Displaying publications 61 - 80 of 240 in total

Abstract:
Sort:
  1. Shekholeslami M, Ashorynejad HR, Domairry D, Ishak Hashim
    Sains Malaysiana, 2012;41:1281-1285.
    In this paper, the problem of laminar viscous flow in a semi-porous channel in the presence of transverse magnetic field is studied. The Optimal Homotopy Asymptotic Method (OHAM) is employed to approximate the solution of the system of nonlinear differential equations governing the problem. The influence of the Hartmann number (Ha) and the Reynolds number (Re) on the flow was investigated. The results of the OHAM were compared with homotopy analysis method (HAM) and variation iteration method (VIM) results.
    Matched MeSH terms: Viscosity
  2. Salimon J, Salih N, Abdullah BM
    J Biomed Biotechnol, 2012;2012:693848.
    PMID: 22346338 DOI: 10.1155/2012/693848
    Linoleic acid (LA) is converted to per-carboxylic acid catalyzed by an immobilized lipase from Candida antarctica (Novozym 435). This per-carboxylic acid is only intermediate and epoxidized itself in good yields and almost without consecutive reactions. Monoepoxide linoleic acid 9(12)-10(13)-monoepoxy 12(9)-octadecanoic acid (MEOA) was optimized using D-optimal design. At optimum conditions, higher yield% (82.14) and medium oxirane oxygen content (OOC) (4.91%) of MEOA were predicted at 15 μL of H(2)O(2), 120 mg of Novozym 435, and 7 h of reaction time. In order to develop better-quality biolubricants, pour point (PP), flash point (FP), viscosity index (VI), and oxidative stability (OT) were determined for LA and MEOA. The results showed that MEOA exhibited good low-temperature behavior with PP of -41(°)C. FP of MEOA increased to 128(°)C comparing with 115(°)C of LA. In a similar fashion, VI for LA was 224 generally several hundred centistokes (cSt) more viscous than MEOA 130.8. The ability of a substance to resist oxidative degradation is another important property for biolubricants. Therefore, LA and MEOA were screened to measure their OT which was observed at 189 and 168(°)C, respectively.
    Matched MeSH terms: Viscosity
  3. Abdullah GZ, Abdulkarim MF, Mallikarjun C, Mahdi ES, Basri M, Sattar MA, et al.
    Pak J Pharm Sci, 2013 Jan;26(1):75-83.
    PMID: 23261730
    Micro-emulsions and sometimes nano-emulsions are well known candidates to deliver drugs locally. However, the poor rheological properties are marginally affecting their acceptance pharmaceutically. This work aimed to modify the poor flow properties of a nano-scaled emulsion comprising palm olein esters as the oil phase and ibuprofen as the active ingredient for topical delivery. Three Carbopol ® resins: 934, 940 and Ultrez 10, were utilized in various concentrations to achieve these goals. Moreover, phosphate buffer and triethanolamine solutions pH 7.4 were used as neutralizing agents to assess their effects on the gel-forming and swelling properties of Carbopol ® 940. The addition of these polymers caused the produced nano-scaled emulsion to show a dramatic droplets enlargement of the dispersed globules, increased intrinsic viscosity, consistent zeta potential and transparent-to-opaque change in appearance. These changes were relatively influenced by the type and the concentration of the resin used. Carbopol ® 940 and triethanolamine appeared to be superior in achieving the proposed tasks compared to other materials. The higher the pH of triethanolamine solution, the stronger the flow-modifying properties of Carbopol ® 940. Transmission electron microscopy confirmed the formation of a well-arranged gel network of Carbopol ® 940, which was the major cause for all realized changes. Later in vitro permeation studies showed a significant decrease in the drug penetration, thus further modification using 10% w/w menthol or limonene as permeation promoters was performed. This resulted in in vitro and in vivo pharmacodynamics properties that are comparably higher than the reference chosen for this study.
    Matched MeSH terms: Viscosity
  4. Amid BT, Mirhosseini H
    Colloids Surf B Biointerfaces, 2013 Mar 1;103:430-40.
