated mPE- 55.3 ± 2.5 s, mPE-2.5 J/cm2 - 76.7 ± 4.1 s and mPE-5 J/cm2 - 112.3 ± 2 s) and PT (untreated mPE - 24.7 ± 1.5 s, mPE- 2.5 J/cm2 - 34.3 ± 1.1 s and mPE-5 J/cm2 - 43 ± 2 s) assay. Moreover, the treated mPE-2.5 J/cm2 (4.88%) and mPE-5 J/cm2 (1.79%) showed decreased hemolytic percentage compared to untreated mPE (15.40%) indicating better safety to red blood cells. Interestingly, the changes in physicochemical properties of mPE are directly proportional to the dosage of the UV rays. UV modified mPE surfaces were found to be more compatible as identified through MTT assay, photomicrograph and SEM images of the seeded 3T3 cell population. Hence UV-modified surface of mPE may be successfully exploited for medical implants.
    Matched MeSH terms: Ultraviolet Rays*
  5. Ismail I, Gaskin S, Pisaniello D, Edwards JW
    Ind Health, 2018 Apr 07;56(2):166-170.
    PMID: 29199264 DOI: 10.2486/indhealth.2017-0157
    Elbow length PVC gloves are often recommended for protection against organophosphorus pesticide (OP) exposure in agriculture. However, performance may be reduced due to high temperature, UV exposure and abrasion. We sought to assess these impacts for two OPs under normal use and reasonable worst-case scenarios. Glove permeation tests were conducted using ASTM cells with two PVC glove brands at 23°C and 45°C for up to 8 h. Technical grade dichlorvos and formulated diazinon were used undiluted and at application strength. Breakthough of undiluted dichlorvos occurred at both 23°C and 45°C, but only at 45°C for application strength. Breakthrough of diazinon was not achieved, except when undiluted at 45°C. UV-exposed and abraded gloves showed reduced performance, with the effect being approximately two-fold for dichlorvos. Only small differences were noted between glove brands. Extra precautions should be taken when handling concentrated OPs at high temperature, or when using abraded or sunlight-exposed gloves.
    Matched MeSH terms: Ultraviolet Rays
  6. Rajendran Royan NR, Sulong AB, Yuhana NY, Chen RS, Ab Ghani MH, Ahmad S
    PLoS One, 2018;13(5):e0197345.
    PMID: 29847568 DOI: 10.1371/journal.pone.0197345
    The use of rice husks (RH) to reinforce polymers in biocomposites are increasing tremendously. However, the incompatibility between the hydrophilic RH fibers and the hydrophobic thermoplastic matrices leads to unsatisfactory biocomposites. Surface modification of the fiber surface was carried out to improve the adhesion between fiber and matrix. In this study, the effect of surface modification of RH via alkali, acid and ultraviolet-ozonolysis (UV/O3) treatments on the properties of composites recycled high density polyethylene (rHDPE) composites was investigated. The untreated and treated RH were characterized by Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM). The composites containing 30 wt% of RH (treated and untreated) were then prepared via extrusion and followed by compression molding. As compared to untreated RH, all surface treated RH exhibited rougher surface and showed improved adhesion with rHDPE matrix. Tensile strength of UV/O3-treated RH composites showed an optimum result at 18.37 MPa which improved about 5% in comparison to the composites filled with untreated RH. UV/O3 treatment promotes shorter processing time and lesser raw material waste during treatment process where this is beneficial for commercialization in the future developments of wood plastic composites (WPCs). Therefore, UV/O3 treatment can be served as an alternative new method to modify RH surface in order to improve the adhesion between hydrophilic RH fibre and hydrophobic rHDPE polymer matrix.
    Matched MeSH terms: Ultraviolet Rays*
  7. Megat Nabil Mohsin S, Hussein MZ, Sarijo SH, Fakurazi S, Arulselvan P, Taufiq-Yap YH
    Int J Nanomedicine, 2018;13:6359-6374.
