Displaying publications 61 - 80 of 322 in total

Abstract:
Sort:
  1. Vijayarathna S, Sasidharan S
    Asian Pac J Trop Biomed, 2012 Oct;2(10):826-9.
    PMID: 23569855 DOI: 10.1016/S2221-1691(12)60237-8
    To investigate the cytotoxic effect of Elaeis guineensis methanol extract on MCF-7 and Vero cell.
    Matched MeSH terms: MCF-7 Cells
  2. Shanmugapriya, Chen Y, Kanwar JR, Sasidharan S
    Nutr Cancer, 2017 10 25;69(8):1308-1324.
    PMID: 29068745 DOI: 10.1080/01635581.2017.1367944
    This study was conducted to investigate the anticancer effects and mechanism of Calophyllum inophyllum fruit extract against MCF-7 cells. C. inophyllum fruit extract was found to have markedly cytotoxic effect against MCF-7 cells in a dose-dependent manner with the IC50 for 24 h of 23.59 µg/mL. Flow cytometry analysis revealed that C. inophyllum fruit extract mediated cell cycle at G0/G1 and G2/M phases, and MCF-7 cells entered the early phase of apoptosis. The expression of anti-apoptotic proteins Bcl-2 was decreased whereas the expression of the pro-apoptotic protein Bax, cytochrome C and p53 were increased after treatment. C. inophyllum fruit extract led to apoptosis in MCF-7 cells via the mitochondrial pathway in a dose dependent manner. This is evidenced by the elevation of intracellular ROS, the loss of mitochondria membrane potential (Δψm), and activation of caspase-3. Meanwhile, dose-dependent genomic DNA fragmentation was observed after C. inophyllum fruits extract treatment by comet assay. This study shows that C. inophyllum fruits extract-induced apoptosis is primarily p53 dependent and mediated through the activation of caspase-3. C. inophyllum fruit extract could be an excellent source of chemopreventive agent in the treatment of breast cancer and has potential to be explored as green anticancer agent.
    Matched MeSH terms: MCF-7 Cells
  3. Phirdaous Abbas, Yumi Zuhanis Has-Yun Hashim, Hamzah Mohd Salleh, Saripah Salbiah Syed Abdul Azzizz
    MyJurnal
    Uninfected agarwood branch is readily available as raw material in agarwood plantation as new practices of agarwood plantation scheme were opted as substitute to the endangered wild type agarwood. The uninfected branch can be easily obtained during pruning process (one of plantation’s common maintenance procedure), throughout the years before inoculation stage. This current study aimed to investigate the optimal extraction process conditions of agarwood branch using ethanol as solvent system for maximal yield, and assess its cytotoxic effects towards MCF-7 breast cancer cells. Uninfected branch of Aquilaria subintegra was subjected to One Factor at a Time (OFAT) and Response Surface Methodology (RSM)-guided ethanolic extraction to achieve maximal yield. The extract was then subjected to cytotoxicity, cell attachment and cell viability assays, respectively. Optimization Run 2 (temperature 45 °C, solid-liquid ratio of 1:30, 16 hours maceration) gave the highest agarwood branch ethanolic extract (ABEE) yield of 44.70 ± 18.9 mg/g dried material (DM). Meanwhile Run 7 (temperature 45 °C, solid-liquid ratio of 1:10, 16 hours of maceration) gave the lowest yield (19.34 ± 14.1 mg/g DM). However, while maintaining the 16 hour-maceration, the model predicted a slightly lower yield of 30.232 ± 0.266 mg/g DM of ABEE with process conditions of 45 °C and solid-liquid ratio of 1:19 when the desirable parameters were factored in namely using (ⅰ) the most suitable temperature (that does not risk the bioactivities of the extract), and (ⅱ) an economical volume of solvent. Crude ABEE obtained from the optimal process conditions resulted in cytotoxicity effects on MCF-7 breast cancer cells with IC50 estimate of 3.645 ± 0.099 μg/mL. The extract also affected MCF-7 cell attachment and viability with altered morphology. More work to elucidate the mechanism of actions of the extract are warranted; which could further lead to development of breast cancer natural product-based therapeutics.