    PMID: 23261563 DOI: 10.1016/j.colsurfb.2012.11.015
    The main objective of the current work was to characterize the shear rheological flow behaviour and emulsifying properties of the natural biopolymer from durian seed. The present study revealed that the extraction condition significantly affected the physical and functional characteristics of the natural biopolymer from durian seed. The dynamic oscillatory test indicated that the biopolymer from durian seed showed more gel (or solid) like behaviour than the viscous (or liquid) like behaviour (G'>G″) at a relatively high concentration (20%) in the fixed frequency (0.1 Hz). This might be explained by the fact that the gum coils disentangle at low frequencies during the long period of oscillation, thus resulting in more gel like behaviour than the viscous like behaviour. The average droplet size of oil in water (O/W) emulsions stabilized by durian seed gum significantly varied from 0.42 to 7.48 μm. The results indicated that O/W emulsions showed significant different stability after 4 months storage. This might be interpreted by the considerable effect of the extraction condition on the chemical and molecular structure of the biopolymer, thus affecting its emulsifying capacity. The biopolymer extracted by using low water to seed (W/S) ratio at the low temperature under the alkaline condition showed a relatively high emulsifying activity in O/W emulsion.
    Matched MeSH terms: Viscosity
  5. Saenphoom P, Liang JB, Ho YW, Loh TC, Rosfarizan M
    Asian-Australas J Anim Sci, 2013 Apr;26(4):537-44.
    PMID: 25049820 DOI: 10.5713/ajas.2012.12463
    This study examined whether pre-treating palm kernel expeller (PKE) with exogenous enzyme would degrade its fiber content; thus improving its metabolizable energy (ME), growth performance, villus height and digesta viscosity in broiler chickens fed diets containing PKE. Our results showed that enzyme treatment decreased (p<0.05) hemicellulose and cellulose contents of PKE by 26.26 and 32.62%, respectively; and improved true ME (TME) and its nitrogen corrected value (TMEn) by 38% and 33%, respectively, compared to the raw sample. Average daily gain (ADG), feed intake and feed conversion ratio (FCR) of chickens fed on different dietary treatments in the grower period were not significantly different. Although there was no difference in feed intake (p>0.05) among treatment groups in the finisher period, ADG of chickens in the control (PKE-free diet) was higher (p<0.05) than in all treatment groups fed either 20 or 30% PKE, irrespective of with or without enzyme treatment. However, ADG of birds fed with 20% PKE was higher than those fed with 30% PKE. The FCR of chickens in the control was the lowest (2.20) but not significantly different from those fed 20% PKE diets while birds in the 30% PKE diets recorded higher (p>0.05) FCR. The intestinal villus height and crypt depth (duodenum, jejunum and ileum) were not different (p>0.05) among treatments except for duodenal crypt depth. The villus height and crypt depth of birds in enzyme treated PKE diets were higher (p<0.05) than those in the raw PKE groups. Viscosity of the intestinal digesta was not different (p>0.05) among treatments. Results of this study suggest that exogenous enzyme is effective in hydrolyzing the fiber (hemicellulose and cellulose) component and improved the ME values of PKE, however, the above positive effects were not reflected in the growth performance in broiler chickens fed the enzyme treated PKE compared to those received raw PKE. The results suggest that PKE can be included up to 5% in the grower diet and 20% in the finisher diet without any significant negative effect on FCR in broiler chickens.
    Matched MeSH terms: Viscosity
  6. Naim R, Ismail AF
    J Hazard Mater, 2013 Apr 15;250-251:354-61.
    PMID: 23474409 DOI: 10.1016/j.jhazmat.2013.01.083
    A series of polyetherimide (PEI) hollow fiber membranes with various polymer concentrations (13-16 wt.%) for CO2 stripping process in membrane contactor application was fabricated via wet phase inversion method. The PEI membranes were characterized in terms of liquid entry pressure, contact angle, gas permeation and morphology analysis. CO2 stripping performance was investigated via membrane contactor system in a stainless steel module with aqueous diethanolamine as liquid absorbent. The hollow fiber membranes showed decreasing patterns in gas permeation, contact angle, mean pore size and effective surface porosity with increasing polymer concentration. On the contrary, wetting pressure of PEI membranes has enhanced significantly with polymer concentration. Various polymer concentrations have different effects on the CO2 stripping flux in which membrane with 14 wt.% polymer concentration showed the highest stripping flux of 2.7 × 10(-2)mol/m(2)s. From the performance comparison with other commercial membrane, it is anticipated that the PEI membrane has a good prospect in CO2 stripping via membrane contactor.
