Displaying publications 61 - 80 of 220 in total

Abstract:
Sort:
  1. Garcia-Tenorio R, Rozmaric M, Harms A, Godoy JMO, Barsanti M, Schirone A, et al.
    Mar Pollut Bull, 2020 Oct;159:111490.
    PMID: 32738641 DOI: 10.1016/j.marpolbul.2020.111490
    Laboratories from 14 countries (with different levels of expertise in radionuclide measurements and 210Pb dating) participated in an interlaboratory comparison exercise (ILC) related to the application of 210Pb sediment dating technique within the framework of the IAEA Coordinated Research Project. The laboratories were provided with samples from a composite sediment core and were required to provide massic activities of several radionuclides and an age versus depth model from the obtained results, using the most suitable 210Pb dating model. Massic concentrations of Zn and Cu were also determined to be used for chronology validation. The ILC results indicated good analytical performances while the dating results didn't demonstrate the same degree of competence in part due to the different experience in dating of the participant laboratories. The ILC exercise enabled evaluation of the difficulties faced by laboratories implementing 210Pb dating methods and identified some limitations in providing reliable chronologies.
    Matched MeSH terms: Geologic Sediments
  2. Gholizadeh M, Shadi A, Abadi A, Nemati M, Senapathi V, Karthikeyan S, et al.
    Mar Pollut Bull, 2024 Jan;198:115939.
    PMID: 38128339 DOI: 10.1016/j.marpolbul.2023.115939
    In this study, microplastic (MP) pollution in the coastal sediments and tidal waters of Bushehr province in the Persian Gulf was comprehensively investigated. The sampling stations were selected based on their proximity to various human activities in January and February 2022, such as tourism, fishing, urban development and industry. The results showed that the abundance of MP associated with different human activities varied. The highest concentrations were observed near the petrochemical industry in Asaluyeh, followed by the densely populated Bushehr and the fishing port of Dayyer. Other areas such as Ganaveh, Deylam and Mand also showed varying levels of MP contamination. The average MP concentration was 1.67 × 104 particles/km2 in surface water and 1346.67 ± 601.69 particles/kg in dry sediment. Fiber particles were in the majority in both sediment and water samples, mainly black. The sediment samples had a size range of 100-500 μm (41.34 %), while the water samples were between 500 and 1000 μm (33.44 %). The main polymers found were polyethylene (PE) and polypropylene (PP). This assessment highlights the widespread problem of microplastic pollution in the coastal and intertidal zones of Bushehr province in the Persian Gulf.
    Matched MeSH terms: Geologic Sediments
  3. Gorajana A, Venkatesan M, Vinjamuri S, Kurada BV, Peela S, Jangam P, et al.
    Microbiol Res, 2007;162(4):322-7.
    PMID: 16580188
    In our systematic screening programme for marine actinomycetes, a bioactive Streptomycete was isolated from marine sediment samples of Bay of Bengal, India. The taxonomic studies indicated that the isolate belongs to Streptomyces chibaensis and it was designated as S. chibaensis AUBN1/7. The isolate yielded a cytotoxic compound. It was obtained by solvent extraction followed by the chromatographic purification. Based on the spectral data of the pure compound, it was identified as quinone-related antibiotic, resistoflavine (1). It showed a potent cytotoxic activity against cell lines viz. HMO2 (Gastric adenocarcinoma) and HePG2 (Hepatic carcinoma) in vitro and also exhibited weak antibacterial activities against Gram-positive and Gram-negative bacteria.
    Matched MeSH terms: Geologic Sediments/microbiology
  4. Hajeb P, Jinap S, Ismail A, Mahyudin NA
    PMID: 22610296 DOI: 10.1007/978-1-4614-3414-6_2
    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to humans in Malaysia will be useful in establishing the levels at which detrimental effects in both humans and marine life may occur, and therefore the levels at which warning should be raised or limits established. In particular, we believe that two or three monitoring centers should be established in Peninsular Malaysia, and one in East Malaysia for the specific purpose of monitoring for the presence of hazardous environmental chemicals, and particularly monitoring for heavy metals such as mercury that reach food that is subject to consistent human consumption.
    Matched MeSH terms: Geologic Sediments/analysis
  5. Hanapiah M, Zulkifli SZ, Mustafa M, Mohamat-Yusuff F, Ismail A
    Mar Pollut Bull, 2018 Feb;127:453-457.