    PMID: 30349255 DOI: 10.2147/IJN.S171390
    Introduction: The potential of layered double hydroxide (LDH) as a host of multiple ultraviolet-ray absorbers was investigated by simultaneous intercalation of benzophenone 4 (B4) and Eusolex® 232 (EUS) in Zn/Al LDH.

    Methods: The nanocomposites were prepared via coprecipitation method at various molar ratios of B4 and EUS.

    Results: At equal molar ratios, the obtained nanocomposite showed an intercalation selectivity that is preferential to EUS. However, the selectivity ratio of intercalated anions was shown to be capable of being altered by adjusting the molar ratio of intended guests during synthesis. Dual-guest nanocomposite synthesized with B4:EUS molar ratio 3:1 (ZEB [3:1]) showed an intercalation selectivity ratio of B4:EUS =53:47. Properties of ZEB (3:1) were monitored using powder X-ray diffractometer to show a basal spacing of 21.8 Å. Direct-injection mass spectra, Fourier transform infrared spectra, and ultraviolet-visible spectra confirmed the dual intercalation of both anions into the interlayer regions of dual-guest nanocomposite. The cytotoxicity study of dual-guest nanocomposite ZEB (3:1) on human dermal fibroblast cells showed no significant toxicity until 25 μg/mL.

    Conclusion: Overall, the findings demonstrate successful customization of ultraviolet-ray absorbers composition in LDH host.

    Matched MeSH terms: Ultraviolet Rays*
  8. Abu Bakar NI, Chandren S, Attan N, Leaw WL, Nur H
    Front Chem, 2018;6:370.
    PMID: 30255010 DOI: 10.3389/fchem.2018.00370
    The demonstration of the structure-properties relationship of shape-dependent photocatalysts remains a challenge today. Herein, one-dimensional (1-D)-like titania (TiO2), as a model photocatalyst, has been synthesized under a strong magnetic field in the presence of a magnetically responsive liquid crystal as the structure-aligning agent to demonstrate the relationship between a well-aligned structure and its photocatalytic properties. The importance of the 1-D-like TiO2 and its relationship with the electronic structures that affect the electron-hole recombination and the photocatalytic activity need to be clarified. The synthesis of 1-D-like TiO2 with liquid crystal as the structure-aligning agent was carried out using the sol-gel method under a magnetic field (0.3 T). The mixture of liquid crystal, 4'-pentyl-4-biphenylcarbonitrile (5CB), tetra-n-butyl orthotitanate (TBOT), 2-propanol, and water, was subjected to slow hydrolysis under a magnetic field. The TiO2-5CB took a well-aligned whiskerlike shape when the reaction mixture was placed under the magnetic field, while irregularly shaped TiO2-5CB particles were formed when no magnetic field was applied. It shows that the strong interaction between 5CB and TBOT during the hydrolysis process under a magnetic field controls the shape of titania. The intensity of the emission peaks in the photoluminescence spectrum of 1-D-like TiO2-5CB was lowered compared with the TiO2-5CB synthesized without the magnetic field, suggesting the occurrence of electron transfer from 5CB to the 1-D-like TiO2-5CB during ultraviolet irradiation. Apart from that, direct current electrical conductivity and Hall effect studies showed that the 1-D-like TiO2 composite enhanced electron mobility. Thus, the recombination of electrons and holes was delayed due to the increase in electron mobility; hence, the photocatalytic activity of the 1-D-like TiO2 composite in the oxidation of styrene in the presence of aqueous hydrogen peroxide under UV irradiation was enhanced. This suggests that the 1-D-like shape of TiO2 composite plays an important role in its photocatalytic activity.
    Matched MeSH terms: Ultraviolet Rays
  9. Yousif, Emad, Ahmed, Dina S., Ahmed, Ahmed A., Hameed, Ayad S., Yusop, Rahimi M., Redwan, Amamer, et al.
    Science Letters, 2018;12(2):19-27.