    Matched MeSH terms: Viscosity
  7. Bachok N, Ishak A, Pop I
    PLoS One, 2013;8(4):e60766.
    PMID: 23577156 DOI: 10.1371/journal.pone.0060766
    The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity) differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.
    Matched MeSH terms: Viscosity
  8. Sheshala R, Ying LT, Hui LS, Barua A, Dua K
    PMID: 23746224
    In order to achieve better treatment for local wounds and bacterial infections, topical formulations containing Cocos nucifera Linn. were developed. These formulations were evaluated for their physicochemical properties and antimicrobial efficacy against various strains of microorganisms. Semisolid formulations containing 5% w/w of Cocos nucifera Linn. were prepared by employing different dermatological bases and were evaluated for their physical appearance, pH, rheological properties, FTIR-spectroscopic analysis, thermodynamic stability and stability studies. The antimicrobial activity of each prepared formulation was determined using disk-diffusion method against various strains of microorganisms. All the prepared formulations were found to be stable and exhibited suitable physicochemical characteristics including pH, viscosity and spreadability which are necessary for an ideal topical preparation, in addition to strong antimicrobial activity. Carbopol gel base was found to be the most suitable dermatological base for Cocos nucifera Linn. in comparsion to other bases. Cocos nucifera Linn. formulations showed great potential for wounds and local bacterial infections. Moreover, carbopol gel base with its aesthetic appeal was found to be a suitable dermatological base for Cocos nucifera Linn. semisolid formulation as it had demonstrated significant physicochemical properties and greater diffusion when assessed using disk- diffusion method.
    Matched MeSH terms: Viscosity
  9. Loo Ch, Basri M, Ismail R, Lau H, Tejo B, Kanthimathi M, et al.
    Int J Nanomedicine, 2013;8:13-22.
    PMID: 23293516 DOI: 10.2147/IJN.S35648
    To study the effects of varying lipid concentrations, lipid and oil ratio, and the addition of propylene glycol and lecithin on the long-term physical stability of nanostructured lipid nanocarriers (NLC), skin hydration, and transepidermal water loss.
    Matched MeSH terms: Viscosity
  10. Ruzaina, I., Norizzah, A.R., Halimahton Zahrah, M.S., Cheow, C.S., Adi, M.S., Noorakmar, A.W., et al.
    MyJurnal
    Guava is a climacteric fruit which has high nutritional content. It is a highly perishable fruit, undergoes rapid postharvest ripening in a few days under ambient condition. This paper aims to determine the effect of palm stearin and palm kernel olein blends on maintaining the quality of guava during storage. Two different coating formulations of palm stearin (PS) and palm kernel olein (PKOo) blends (1:1 and 3:2) were analysed for their slip melting point (SMP), cohesiveness, viscosity and density. Beeswax was used as a commercial coating for comparison whiles the uncoated guava was used as control. These coatings were applied onto guavas by hand-wipe technique using a sponge. Guavas were dried in corrugated fibre board boxes and stored in an air-conditioned room maintained at 20°C while a chiller maintained at 10°C was used for chilled temperature. Coating pick up, thickness and surface area were measured while guava properties were analysed for coating effect on weight loss, O2 and CO2 gases, firmness and glossiness during storage at ambient temperature (20°C) for 21 days and chilled temperature (10ºC) for 30 days. Microstructure analysis was conducted within 2 days of coating at ambient temperature (20ºC). The results obtained indicated that 1:1 PSPKOo blends had higher cohesiveness compared to beeswax. Both PSPKOo blends significantly (p
    Matched MeSH terms: Viscosity
  11. Ahmad, Z., Rohana, H., Md Tahir, P.
    ASM Science Journal, 2013;7(1):37-58.