    Matched MeSH terms: MCF-7 Cells
  4. Adebayo IA, Arsad H, Samian MR
    PMID: 28573245 DOI: 10.21010/ajtcam.v14i2.30
    BACKGROUND: Moringa oleifera belongs to plant family, Moringaceae and popularly called "wonderful tree", for it is used traditionally to cure many diseases including cancer in Africa and Asia, however, there is limited knowledge on cytotoxic activity of Moringa oleifera seeds on MCF7 breast cancer cell. The present study evaluated antiproliferative effect on MCF7 of the seed.
    MATERIALS AND METHODS: Seeds of Moringa oleifera were grinded to powder and its phytochemicals were extracted using water and 80% ethanol solvents, part of the ethanolic extract were sequentially partitioned to fractions with four solvents (hexane, dichloromethane, chloroform, and n-butanol). Antiproliferative effects on MCF7 of the samples were determined. Finally, potent samples that significantly inhibited MCF7 growth were tested on MCF 10A.
    RESULTS: Crude water extract, hexane and dichloromethane fractions of the seeds inhibited the proliferation of MCF7 with the following IC50 values 280 μg/ml, 130 μg/ml and 26 μg/ml respectively, however, of the 3 samples, only hexane fraction had minimal cytotoxic effect on MCF 10A (IC50 > 400μg/ml).
    CONCLUSION: Moringa oleifera seed has antiproliferative effect on MCF7.
    Matched MeSH terms: MCF-7 Cells
  5. Lim WF, Mohamad Yusof MI, Teh LK, Salleh MZ
    Nutrients, 2020 Sep 30;12(10).
    PMID: 33007803 DOI: 10.3390/nu12102993
    Moringa oleifera is a miracle plant with many nutritional and medicinal properties. Chemopreventive values of the combined mixture of moringa leaves and seed residue (MOLSr) at different ratios (M1S9, M1S1 and M9S1) were investigated. MOLSr extracts were subjected to phytochemical screening, antioxidant assays, metabolite profiling and cytotoxic activity on the primary mammary epithelial cells (PMECs), non-malignant Chang's liver cells and various human cancer cell lines (including breast, cervical, colon and liver cancer cell lines). The MOLSr ratio with the most potent cytotoxic activity was used in xenograft mice injected with MDA-MB-231 cells for in vivo tumorigenicity study as well as further protein and gene expression studies. M1S9, specifically composed of saponin and amino acid, retained the lowest antioxidant activity but the highest glucosinolate content as compared to other ratios. Cell viability decreased significantly in MCF-7 breast cancer cells and PMECs after treatment with M1S9. Solid tumor from MDA-MB-231 xenograft mice was inhibited by up to 64.5% at third week after treatment with high-dose M1S9. High-dose M1S9 significantly decreased the expression of calcineurin (CaN) and vascular endothelial cell growth factor (VEGF) proteins as well as the secreted frizzled-related protein 1 (SFRP1) and solute carrier family 39 member 6 (SLC39A6) genes. This study provides new scientific evidence for the chemoprevention potential of MOLSr extracts in a breast cancer model; however, the precise mechanism warrants further investigation.
    Matched MeSH terms: MCF-7 Cells
  6. Tajau R, Rohani R, Abdul Hamid SS, Adam Z, Mohd Janib SN, Salleh MZ
    Sci Rep, 2020 12 10;10(1):21704.
    PMID: 33303818 DOI: 10.1038/s41598-020-78601-x
    Polymeric nanoparticles (NPs) are commonly used as nanocarriers for drug delivery, whereby their sizes can be altered for a more efficient delivery of therapeutic active agents with better efficacy. In this work, cross-linked copolymers acted as core-shell NPs from acrylated palm olein (APO) with polyol ester were synthesized via gamma radiation-induced reversible addition-fragmentation chain transfer (RAFT) polymerisation. The particle diameter of the copolymerised poly(APO-b-polyol ester) core-shell NPs was found to be less than 300 nm, have a low molecular weight (MW) of around 24 kDa, and showed a controlled MW distribution of a narrow polydispersity index (PDI) of 1.01. These properties were particularly crucial for further use in designing targeted NPs, with inclusion of peptide for the targeted delivery of paclitaxel. Moreover, the characterisation of the synthesised NPs using Fourier Transform-Infrared (FTIR) and Neutron Magnetic Resonance (NMR) analyses confirmed the possession of biodegradable hydrolysed ester in its chemical structures. Therefore, it can be concluded that the synthesised NPs produced may potentially contribute to better development of a nano-structured drug delivery system for breast cancer therapy.