    PMID: 29475685 DOI: 10.1016/j.marpolbul.2017.12.015
    Diuron is an alternative biocide suggested to replace organotin in formulating antifouling paints to be applied on water-going vessels hull. However, it is potentially harmful to various non-targeted marine organisms due to its toxic properties. Present study aimed to isolate, screen and identify the potential of Diuron-degrading bacteria collected from the marine sediments of Port Klang, Malaysia. Preliminary screening was conducted by exposing isolated bacteria to 430ng/L (background level), followed by 600ng/L and 1000ng/L of Diuron concentrations. Nine bacteria colonies survived the exposure of the above concentrations. However, only two strains can tolerate to survive up to 1000μg/L, which were then characterised and identified using phenotypic tests and the standard 16S rRNA molecular identification. The strains were identified as Comamonas jiangduensis SZZ 10 and Bacillus aerius SZZ 19 (GenBank accession numbers: KU942479 and KU942480, respectively). Both strains have the potential of Diuron biodegradation for future use.
    Matched MeSH terms: Geologic Sediments/microbiology*
  6. Harino H, Arai T, Ohji M, Ismail AB, Miyazaki N
    Arch Environ Contam Toxicol, 2009 Apr;56(3):468-78.
    PMID: 18979060 DOI: 10.1007/s00244-008-9252-0
    The concentrations of butyltins (BTs) in sediment from Peninsular Malaysia along the Strait of Malacca and their spatial distribution are discussed. The concentrations of BTs were high in the southern part of Peninsular Malaysia where there is a lot of ship traffic, because trade is prosperous. The concentrations of monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) in sediment from the coastal waters of Peninsular Malaysia were in the range 4.1-242 microg/kg dry weight (dw), 1.1-186 microg/kg dw, and 0.7-228 microg/kg dw, respectively. A higher percentage of TBT was observed in the area where TBT concentrations were high. The concentrations of monophenyltin (MPT), diphenyltin (DPT), and triphenyltin (TPT) were in the range <0.1-121 microg/kg dw, 0.4-27 microg/kg dw, and 0.1-34 microg/kg dw in sediment from Peninsular Malaysia, respectively. MPT was the dominant phenyltin species. MBT, DBT, and TBT in green mussel (Perna viridis) samples were detected in the range 41-102 microg/kg, 3-5 microg/kg, and 8-32 microg/kg, respectively. A tolerable average residue level (TARL) was estimated at 20.4 microg/kg from a tolerable daily intake (TDI) of 0.25 microg TBTO/kg body weight/day. The maximum value of TBT detected in green mussel samples was the value near the TARL. TPTs were not detected in green mussel samples. The concentrations of Diuron and Irgarol 1051 in sediment from Peninsular Malaysia were in the range <0.1-5 microg/kg dw and <0.1-14 microg/kg dw, respectively. High concentrations of these compounds were observed in locations where the concentrations of TBT were high. Sea Nine 211, Dichlofluanid, and Pyrithiones were not detected in sediment. The concentrations of antifouling biocides in Melaka and the Strait of Johor were investigated in detail. BTs were found in similar concentrations among all sampling sites from Melaka, indicating that BT contamination spread off the coast. However, Sea Nine 211, Diuron, and Irgarol 1051 in the sediment from Melaka were high at the mouth of the river. BT concentrations at the Strait of Johor were higher than those in Peninsular Malaysia and Melaka and were high at the narrowest locations with poor flushing of water. The concentrations of antifouling biocides were compared among Malaysia, Thailand, and Vietnam. A higher concentration and wide variations of TBT and TPT in sediment from Malaysia were observed among these countries. The Irgarol 1051 concentrations in sediment from Malaysia were higher than those in Thailand and Vietnam.
    Matched MeSH terms: Geologic Sediments/analysis*
  7. Haris H, Aris AZ, Mokhtar MB
    Chemosphere, 2017 Jan;166:323-333.
    PMID: 27710880 DOI: 10.1016/j.chemosphere.2016.09.045
    Total mercury (THg) and methylmercury (MeHg) concentrations were determined from sediment samples collected from thirty sampling stations in Port Klang, Malaysia. Three stations had THg concentrations exceeding the threshold effect level of the Florida Department of Environmental Protection and the Canadian interim sediment quality guidelines. THg and MeHg concentrations were found to be concentrated in the Lumut Strait where inputs from the two most urbanized rivers in the state converged (i.e. Klang River and Langat River). This suggests that Hg in the study area likely originated from the catchments of these rivers. MeHg made up 0.06-94.96% of the sediment's THg. There is significant positive correlation (p 
    Matched MeSH terms: Geologic Sediments/analysis
  8. Haris H, Looi LJ, Aris AZ, Mokhtar NF, Ayob NAA, Yusoff FM, et al.
    Environ Geochem Health, 2017 Dec;39(6):1259-1271.