    MyJurnal
    This study investigated the thermal properties of three room temperature curing adhesives containing nano particles which were thixotropic and shear thinning which allowed injection into overhead holes when exposed to different environmental conditions. Viscosity and shear stress of the adhesives were measured as a function of shear rate. The thermal behaviour of the adhesives were measured using dynamic mechanical thermal anylisis following exposures to different temperatures and humidities which included temperatures of 20 degrees Celcius, 30 degrees Celcius and 50 degrees Celcius, relative humidities of 65% RH, 75% RH 95% RH soaked in water at 20 degrees Celcius and placed in the oven at 50 degrees Celcius. The dynamic thermal properties reported include storage and loss modulus, the loss tangent and the glass transition temperature ( Tg ). For nano- and micro-particles filled adhesives, the Tg increased with the temperature increase, even though the adhesives was subjected to high humidity and this was due to further cross-linking. The results showed that room temperature cured epoxies were only partially cured at room temperature.
    Matched MeSH terms: Viscosity
  12. Sanaei, A.V., Mahmoodani, F., See, S.F., Yusop, S.M., Babji, A.S.
    MyJurnal
    The extraction of catfish (Clarias gariepinus) bone gelatin was optimized by using Response Surface Methodology (RSM) involving 4-factors, 5-levels Central Composite Design (CCD). The optimum conditions for extraction were produced by a pre-treatment of 3.35% HCl for 14.5 h along with hot water extraction at 67.23°C for 5.2 h. Results showed that the predicted yield by RSM (61.81%) was closely matched the experimental yield of 60.54%. The results also indicated that the extracted bone gelatin possessed high protein content (81.75%) and imino acid (proline and hydroxyproline) (144 residues per 1000 residues), with gel strength (230.25 g), viscosity (4.64 mPa.s) and isoionic point (5.35) comparable to that of bovine gelatin. The results suggested that RSM is a great optimizing tool for extraction of gelatin from clarias catfish bone and values of the physicochemical properties of gelatin are higher or comparable than those from other fish species and bovine gelatin.
    Matched MeSH terms: Viscosity
  13. Rida Tajau, Mohd hilmi Mahmood, Mek Zah Salleh, Khairul Zaman Mohd dahlan, Rosley Che ismail, Sharilla Muhammad Faisal, et al.
    Sains Malaysiana, 2013;42:459-467.
    In recent years, there are growing trends in using palm oil as raw materials in radiation curable resins production. In this study, the acrylated palm oil resins i.e. the EPOLA (epoxidized palm oil acrylate) and the POBUA (palm oil based urethane acrylate) were synthesized using two different systems, i.e. the 25 liter pilot scale reactor synthesis system and the 2 liter (L) laboratory scale reactor synthesis system through chemical processes known as acrylation and isocyanation. In this
    paper, the property of the acrylated resins which were produced by these two systems were evaluated and compared between each other. Their properties were characterized using the Fourier transform infrared (FTIR) spectrophotometer for functional group identification; the gel permeation chromatography (GPC) for molecular weight (Mw) determination, the Brookfield viscometer for viscosity measurements, the acid values (AV) and the oxirane oxygen contents (OOC) analysis. As a result, the production process for both the 2 L and 25 L reactor system were found to be time consuming and the main advantages for the 25 L reactor was its higher productivity as compared with the 2 L reactor system with the same synthesis process parameters i.e. the temperatures and the experimental methods. Besides that, the 25 L reactor synthesis
    process was found to be safe, easy to control and served unpolluted process to the environments. The final products, the acrylated palm oil resins were formulated into ultraviolet (UV) curable compounds before subjecting them under UVirradiation. As a result, the UV-curable palm oil resins showed potential uses as pressure sensitive adhesives, printing inks including overprint varnishes (OPV) and coatings.
    Matched MeSH terms: Viscosity
  14. NUR IZZI MD.YUSOFF, MOHD ROSLI HAININ, MOUNIER D, AIREY GD
    Sains Malaysiana, 2013;42:1647-1654.