    Matched MeSH terms: MCF-7 Cells
  7. Al-Amin M, Eltayeb NM, Khairuddean M, Salhimi SM
    Nat Prod Res, 2021 Sep;35(18):3166-3170.
    PMID: 31726856 DOI: 10.1080/14786419.2019.1690489
    Rhizomes of Curcuma caesia are traditionally used to treat cancer in India. The aim is to isolate chemical constituents from C. caesia rhizomes through bioassay-guided fractionation. The extract, hexanes and chloroform fractions showed effect on MCF-7 and MDA-MB-231cells in cell viability assay. The chromatographic separation afforded germacrone (1), zerumbone (2), furanodienone (3), curzerenone (4), curcumenol (5), zederone (6), curcumenone (7), dehydrocurdione (8) from hexanes fraction and curcuminol G (9), curcuzederone (10), (1S, 10S), (4S,5S)-germacrone-1 (10), 4-diepoxide (11), wenyujinin B (12), alismoxide (13), aerugidiol (14), zedoarolide B (15), zedoalactone B (16), zedoarondiol (17), isozedoarondiol (18) from chloroform fraction. This is first report of compounds 2, 9-13, 15-18 from C. caesia. The study demonstrated compounds 1-4 and 10 are the bioactive compounds. The effect of curcuzederone (10) on MDA-MB-231 cell migration showed significant inhibition in scratch and Transwell migration assays. The results revealed that curcuzederone could be a promising drug to treat cancer.
    Matched MeSH terms: MCF-7 Cells
  8. Farghadani R, Seifaddinipour M, Rajarajeswaran J, Abdulla MA, Mohd Hashim NB, Khaing SL, et al.
    PeerJ, 2019;7:e7686.
    PMID: 31608167 DOI: 10.7717/peerj.7686
    Breast cancer is the most frequently diagnosed cancer among women worldwide. Recently, increasing attention has been paid to the anticancer effects of transition metal complexes of indole Schiff bases. β-diiminato ManganeseIII complex has shown promising cell cycle arrest and apoptosis induction against MCF-7 and MDA-MB-231 breast cancer cells. In this study, time- and dose- dependent inhibitory activity were evaluated using MTT assay after 48 h and 72 h exposure time. In addition, median effect analysis was conducted according to Chou-Talalay method to investigate whether MnIII complex has synergistic effect in combination with chemotherapeutic drugs on inhibiting breast cancer cell growth. The molecular mechanisms underlying its potent antiproliferative effect was determined through bioluminescent caspase-3/7, -8 and -9 activity assays and quantitative expression analysis of cell cycle- and apoptosis-related genes. Furthermore, safety evaluation of MnIII complex was assessed through the acute oral toxicity test in in vivo model. The MTT assay results revealed that it potently reduced the viability of MCF-7 (IC50 of 0.63 ± 0.07 µg/mL for 48 h and 0.39 ± 0.08 µg/mL for 72 h) and MDA-MB-231 (1.17 ± 0.06 µg/mL for 48 h, 1.03 ± 0.15 µg/mL for 72 h) cells in dose- and time-dependent manner. Combination treatment also enhanced the cytotoxic effects of doxorubicin but not tamoxifen on inhibiting breast cancer cell growth. The involvement of intrinsic and extrinsic pathway in apoptosis induction was exhibited through the increased activity of caspase-9 and caspase-8, respectively, leading to enhanced downstream executioner caspase-3/7 activity in treated MCF-7 and MDA-MB-231 cells. In addition, gene expression analysis revealed that MnIII complex exerts its antiproliferative effect via up-and down-regulation of p21 and cyclin D1, respectively, along with increased expression of Bax/Bcl-2 ratio, TNF-α, initiator caspase-8 and -10 and effector caspase-3 in MCF-7 and MDA-MB-231 cells. However, the results did not show increased caspase-8 activity in treated MCF-7 cells. Furthermore, in vivo acute oral toxicity test revealed no signs of toxicity and mortality in treated animal models compared to the control group. Collectively, the promising inhibitory effect and molecular and mechanistic evidence of antiproliferative activity of MnIII complex and its safety characterization have demonstrated that it may have therapeutic value in breast cancer treatment worthy of further investigation and development.
    Matched MeSH terms: MCF-7 Cells
  9. Jamil M, Mustafa IS, Sahul Hamid SB, Ahmed NM, Khazaalah TH, Godwin E, et al.
    Colloids Surf B Biointerfaces, 2023 Aug;228:113423.