    MyJurnal
    The photodegradation rate constant and surface morphology of poly(vinyl chloride), upon irradiation with ultraviolet light was investigated in the presence of polyphosphates as photostabilizers. Poly(vinyl chloride) photodegradation rate constant was lower for the films containing polyphosphates compared to the blank film. In addition, the surface morphology of the irradiated poly(vinyl chloride) containing polyphosphates, examined by scanning electron microscopy, indicates that the surface was much smoother compared to the blank film.
    Matched MeSH terms: Ultraviolet Rays
  10. Alya Nadhira Nasron, Ninna Sakina Azman, Nor Syaidatul Syafiqah Mohd Rashid, Nur Rahimah Said
    MyJurnal
    Degradation of azo dyes by using advanced oxidation processes (AOPs) was conducted. In this approach, different AOPs, which are Fenton process and titanium dioxide (TiO2) catalyst, were examined and compared for the degradation of an azo dye (i.e., Congo red dye). The sample was tested under UV light and the experiment was conducted for 90 min with 15 min interval. The degradation rate of dye was determined using UV-Vis spectrophotometry. The effect of several parameters on the degradation process such as the concentration of metal ions (Fe2+, Cu2+, and Mn2+) as the catalyst in Fenton process, the concentration of hydrogen peroxide (H2O2), the mass of TiO2, and pH value of the dye solution were investigated. The initial Congo red concentration used for both techniques was 5 ppm. The results showed that the percentage degradation followed the sequence of H2O2/Fe2+/UV, H2O2/Cu2+/UV, H2O2/Mn2+/UV, and TiO2/UV. The best operating conditions for H2O2/Fe2+/UV were pH 3, 0.2 M concentration of H2O2, and 0.02 M concentration of metal ion in 15 min, which achieved 99.92% degradation of dye. The Fourier transform infrared (FTIR) spectrum showed the absence of azo bond (N=N) peak after degradation process, which indicates the successful cleavage of azo bond in the chemical structure of Congo red.
    Matched MeSH terms: Ultraviolet Rays
  11. Sagadevan S, Chowdhury ZZ, Johan MRB, Khan AA, Aziz FA, F Rafique R, et al.
    PLoS One, 2018;13(10):e0202694.
    PMID: 30273344 DOI: 10.1371/journal.pone.0202694
    A cost-effective, facile hydrothermal approach was made for the synthesis of SnO2/graphene (Gr) nano-composites. XRD diffraction spectra clearly confirmed the presence of tetragonal crystal system of SnO2 which was maintaining its structure in both pure and composite materials' matrix. The stretching and bending vibrations of the functional groups were analyzed using FTIR analysis. FESEM images illustrated the surface morphology and the texture of the synthesized sample. HRTEM images confirmed the deposition of SnO2 nanoparticles over the surface of graphene nano-sheets. Raman Spectroscopic analysis was carried out to confirm the in-plane blending of SnO2 and graphene inside the composite matrix. The photocatalytic performance of the synthesized sample under UV irradiation using methylene blue dye was observed. Incorporation of grapheme into the SnO2 sample had increased the photocatalytic activity compared with the pure SnO2 sample. The electrochemical property of the synthesized sample was evaluated.
    Matched MeSH terms: Ultraviolet Rays
  12. Saeedfar K, Heng LY, Chiang CP
    Bioelectrochemistry, 2017 Dec;118:106-113.
    PMID: 28780443 DOI: 10.1016/j.bioelechem.2017.07.012
    Multi-wall carbon nanotubes (MWCNTs) were modified to design a new DNA biosensor. Functionalized MWCNTs were equipped with gold nanoparticles (GNPs) (~15nm) (GNP-MWCNTCOOH) to construct DNA biosensors based on carbon-paste screen-printed (SPE) electrodes. GNP attachment onto functionalized MWCNTs was carried out by microwave irradiation and was confirmed by spectroscopic studies and surface analysis. DNA biosensors based on differential pulse voltammetry (DPV) were constructed by immobilizing thiolated single-stranded DNA probes onto GNP-MWCNTCOOH. Ruthenium (III) chloride hexaammoniate [Ru(NH3)6,2Cl(-)] (RuHex) was used as hybridization redox indicator. RuHex and MWCNT interaction was low in compared to other organic redox hybridization indicators. The linear response range for DNA determination was 1×10(-21) to 1×10(-9)M with a lower detection limit of 1.55×10(-21)M. Thus, the attachment of GNPs onto functionalized MWCNTs yielded sensitive DNA biosensor with low detection limit and stability more than 30days. Constructed electrode was used to determine gender of arowana fish.