    According to the classical theory of viscoelasticity, a linear viscoelastic (LVE) function can be converted into another viscoelastic function even though they emphasize different information. In this study, dynamic tests were conducted on different conventional penetration grade bitumens using a dynamic shear rheometer (DSR) in the LVE region. The results showed that the dynamic data in the frequency domain can be converted into the time domain functions using a numerical technique. This was done with the aid of the non-linear regularization (NLREG) computer program. The NLREG software is a computer program for solving nonlinear ill-posed problem and is based on non-linear Tikhonov regularization method. The use of data interconversion equation is found suitable for converting from the frequency domain into the time domain of conventional penetration grade bitumens.
    Matched MeSH terms: Viscosity
  15. Tabatabaee Amid B, Mirhosseini H
    Colloids Surf B Biointerfaces, 2014 Jan 1;113:107-14.
    PMID: 24060935 DOI: 10.1016/j.colsurfb.2013.08.042
    The present work was conducted to investigate the effect of purification and conjugation processes on functional properties of durian seed gum (DSG) used for stabilization of water in oil in water (W/O/W) emulsion. Whey protein isolate (WPI) was conjugated to durian seed gum through the covalent linkage. In order to prepare WPI-DSG conjugate, covalent linkage of whey protein isolate to durian seed gum was obtained by Maillard reaction induced by heating at 60 °C and 80% (±1%) relative humidity. SDS-polyacrylamide gel electrophoresis was used to test the formation of the covalent linkage between whey protein isolate and durian seed gum after conjugation process. In this study, W/O/W stabilized by WPI-conjugated DSG A showed the highest interface activity and lowest creaming layer among all prepared emulsions. This indicated that the partial conjugation of WPI to DSG significantly improved its functional characteristics in W/O/W emulsion. The addition of WPI-conjugated DSG to W/O/W emulsion increased the viscosity more than non-conjugated durian seed gum (or control). This might be due to possible increment of the molecular weight after linking the protein fraction to the structure of durian seed gum through the conjugation process.
    Matched MeSH terms: Viscosity
  16. Mohtar MN, Hoettges KF, Hughes MP
    Electrophoresis, 2014 Feb;35(2-3):345-51.
    PMID: 24132700 DOI: 10.1002/elps.201300420
    Alternating-current electro-osmosis, a phenomenon of fluid transport due to the interaction between an electrical double layer and a tangential electric field, has been used both for inducing fluid movement and for the concentration of particles suspended in the fluid. This offers many advantages over other phenomena used to trap particles, such as placing particles at an electrode centre rather than an edge; benefits of scale, where electrodes hundreds of micrometers across can trap particles from the molecules to cells at the same rate; and a trapping volume limited by the vortex height, a phenomenon thus far unstudied. In this paper, the collection of particles due to alternating-current electro-osmosis driven collection is examined for a range of particle concentrations, inter-electrode gap widths, chamber heights and media viscosity and density. A model of collection behaviour is described where particle collection over time is governed by two processes, one driven by the vortices and the other by sedimentation, allowing the determination of the maximum height of vortex-driven collection, but also indicates how trapping is limited by high particle concentrations and fluid velocities. The results also indicate that viscosity, rather than density, is a significant governing factor in determining the trapping behaviour of particles.
    Matched MeSH terms: Viscosity
  17. Ilowefah M, Chinma C, Bakar J, Ghazali HM, Muhammad K, Makeri M
    Foods, 2014 Feb 12;3(1):149-159.