    PMID: 37390675 DOI: 10.1016/j.colsurfb.2023.113423
    The novelty of this work is the conjugation of poly(ethylene) oxide (PEO) with the erbium oxide (Er2O3) nanoparticles using the electrospinning technique. In this work, synthesised PEO-coated Er2O3 nanofibres were characterised and evaluated for their cytotoxicity to assess their potential use as diagnostic nanofibres for magnetic resonance imaging (MRI). PEO has significantly impacted nanoparticle conductivity due to its lower ionic conductivity at room temperature. The findings showed that the surface roughness was improved over the nanofiller loading, implying an improvement in cell attachment. The release profile performed for drug-controlling purposes has demonstrated a stable release after 30 min. Cellular response in MCF-7 cells showed high biocompatibility of the synthesised nanofibres. The cytotoxicity assay results showed that the diagnostic nanofibres had excellent biocompatibility, indicating the feasibility for diagnosis purposes. With excellent contrast performance, the PEO-coated Er2O3 nanofibres developed novel T2 and T1-T2 dual-mode MRI diagnostic nanofibres leading to better cancer diagnosis. In conclusion, this work has demonstrated that the conjugation of PEO-coated Er2O3 nanofibres improved the surface modification of the Er2O3 nanoparticles as a potential diagnostic agent. Using PEO in this study as a carrier or polymer matrix significantly influenced the biocompatibility and internalisation efficiency of the Er2O3 nanoparticles without triggering any morphological changes after treatment. This work has suggested permissible concentrations of PEO-coated Er2O3 nanofibres for diagnostic uses.
    Matched MeSH terms: MCF-7 Cells
  10. Foo JB, Low ML, Lim JH, Lor YZ, Zainol Abidin R, Eh Dam V, et al.
    Biometals, 2018 08;31(4):505-515.
    PMID: 29623473 DOI: 10.1007/s10534-018-0096-4
    Copper complexes have been widely studied for the anti-tumour application as cancer cells are reported to take up greater amounts of copper than normal cells. Preliminary study revealed that the newly synthesised copper complex [Cu(SBCM)2] displayed marked anti-proliferative towards triple-negative MDA-MB-231 breast cancer cells. Therefore, Cu(SBCM)2 has great potential to be developed as an agent for the management of breast cancer. The present study was carried out to investigate the mode of cell death induced by Cu(SBCM)2 towards MDA-MB-231 breast cancer cells. The inhibitory and morphological changes of MDA-MB-231 cells treated with Cu(SBCM)2 was determined by using MTT assay and inverted light microscope, respectively. The safety profile of Cu(SBCM)2 was also evaluated towards human dermal fibroblast (HDF) normal cells. Confirmation of apoptosis and cell cycle arrest were determined by flow cytometry analysis. The expression of p53, Bax, Bcl-2 and MMP2 protein were detected with western blot analysis. Cu(SBCM)2 significantly inhibited the growth of MDA-MB-231 cells in a dose-dependent manner with GI50 18.7 ± 3.06 µM. Indeed, Cu(SBCM)2 was less toxic towards HDF normal cells with GI50 31.8 ± 4.0 µM. Morphological study revealed that Cu(SBCM)2-treated MDA-MB-231 cells experienced cellular shrinkage, membrane blebbing, chromatin condensation and formation of apoptotic bodies, suggesting that Cu(SBCM)2 induced apoptosis in the cells, which was confirmed by Annexin-V/PI flow cytometry analysis. It was also found that Cu(SBCM)2 induced G2/M phase cell cycle arrest towards MDA-MB-231 cells. The induction of apoptosis and cell cycle arrest in the present study is possibly due to the down-regulation of the mutant p53 and MMP2 protein. In conclusion, Cu(SBCM)2 can be developed as a targeted therapy for the treatment of triple-negative breast cancer.
    Matched MeSH terms: MCF-7 Cells
  11. Nor WMFSBW, Chung I, Said NABM
    Oncol Res, 2020 Oct 27.