    PMID: 28484873 DOI: 10.1007/s10653-017-9971-0
    The aim of the present study was to appraise the levels of heavy metal contamination (Zn and Pb) in sediment of the Langat River (Selangor, Malaysia). Samples were collected randomly from 15 sampling stations located along the Langat River. The parameters measured were pH, redox potential, salinity, electrical conductivity, loss of ignition, cation exchanges capacity (Na, Mg, Ca, K), and metal ions (Zn and Pb). The geo-accumulation index (I geo) and contamination factor (C f) were applied to determine and classify the magnitude of heavy metal pollution in this urban river sediment. Results revealed that the I geo of Pb indicated unpolluted to moderately polluted sediment at most of the sampling stations, whereas Zn was considered to be within background concentration. The I geo results were refined by the C f values, which showed Pb with very high C f at 12 stations. Zinc, on the other hand, had low to moderate C f values. These findings indicated that the sediment of the Langat River is severely polluted with Pb. The Zn concentration at most sampling points was well below most sediment quality guidelines. However, 40% of the sampling points were found to have a Pb concentration higher than the consensus-based probable effect concentration of 128 mg/kg (concentrations above this value are likely to cause harmful effects). This result not only highlights the severity of Pb pollution in the sediment of the Langat River, but also the potential risk it poses to the environment.
    Matched MeSH terms: Geologic Sediments/chemistry*
  9. Haris H, Aris AZ, Mokhtar MB, Looi LJ
    Chemosphere, 2020 Apr;245:125590.
    PMID: 31874324 DOI: 10.1016/j.chemosphere.2019.125590
    This study was conducted to assess the reliability of Nerita lineata as a bioindicator for metals in sediment and the factors influencing the accumulation of metals and methylmercury in its soft tissue. The two matrices were analyzed for Co, Cr, Cu, THg, MeHg, Mn, Ni, Pb, and Zn. The metal concentrations in N. lineata were comparable to previously reported results with the exception of Ni which was higher. Cu, Mn, and Pb in N. lineata were significantly (p 
    Matched MeSH terms: Geologic Sediments/analysis*
  10. Harun MA, Safari MJS, Gul E, Ab Ghani A
    Environ Sci Pollut Res Int, 2021 Oct;28(38):53097-53115.
    PMID: 34023993 DOI: 10.1007/s11356-021-14479-0
    The investigation of sediment transport in tropical rivers is essential for planning effective integrated river basin management to predict the changes in rivers. The characteristics of rivers and sediment in the tropical region are different compared to those of the rivers in Europe and the USA, where the median sediment size tends to be much more refined. The origins of the rivers are mainly tropical forests. Due to the complexity of determining sediment transport, many sediment transport equations were recommended in the literature. However, the accuracy of the prediction results remains low, particularly for the tropical rivers. The majority of the existing equations were developed using multiple non-linear regression (MNLR). Machine learning has recently been the method of choice to increase model prediction accuracy in complex hydrological problems. Compared to the conventional MNLR method, machine learning algorithms have advanced and can produce a useful prediction model. In this research, three machine learning models, namely evolutionary polynomial regression (EPR), multi-gene genetic programming (MGGP) and M5 tree model (M5P), were implemented to model sediment transport for rivers in Malaysia. The formulated variables for the prediction model were originated from the revised equations reported in the relevant literature for Malaysian rivers. Among the three machine learning models, in terms of different statistical measurement criteria, EPR gives the best prediction model, followed by MGGP and M5P. Machine learning is excellent at improving the prediction distribution of high data values but lacks accuracy compared to observations of lower data values. These results indicate that further study needs to be done to improve the machine learning model's accuracy to predict sediment transport.
    Matched MeSH terms: Geologic Sediments*
  11. Hasan ZA, Hamidon N, Yusof MS, Ghani AA
    Water Sci Technol, 2012;66(10):2170-6.