    PMID: 28234309 DOI: 10.3390/foods3010149
    As fermentation could reduce the negative effects of bran on final cereal products, the utilization of whole-cereal flour is recommended, such as brown rice flour as a functional food ingredient. Therefore, this study aimed to investigate the effect of fermented brown rice flour on white rice flour, white rice batter and its steamed bread qualities. Brown rice batter was fermented using commercial baker's yeast (Eagle brand) according to the optimum conditions for moderate acidity (pH 5.5) to obtain fermented brown rice flour (FBRF). The FBRF was added to white rice flour at 0%, 10%, 20%, 30%, 40% and 50% levels to prepare steamed rice bread. Based on the sensory evaluation test, steamed rice bread containing 40% FBRF had the highest overall acceptability score. Thus, pasting properties of the composite rice flour, rheological properties of its batter, volume and texture properties of its steamed bread were determined. The results showed that peak viscosity of the rice flour containing 40% FBRF was significantly increased, whereas its breakdown, final viscosity and setback significantly decreased. Viscous, elastic and complex moduli of the batter having 40% FBRF were also significantly reduced. However, volume, specific volume, chewiness, resilience and cohesiveness of its steamed bread were significantly increased, while hardness and springiness significantly reduced in comparison to the control. These results established the effectiveness of yeast fermentation in reducing the detrimental effects of bran on the sensory properties of steamed white rice bread and encourage the usage of brown rice flour to enhance the quality of rice products.
    Matched MeSH terms: Viscosity
  18. Mishra RK, Ramasamy K, Ahmad NA, Eshak Z, Majeed AB
    J Mater Sci Mater Med, 2014 Apr;25(4):999-1012.
    PMID: 24398912 DOI: 10.1007/s10856-013-5132-x
    Stimuli responsive hydrogels have shown enormous potential as a carrier for targeted drug delivery. In this study we have developed novel pH responsive hydrogels for the delivery of 5-fluorouracil (5-FU) in order to alleviate its antitumor activity while reducing its toxicity. We used 2-(methacryloyloxyethyl) trimetylammonium chloride a positively charged monomer and methacrylic acid for fabricating the pH responsive hydrogels. The released 5-FU from all except hydrogel (GEL-5) remained biologically active against human colon cancer cell lines [HT29 (IC50 = 110-190 μg ml(-1)) and HCT116 (IC50 = 210-390 μg ml(-1))] but not human skin fibroblast cells [BJ (CRL2522); IC50 ≥ 1000 μg ml(-1)]. This implies that the copolymer hydrogels (1-4) were able to release 5-FU effectively to colon cancer cells but not normal human skin fibroblast cells. This is probably due to the shorter doubling time that results in reduced pH in colon cancer cells when compared to fibroblast cells. These pH sensitive hydrogels showed well defined cell apoptosis in HCT116 cells through series of events such as chromatin condensation, membrane blebbing, and formation of apoptotic bodies. No cell killing was observed in the case of blank hydrogels. The results showed the potential of these stimuli responsive polymer hydrogels as a carrier for colon cancer delivery.
    Matched MeSH terms: Viscosity
  19. Ali AQ, Teoh SG, Salhin A, Eltayeb NE, Khadeer Ahamed MB, Abdul Majid AM
    PMID: 24607427 DOI: 10.1016/j.saa.2014.01.086
    New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (k(b)=5.03-33.00×10(5) M(-1)) for L1-L3 and L5 and (6.14-9.47×10(4) M(-1)) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency.
    Matched MeSH terms: Viscosity/drug effects
  20. Yusof R, Abdulmalek E, Sirat K, Rahman MB
    Molecules, 2014 Jun 13;19(6):8011-26.
    PMID: 24932572 DOI: 10.3390/molecules19068011
    Density, viscosity and ionic conductivity data sets of deep eutectic solvents (DESs) formed by tetrabutylammonium bromide (TBABr) paired with ethlyene glycol, 1,3-propanediol, 1,5-pentanediol and glycerol hydrogen bond donors (HBDs) are reported. The properties of DES were measured at temperatures between 303 K and 333 K for HBD percentages of 66.7% to 90%. The effects of HBDs under different temperature and percentages are systematically analyzed. As expected, the measured density and viscosity of the studied DESs decreased with an increase in temperature, while ionic conductivity increases with temperature. In general, DESs made of TBABr and glycerol showed the highest density and viscosity and the lowest ionic conductivity when compared to other DESs. The presence of an extra hydroxyl group on glycerol in a DES affected the properties of the DES.
    Matched MeSH terms: Viscosity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links