    PMID: 33109304 DOI: 10.3727/096504020X16037933185170
    Breast cancer is the most commonly diagnosed cancer among women and one of the leading causes of cancer mortality worldwide, in which the most severe form happens when it metastasizes to other regions of the body. Metastasis is responsible for most treatment failures in advanced breast cancer. Epithelial-mesenchymal transition (EMT) plays a significant role in promoting metastatic processes in breast cancer. MicroRNAs (miRNAs) are highly conserved endogenous short non-coding RNAs that play a role in regulating a broad range of biological processes, including cancer initiation and development, by functioning as tumor promoters or tumor suppressors. Expression of miR-548m has been found in various types of cancers, but the biological function and molecular mechanisms of miR-548m in cancers have not been fully studied. Here, we demonstrated the role of miR-548m in modulating EMT in the breast cancer cell lines MDA-MB-231 and MCF-7. Expression data for primary breast cancer obtained from NCBI GEO datasets showed that miR-548m expression was downregulated in breast cancer patients compared with healthy group. We hypothesize that miR-548m acts as a tumor suppressor in breast cancer. Overexpression of miR-548m in both cell lines increased E-cadherin expression and decreased the EMT-associated transcription factors SNAI1, SNAI2, ZEB1 and ZEB2, as well as MMP9 expression. Consequently, migration and invasion capabilities of both MDA-MB-231 and MCF-7 cells were significantly inhibited in miR-548m-overexpressing cells. Analysis of 1059 putative target genes of miR-548m revealed common pathways involving both tight junction and the mTOR signaling pathway, which has potential impacts on cell migration and invasion. Furthermore, this study identified aryl hydrocarbon receptor (AHR) as a direct target of miR-548m in breast cancer cells. Taken together, our findings suggest a novel function of miR-548m in reversing the EMT of breast cancer by reducing their migratory and invasive potentials, at least in part via targeting AHR expression.
    Matched MeSH terms: MCF-7 Cells
  12. Jamil M, Mustafa IS, Ahmed NM, Sahul Hamid SB
    Biomater Adv, 2022 Dec;143:213178.
    PMID: 36368056 DOI: 10.1016/j.bioadv.2022.213178
    Biocompatible polymers have received significant interest from researchers for their potential in diagnostic applications. This type of polymer can perform with an appropriate host response or carrier for a specific purpose. The current study aims to fabricate and characterise poly(ethylene) oxide (PEO) nanofibres with different concentrations for cytotoxicity evaluation in human breast cancer cell lines (MCF-7) and to get an optimal PEO nanofibre concentration (permissible limit) as a suitable polymer matrix or carrier with potential use in diagnostic applications. The fabrication of PEO nanofibres was done using electrospinning and was characterised by structure and morphology, surface roughness, chemical bonding and release profiles. The functional effects of PEO nanofibres were evaluated with MTS assay and colony formation assay in MCF-7 cells. The results showed that viscosity plays a vital role in synthesising a polymer solution in electrospinning for producing beadless nanofibrous mats ranging from 4.7 Pa·s to 77.7 Pa·s. As the PEO concentration increases, the nanofibre diameter and thickness will increase, but the surface roughness will be decreased. The average fibre diameter for 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 129 ± 70 nm, 185 ± 55 nm and 192 ± 53 nm, respectively. In addition, the fibre thickness for 4 wt% PEO, 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 269 ± 3 μm, 664 ± 4 μm, 758 ± 7 μm and 1329 ± 44 μm, respectively. Contrarily, the surface roughness for 4 wt% PEO, 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 55.6 ± 9 nm, 42.8 ± 6 nm, 42.7 ± 7 nm and 36.6 ± 1 nm, respectively. PEO nanofibres showed the same burst release pattern and rate due to the same molecular weight of PEO with a stable release rate profile after 15 min. It also demonstrates that the percentage of PEO nanofibre release increased with the increasing PEO concentration due to the fibre diameter and thickness. The findings showed that all PEO nanofibres formulations were non-toxic to MCF-7 cells. It is suggested that 5 wt% PEO nanofibre exhibited non-cytotoxic characteristics by maintaining the cell viability from dose 0-1000 μg/ml and did not induce the number of colonies. Therefore, 5 wt% PEO nanofibre is the optimal nanofibre concentration and was suggested as a suitable base polymer matrix or carrier with potential use for diagnostic purposes. The findings in this study have demonstrated the influence of cell growth and viability, including the effects of PEO nanofibre formulations on cancer progress characteristics to achieve a permissible PEO nanofibre concentration limit that can be a benchmark in medical applications, particularly diagnostic applications.
    Matched MeSH terms: MCF-7 Cells
  13. Abdullah M, Rafiq A, Shahid N, Nasir Kalam M, Munir Y, Daoud Butt M, et al.
    Pak J Pharm Sci, 2023 Nov;36(6(Special)):1849-1858.