    PMID: 22949248 DOI: 10.2166/wst.2012.432
    Bukit Merah Reservoir is the main potable and irrigation water source for Kerian District, Perak State, Malaysia. For the past two decades, the reservoir has experienced water stress. Land-use activities have been identified as the contributor of the sedimentation. The Soil and Water Assessment Tool (SWAT) was used to simulate and quantify the impacts of land-use change in the reservoir watershed. The SWAT was calibrated and two scenarios were constructed representing projected land use in the year 2015 and hypothetical land use to represent extensive land-use change in the catchment area. The simulation results based on 17 years of rainfall records indicate that average water quantity will not be significantly affected but the ground water storage will decrease and suspended sediment will increase. Ground water decrease and sediment yield increase will exacerbate the Bukit Merah Reservoir operation problem.
    Matched MeSH terms: Geologic Sediments*
  12. Hii, Y.S., Alias, S.A., Hussin, A., Zakaria, M.P., Moreano, H., Riofrio, M., et al.
    ASM Science Journal, 2009;3(2):143-151.
    MyJurnal
    Surface coverage and some properties soil chemicals were assessed at the Punta Fort William, Greenwich Island during the summer from 1–11 February 2008. Twenty sampling points were established along two strip transects covering a total area of 160 m2. Punta Fort William was basically barren. Rocks, stones and pebbles covered 89.4% of the Punta Fort William. The diversity of vegetation in Punta Fort William was relatively low as compared to other South Shetland Islands. Mosses predominated the area and covered 9.1% of the total surface. Colobantus quitensis was the only vascular plant found at the Punta Fort William. It covered 0.5% of the total surface area. Lichens contributed 0.2% of the surface coverage. Although lichen coverage was low, its frequency of occurrence was among the highest. Total organic carbon (TOC) and total nitrogen (TN) in the study area ranged from 1 g to 39 g C kg–1 and 12 μg to 3892 μg N kg–1, respectively. The level of TOC and TN were comparable to those reported in other maritime locations in Antarctic. Higher levels of TOC and TN were detected in the areas with intensive biological activities. Hydrocarbon concentration was very low in this area and the sources of hydrocarbons were both natural and anthropogenic. The natural hydrocarbons source was mostly biogenic while the petrogenic hydrocarbons input was anthropogenic.
    Matched MeSH terms: Geologic Sediments
  13. Hussain I, Syed JH, Kamal A, Iqbal M, Eqani SA, Bong CW, et al.
    Environ Monit Assess, 2016 Jun;188(6):378.
    PMID: 27234513 DOI: 10.1007/s10661-016-5359-3
    Chenab River is one of the most important rivers of Punjab Province (Pakistan) that receives huge input of industrial effluents and municipal sewage from major cities in the Central Punjab, Pakistan. The current study was designed to evaluate the concentration levels and associated ecological risks of USEPA priority polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of Chenab River. Sampling was performed from eight (n = 24) sampling stations of Chenab River and its tributaries. We observed a relatively high abundance of ∑16PAHs during the summer season (i.e. 554 ng g(-1)) versus that in the winter season (i.e. 361 ng g(-1)), with an overall abundance of two-, five- and six-ring PAH congeners. Results also revealed that the nitrate and phosphate contents in the sediments were closely associated with low molecular weight (LMW) and high molecular weight (HMW) PAHs, respectively. Source apportionment results showed that the combustion of fossil fuels appears to be the key source of PAHs in the study area. The risk quotient (RQ) values indicated that seven PAH congeners (i.e. phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)pyrene, chrysene and benzo(a)anthracene) could pose serious threats to the aquatic life of the riverine ecosystem in Pakistan.
    Matched MeSH terms: Geologic Sediments/chemistry*
  14. Ibrahim YS, Tuan Anuar S, Azmi AA, Wan Mohd Khalik WMA, Lehata S, Hamzah SR, et al.
    JGH Open, 2021 Jan;5(1):116-121.
    PMID: 33490620 DOI: 10.1002/jgh3.12457
    Background and Aim: While dietary exposure to microplastics is increasingly recognized, it is unknown if ingested plastics remain within the digestive tract. We aimed to examine human colectomy specimens for microplastics and to report the characteristics as well as polymer composition of the particles.

    Methods: Colectomy samples were obtained from 11 adults (mean age 45.7, six males) who were residents of Northeastern Peninsular Malaysia. Microplastics were identified following chemical digestion of specimens and subsequent filtration. The samples were then examined for characteristics (abundance, length, shape, and color) and composition of three common polymer types using stereo- and Fourier Transform InfraRed (FTIR) microscopes.