    Matched MeSH terms: Ultraviolet Rays
  13. Mansor NA, Tay KS
    Environ Sci Pollut Res Int, 2017 Oct;24(28):22361-22370.
    PMID: 28801887 DOI: 10.1007/s11356-017-9892-6
    This study investigated the reaction kinetics and mechanism of the degradation of 5,5-diphenylhydantoin (DPH) during conventional chlorination and UV/chlorination. DPH is one of the antiepileptic drugs, which has frequently been detected in the aquatic environment. For chlorination, the second-order rate constant for the reaction between DPH and free active chlorine (FAC) was determined at pH 5 to 8. At pH 6 to 8, the efficiency of chlorination in the removal of DPH was found to be dominated by the reaction involving hypochlorous acid (HOCl). The result also showed that anionic species of DPH was more reactive toward FAC as compared with neutral DPH. For UV/chlorination, the effect of FAC dosage and pH on the degradation of DPH was evaluated. UV/chlorination is a more effective method for removing DPH as compared with conventional chlorination and UV irradiation. The DPH degradation rate was found to increase with increasing FAC concentration. On the other hand, the degradation of DPH was found to be more favorable under the acidic condition. Based on the identified transformation by-products, DPH was found to be degraded through the reaction at imidazolidine-2,4-dione moiety of DPH for both chlorination and UV/chlorination. Toxicity study on the chlorination and UV/chlorination-treated DPH solutions suggested that UV/chlorination is a more efficient method for reducing the toxicity of DPH.
    Matched MeSH terms: Ultraviolet Rays*
  14. Ng KH, Khan MR, Ng YH, Hossain SS, Cheng CK
    J Environ Manage, 2017 Jul 01;196:674-680.
    PMID: 28365553 DOI: 10.1016/j.jenvman.2017.03.078
    In this study, we have employed a photocatalytic method to restore the liquid effluent from a palm oil mill in Malaysia. Specifically, the performance of both TiO2 and ZnO was compared for the photocatalytic polishing of palm oil mill effluent (POME). The ZnO photocatalyst has irregular shape, bigger in particle size but smaller BET specific surface area (9.71 m2/g) compared to the spherical TiO2 photocatalysts (11.34 m2/g). Both scavenging study and post-reaction FTIR analysis suggest that the degradation of organic pollutant in the TiO2 system has occurred in the bulk solution. In contrast, it is necessary for organic pollutant to adsorb onto the surface of ZnO photocatalyst, before the degradation took place. In addition, the reactivity of both photocatalysts differed in terms of mechanisms, photocatalyst loading and also the density of photocatalysts. From the stability test, TiO2 was found to offer higher stability, as no significant deterioration in activity was observed after three consecutive cycles. On the other hand, ZnO lost around 30% of its activity after the 1st-cycle of photoreaction. The pH studies showed that acidic environment did not improve the photocatalytic degradation of the POME, whilst in the basic environment, the reaction media became cloudy. In addition, longevity study also showed that the TiO2 was a better photocatalyst compared to the ZnO (74.12%), with more than 80.0% organic removal after 22 h of UV irradiation.
    Matched MeSH terms: Ultraviolet Rays*
  15. Pramanik BK, Pramanik SK, Sarker DC, Suja F
    Environ Technol, 2017 Jun;38(11):1383-1389.