    PMID: 38264890
    Pharmaceutical substance sitagliptin has long been used to treat diabetes. However, subsequent researches have shown that sitagliptin has additional therapeutic effects. Anti-inflammatory effects are observed. Combining sitagliptin with biodegradable polymers like nanoparticles for chemotherapy may be effective. This method enhances therapeutic agent pharmacokinetics. This study tests sitagliptin (SIT) chitosan base nanoparticles against MCF-7 cancer cell lines for anti-cancer effects. Sitagliptin chitosan-based nanoparticles are tested for their ability to suppress MCF-7 cancer cell proliferation. Ionic gelation, a typical nanoparticle manufacturing method, was used. A detailed examination of the nanoparticles followed, using particle-size measurement, FTIR and SEM. Entrapment efficiency, drug-loading, and in-vitro drug release were assessed. Loaded with chitosan and sitagliptin, the nanoparticles averaged 500nm and 534nm in diameter. Sitagliptin has little effect on particle size. Chitosan-based Sitagliptin nanoparticles grew slightly, suggesting Sitagliptin is present. SIT-SC-NPs had 32% encapsulation efficiency and 30% drug content due to their high polymer-to-drug ratio. SEM analysis showed that both drug-free and sitagliptin-loaded nanoparticles are spherical, as shown by the different bands in the photos. The SIT-CS-NPs had a 120-hour release efficiency of up to 80%. This suggests that these nanoparticles could cure hepatocellular carcinoma, specifically MCF-7 cell lines.
    Matched MeSH terms: MCF-7 Cells
  14. Lau BF, Abdullah N, Aminudin N, Lee HB, Yap KC, Sabaratnam V
    PLoS One, 2014;9(7):e102509.
    PMID: 25054862 DOI: 10.1371/journal.pone.0102509
    Previous studies on the nutritional and nutraceutical properties of Lignosus rhinocerotis focused mainly on the sclerotium; however, the supply of wild sclerotium is limited. In this investigation, the antioxidant capacity and cytotoxic effect of L. rhinocerotis cultured under different conditions of liquid fermentation (shaken and static) were compared to the sclerotium produced by solid-substrate fermentation. Aqueous methanol extracts of the mycelium (LR-MH, LR-MT) and culture broth (LR-BH, LR-BT) demonstrated either higher or comparable antioxidant capacities to the sclerotium extract (LR-SC) based on their radical scavenging abilities, reducing properties, metal chelating activities, and inhibitory effects on lipid peroxidation. All extracts exerted low cytotoxicity (IC50>200 µg/ml, 72 h) against selected mammalian cell lines. Several low-molecular-weight compounds, including sugars, fatty acids, methyl esters, sterols, amides, amino acids, phenolics, and triterpenoids, were identified using GC-MS and UHPLC-ESI-MS/MS. The presence of proteins (<40 kDa) in the extracts was confirmed by SDS-PAGE and SELDI-TOF-MS. Principal component analysis revealed that the chemical profiles of the mycelial extracts under shaken and static conditions were distinct from those of the sclerotium. Results from bioactivity evaluation and chemical profiling showed that L. rhinocerotis from liquid fermentation merits consideration as an alternative source of functional ingredients and potential substitute for the sclerotium.
    Matched MeSH terms: MCF-7 Cells
  15. How CW, Rasedee A, Manickam S, Rosli R
    Colloids Surf B Biointerfaces, 2013 Dec 1;112:393-9.
    PMID: 24036474 DOI: 10.1016/j.colsurfb.2013.08.009
    Cancer nanotherapeutics is beginning to overwhelm the global research and viewed to be the revolutionary treatment regime in the medical field. This investigation describes the development of a stable nanostructured lipid carrier (NLC) system as carrier for Tamoxifen (TAM). The TAM-loaded NLC (TAM-NLC) developed with 200mg of TAM showed a spherical particle with the size of 46.6nm, polydispersity index of 0.267, entrapment efficiency of 99.74% and with the zeta potential of -23.78mV. Besides, the equivalent cytotoxicity of TAM and TAM-NLC to human (MCF-7) and mice (4T1) mammary breast cancer cell lines were observed. Incubating the formulation at the physiological pH resulted into reduced Ostwald ripening rate but without any significant change in the absorptivity. When coupled with the measurements of zeta potential and Ostwald ripening rate, the absorbance assay may be used to predict the long-term stability of drug-loaded nanoparticle formulations. The results of the study also suggest that TAM-NLC is a promising drug delivery system for breast cancer therapy. This is the first encouraging report on the in vitro effect of TAM-NLC against human and mouse mammary adenocarcinoma cell lines.