    Results: Microplastics were detected in all 11 specimens with an average of 331 particles/individual specimen or 28.1 ± 15.4 particles/g tissue. Filaments or fibers accounted for 96.1% of particles, and 73.1% of all filaments were transparent. Out of 40 random filaments from 10 specimens (one had indeterminate spectra patterns), 90% were polycarbonate, 50% were polyamide, and 40% were polypropylene.

    Conclusion: Our study suggests that microplastics are ubiquitously present in the human colon.

    Matched MeSH terms: Geologic Sediments
  15. Ibrahim, M.N., Ismail, W.R., Najib, S.A.M.
    MyJurnal
    Merbok river catchment situated in the Kedah State receives its input from Bongkok River
    and Puntar River flowing down and joining Lalang River to flow down to the Merbok
    Estuary. The Merbok catchment (440 km2) is experiencing several degrees of complex
    land uses activities that poses some impact on the suspended sediment production of
    the Merbok river. A study was conducted to investigate the suspended sediment loading
    of rivers draining the Merbok catchment from January to December 2013. Suspended
    sediment budget of the Merbok catchment were estimated. The river suspended sediment
    concentrations (SSC) and suspended sediment (SS) load increased during wet season
    compared to dry season. The SS loads increases from upper catchment to river mouth. The
    sediment loadings were divided into three segments- the upstream, middle segment and
    lower segment. The SS loads increased from 10 t yr-1 in the upper part of Bongkok river
    to 3336 t yr-1 in upper segment. The sediment loading then increase to 4299 t yr-1 in the
    middle segment of the catchment (at Bongkok 4), and then exiting the Merbok Estuary, as
    the lower segment, with a total amount of sediment output estimated at 7156 t yr-1. From this
    total sediment output, most of the sediment
    source came from the tributaries; the
    Bongkok River at B3 (3337 t yr-1), Puntar
    River (2924 t yr-1) and Lalang River (1370
    t yr-1), which were much higher than its
    proportion in terms of its length and drainage
    area. As a conclusion, the inconsistence in
    SSC in the river were influenced by the
    various anthropogenic activities (especially
    agriculture and urbanization activities) in the catchment area which necessitate future land use and sediment control to avoid sediment
    and possible nutrient loading into the estuary.

    Matched MeSH terms: Geologic Sediments
  16. Idris NSU, Low KH, Koki IB, Kamaruddin AF, Md Salleh K, Zain SM
    Environ Monit Assess, 2017 May;189(5):220.
    PMID: 28425070 DOI: 10.1007/s10661-017-5939-x
    The spatial distributions of Na, Mg, K, Ca, Cr, Fe, Ni, Cu, Zn, As, Se and Pb in Hemibagrus sp. from Selangor River and a reference site were determined with inductively coupled plasma-mass spectrometer, in comparison to the levels in their surrounding water body and sediments. The results demonstrated significant differences in elemental accumulation pattern in different fish tissues originated from both sites. The variations observed were mainly subjected to their metabolic activities, and also the influence of the surrounding medium. In general, the liver tends to accumulate higher concentration of metals followed by the gills, and muscle tissues. The data also indicate associations between the concentrations of metal contaminants measured in the fish and the levels observed at the sites. The concentrations of hazardous metals As, Se and Pb in all the studied tissues reflect the influence of anthropogenic inputs. This suggests the potential utility of widely available Hemibagrus sp. as a valuable bioindicator of metal pollution in environmental monitoring and assessment.
    Matched MeSH terms: Geologic Sediments/analysis
  17. Ismail NAH, Wee SY, Haron DEM, Kamarulzaman NH, Aris AZ
    Mar Pollut Bull, 2020 Jan;150:110735.
    PMID: 31784268 DOI: 10.1016/j.marpolbul.2019.110735
    Endocrine-disrupting compounds (EDCs) such as hormones, pesticides, phenolic compounds, and pharmaceuticals compounds can cause adverse effects on humans, animals, and other living organisms. One of the largest mariculture areas situated in Pulau Kukup, Johor, Malaysia, is actively involved in exporting marine fish to other countries worldwide. This paper aims to provide baseline data on the level of EDC pollutants found in mariculture sediments in Malaysia since no reports have investigated this issue. Calculated samples recovered are between 50.39 and 129.10% at 100 ng/g spiking level. The highest concentration in the sediment samples was bisphenol A (0.072-0.389 ng/g dry weight) followed by diethylstilbestrol (<0.208-0.331 ng/g dry weight) and propranolol (<0.250-0.275 ng/g dry weight). Even though the concentrations of the targeted compounds obtained were low, their effects could become more evident longer term, which raises not only environmental health concerns but the potential risk to humans.