    PMID: 27587007 DOI: 10.1080/09593330.2016.1228701
    The effects of ozonation, anion exchange resin (AER) and UV/H2O2 were investigated as a pre-treatment to control organic fouling (OF) of ultrafiltration membrane in the treatment of drinking water. It was found that high molecular weight (MW) organics such as protein and polysaccharide substances were majorly responsible for reversible fouling which contributed to 90% of total fouling. The decline rate increased with successive filtration cycles due to deposition of protein content over time. All pre-treatment could reduce the foulants of a Ultrafiltration membrane which contributed to the improvement in flux, and there was a greater improvement of flux by UV/H2O2 (61%) than ozonation (43%) which in turn was greater than AER (23%) treatment. This was likely due to the effective removal/breakdown of high MW organic content. AER gave greater removal of biofouling potential components (such as biodegradable dissolved organic carbon and assimilable organic carbon contents) compared to UV/H2O2 and ozonation treatment. Overall, this study demonstrated the potential of pre-treatments for reducing OF of ultrafiltration for the treatment of drinking water.
    Matched MeSH terms: Ultraviolet Rays*
  16. Zhu W, Zheng W, Hu X, Xu X, Zhang L, Tian J
    Biochim Biophys Acta Proteins Proteom, 2017 Apr;1865(4):404-413.
    PMID: 28087425 DOI: 10.1016/j.bbapap.2017.01.004
    Lonicera japonica Thunb., also known as Jin Yin Hua and Japanese honeysuckle, is used as a herbal medicine in Asian countries. Its flowers have been used in folk medicine in the clinic and in making food or healthy beverages for over 1500years in China. To investigate the molecular processes involved in L. japonica development from buds to flowers exposed to UV radiation, a comparative proteomics analysis was performed. Fifty-four proteins were identified as differentially expressed, including 42 that had increased expression and 12 that had decreased expression. The levels of the proteins related to glycolysis, TCA/organic acid transformation, major carbohydrate metabolism, oxidative pentose phosphate, stress, secondary metabolism, hormone, and mitochondrial electron transport were increased during flower opening process after exposure to UV radiation. Six metabolites in L. japonica buds and flowers were identified and relatively quantified using LC-MS/MS. The antioxidant activity was performed using a 1,1-diphenyl-2-picrylhydrazyl assay, which revealed that L. japonica buds had more activity than the UV irradiated flowers. This suggests that UV-B radiation induces production of endogenous ethylene in L. japonica buds, thus facilitating blossoming of the buds and activating the antioxidant system. Additionally, the higher metabolite contents and antioxidant properties of L. japonica buds indicate that the L. japonica bud stage may be a more optimal time to harvest than the flower stage when using for medicinal properties.
    Matched MeSH terms: Ultraviolet Rays*
  17. Akrima Abu Bakar, Muhammad Khairool Fahmy Mohd Ali, Norhazilan Md. Noor, Nordin Yahaya, Mardhiah Ismail, Ahmad Safuan A. Rashid
    Sains Malaysiana, 2017;46:1323-1331.
    Baram Delta Operation had been producing oil and gas since 1960's and serious pipelines failure was reported in the year of 2005. The final investigation has concluded that one of the species of bacteria that has been identified to cause microbiologically influenced corrosion, specifically known as sulfate reducing bacteria (SRB) was found to be one of the potential contributing factors to the incidents. This work investigates the potential use of ultraviolet (UV) radiation to inhibit the SRB consortium that was cultivated from the crude oil in one of the main trunk lines at Baram Delta Operation, Sarawak, Malaysia. The impact of UV exposure to bio-corrosion conditions on carbon steel coupon in certain samples for 28 days was discussed in this study. The samples were exposed to UV radiation based on variations of parameters, namely: time of UV exposure; and power of UV lamp. The significant changes on the amount of turbidity reading and metal loss of the steel coupon were recorded before and after experiment. The results showed that SRB growth has reduced rapidly for almost 90% after the UV exposure for both parameters as compared to the abiotic samples. Metal loss values were also decreased in certain exposure condition. Additionally, field emission scanning electron microscopy (FESEM) coupled with energy dispersive spectroscopy (EDS) was performed to observe the biofilm layer formed on the metal surface after its exposure to SRB. The evidence suggested that the efficiency of UV treatment against SRB growth could be influenced by the particular factors studied
    Matched MeSH terms: Ultraviolet Rays
  18. Amanina Amani Kamarul Zaman, Rosnah Shamsuddin, Noranizan Mohd Adzahan, Alifdalino Sulaiman
    MyJurnal
    This intended paper was done to give an early overview of the expected quality attributes of pineapple-mango juice blend treated with ultraviolet irradiation (UV-C) and thermal pasteurisation. Josapine pineapple (Ananas comosus L.) and Chokanan mango (Mangifera indica L.) is the popular tropical fruits in Malaysia with unique taste and constant availability. The blend of pineapple-mango juice predicted to have good overall quality attributes as proved by prior studies on orange-pineapple, lemon-melon, pineapple-carrot-orange and carrot-apple-banana juice blends. Conventional thermal pasteurisation widely implemented in juice industry but resulted in massive quality degradation. Thus, research on the non-thermal technology of UV-C widely studied to overcome such drawbacks of thermal pasteurisation. Effect of UV-C and thermal pasteurisation on pineapple-mango juice blend will be evaluated in terms of physicochemical (pH, titratable acidity, total soluble solids, turbidity and colour), antioxidant (ascorbic acid, total phenolics content and total antioxidant DPPH assay) and microbiological properties. UV-C treated pineapple-mango juice blend believed to have better retention of heat sensitive ascorbic acid and other quality compared heat pasteurised juice with minimal distinctive characteristic compared to fresh juice.
    Matched MeSH terms: Ultraviolet Rays
  19. Nor, M.H.M., Nazmi, N.N.M., Sarbon, N.M.
    MyJurnal
    The aim of this study was to investigate the functional properties of chicken skin gelatin films with varied concentrations of a hydrophilic plasticizer. Gelatin film solutions with different glycerol concentrations A(control), B(5%), C(10%), D(15%) and E(20%), were stirred at 45°C for 20min and oven dried at 45°C. Film characterization determination were included, tensile strength (TS), elongation at break (EAB), water vapor permeability (WVP), solubility, transparency, moisture content, Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (X-RD). Glycerol added resulted in improvement of TS and WVP properties. Film B (5% glycerol) demonstrated low EAB (106%), WVP (0.0175 g.mm/h.m2.k.Pa) and solubility (58.64%), but with high TS (3.64 MPa), moisture content (16.0%), UV light transmission (0.04%) and transparency (0.81) compared to films C, D and E. FTIR spectrum analyses demonstrated an aliphatic alcohol group only for Film E (20% glycerol). Hence, chicken skin gelatin film at 5% glycerol concentration showed the most promising potential for industrial food processing applications.
    Matched MeSH terms: Ultraviolet Rays
  20. Ng KH, Cheng YW, Khan MR, Cheng CK
    J Environ Manage, 2016 Dec 15;184(Pt 3):487-493.
    PMID: 27784576 DOI: 10.1016/j.jenvman.2016.10.034
    This paper reports on the optimization of palm oil mill effluent (POME) degradation in a UV-activated-ZnO system based on central composite design (CCD) in response surface methodology (RSM). Three potential factors, viz. O2 flowrate (A), ZnO loading (B) and initial concentration of POME (C) were evaluated for the significance analysis using a 2(3) full factorial design before the optimization process. It is found that all the three main factors were significant, with contributions of 58.27% (A), 15.96% (B) and 13.85% (C), respectively, to the POME degradation. In addition, the interactions between the factors AB, AC and BC also have contributed 4.02%, 3.12% and 1.01% to the POME degradation. Subsequently, all the three factors were subjected to statistical central composite design (CCD) analysis. Quadratic models were developed and rigorously checked. A 3D-response surface was subsequently generated. Two successive validation experiments were carried out and the degradation achieved were 55.25 and 55.33%, contrasted with 52.45% for predicted degradation value.
    Matched MeSH terms: Ultraviolet Rays*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links