    Matched MeSH terms: Geologic Sediments/chemistry
  18. Ismanto A, Hadibarata T, Sugianto DN, Zainuri M, Kristanti RA, Wisha UJ, et al.
    Mar Pollut Bull, 2023 Nov;196:115677.
    PMID: 37862842 DOI: 10.1016/j.marpolbul.2023.115677
    The main aim of this study was to assess the presence of microplastics in the water and sediments of the Surakarta city river basin in Indonesia. In order to accurately reflect the river basin, a deliberate selection process was employed to choose three separate sampling locations and twelve sampling points. The results of the study revealed that fragments and fibers were the primary types of microplastics seen in both water and sediment samples. Furthermore, a considerable percentage of microplastics, comprising 53.8 % of the total, had dimensions below 1 mm. Moreover, the prevailing hues identified in the water samples were blue and black, comprising 45.1 % of the overall composition. In contrast, same color categories accounted for 23.3 % of the microplastics found in the soil samples. The analysis of microplastic polymers was carried out utilizing ATR-FTIR spectroscopy, which yielded the identification of various types including polystyrene, silicone polymer, polyester, and polyamide.
    Matched MeSH terms: Geologic Sediments
  19. Ismanto A, Hadibarata T, Kristanti RA, Sugianto DN, Widada S, Atmodjo W, et al.
    Mar Pollut Bull, 2023 Nov;196:115563.
    PMID: 37797535 DOI: 10.1016/j.marpolbul.2023.115563
    This study aimed to address the pressing issue of plastic pollution in aquatic ecosystems by assessing the prevalence and distribution of microplastics (MPs) in water and riverbank sediments of the Pekalongan River, a vital water source in Indonesia. From the present findings, MP concentrations in water ranged from 45.2 to 99.1 particles/L, while sediment concentrations ranged from 0.77 to 1.01 particles/g. This study revealed that fragment and film MPs constituted 30.1 % and 25.4 % of the total, respectively, with MPs measuring <1 mm and constituting 51.4 % of the total. Colored MPs, particularly blue and black MPs, accounted for 34 % of the total. The primary polymer components, as determined via Fourier transform infrared spectroscopy, were identified as polystyrene, polyester, and polyamide. In response to the escalating plastic waste crisis caused by single-use plastics, Pekalongan's local government implemented refuse segregation and recycling programs as part of its efforts to transition toward zero-waste practices.
    Matched MeSH terms: Geologic Sediments/chemistry
  20. Isobe KO, Zakaria MP, Chiem NH, Minh le Y, Prudente M, Boonyatumanond R, et al.
    Water Res, 2004 May;38(9):2448-58.
    PMID: 15142807
    This paper reports the result of sewage pollution monitoring conducted in South and Southeast Asia during 1998-2003 using linear alkylbenzenes (LABs) as molecular tracers of sewage contamination. Eighty-nine water samples collected from Malaysia, Vietnam, and Japan (Tokyo), and 161 surface sediment samples collected from Tokyo, Thailand, Malaysia, Philippines, Vietnam, Cambodia, Indonesia, and India were analyzed for alkylbenzenes. The concentration range of SigmaLABs in river water particles in Southeast Asia (<0.005-0.913 microg/L) was comparable to or higher than those found in Tokyo (<0.005-0.638 microg/L). I/E ratios (a ratio of internal to external isomers of LABs) in tropical Asian waters were close to the value of LABs in raw sewage ( approximately 1) and much lower than those in secondary effluents (3-5). This suggests that untreated or inadequately treated sewage is discharged into the water. SigmaLABs concentrations in sediments from South and Southeast Asia ranged from <0.002-42.6 microg/g-dry with the highest concentration occurring at several populous cities. Low I/E ratios of the sediments with high SigmaLABs concentrations suggest a heavy load of untreated sewage. Clearly in view of the current data and evidence of the implications of sewage pollution, this paper highlights the necessity of the continuation of water treatment system improvement in tropical Asia.
    Matched MeSH terms: Geologic Sediments/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links