    Matched MeSH terms: MCF-7 Cells
  16. Amini R, Jalilian FA, Abdullah S, Veerakumarasivam A, Hosseinkhani H, Abdulamir AS, et al.
    Appl Biochem Biotechnol, 2013 Jun;170(4):841-53.
    PMID: 23615733 DOI: 10.1007/s12010-013-0224-0
    Leukemic cells are hard-to-transfect cell lines. Many transfection reagents which can provide high gene transfer efficiency in common adherent cell lines are not effective to transfect established blood cell lines or primary leukemic cells. This study aims to examine a new class of cationic polymer non-viral vector, PEGylated-dextran-spermine (PEG-D-SPM), to determine its ability to transfect the leukemic cells. Here, the optimal conditions of the complex preparation (PEG-D-SPM/plasmid DNA (pDNA)) were examined. Different weight-mixing (w/w) ratios of PEG-D-SPM/pDNA complex were prepared to obtain an ideal mixing ratio to protect encapsulated pDNA from DNase degradation and to determine the optimal transfection efficiency of the complex. Strong complexation between polymer and pDNA in agarose gel electrophoresis and protection of pDNA from DNase were detected at ratios from 25 to 15. Highest gene expression was detected at w/w ratio of 18 in HL60 and K562 cells. However, gene expression from both leukemic cell lines was lower than the control MCF-7 cells. The cytotoxicity of PEG-D-SPM/pDNA complex at the most optimal mixing ratios was tested in HL60 and K562 cells using MTS assay and the results showed that the PEG-D-SPM/pDNA complex had no cytotoxic effect on these cell lines. Spherical shape and nano-nature of PEG-D-SPM/pDNA complex at ratio 18 was observed using transmission electron microscopy. As PEG-D-SPM showed modest transfection efficiency in the leukemic cell lines, we conclude that further work is needed to improve the delivery efficiency of the PEG-D-SPM.
    Matched MeSH terms: MCF-7 Cells
  17. Lee WH, Loo CY, Rohanizadeh R
    Mater Sci Eng C Mater Biol Appl, 2019 Jun;99:929-939.
    PMID: 30889767 DOI: 10.1016/j.msec.2019.02.030
    This study has evaluated the effect of functionalizing surface charges of hydroxyapatite on the modulation of loading and release of curcumin nanoparticles. The increase in loading and release of curcumin nanoparticles indirectly translates to enhanced anti-cancer effect. Owing to the hydrophobic characteristics of curcumin which have resulted in low bioavailability in cancer cells, the engineering curcumin into nanoparticles is therefore a viable solution to overcomes its limitation. In order to maintain a sustained release profile of curcumin nanoparticles, curcumin nanoparticles were loaded (Cur-NPs) onto hydroxyapatite (HA) via physical adsorption. To regulate the adsorption capacity of Cur-NPs onto HA, we functionalized HA with different carboxylic acids (lactic acid, tartaric acid and citric acid). The presence of carboxylic groups on HA significantly affected the binding and the release profile of Cur-NPs. The effects of Cur-NPs loaded HA were evaluated on breast cancer cell line (MCF-7), which included cell proliferation, cellular uptake of Cur-NPs, apoptosis and cell cycle analysis. The results showed that carboxylic acid-functionalized HA demonstrated higher anti-proliferating activity and time dependent cytoplasmic uptake of Cur-NPs in MCF-7 cells compared to unmodified HA. In addition, Cur-NPs loaded on functionalized HA induced higher apoptosis and cell cycle arrest in MCF-7 cells compared to unmodified HA. The present study indicates that the delivery of Cur-NPs to breast cancer using carboxylic acid-functionalized HA carrier could improve their anti-cancer activities.
    Matched MeSH terms: MCF-7 Cells
  18. Ramli MM, Rosman AS, Mazlan NS, Ahmad MF, Halin DSC, Mohamed R, et al.
    Sci Rep, 2021 10 19;11(1):20702.
    PMID: 34667216 DOI: 10.1038/s41598-021-00171-3
    Breast cancer is one of the most reported cancers that can lead to death. Despite the advances in diagnosis and treatment procedures, the possibility of cancer recurrences is still high in many cases. With that in consideration, researchers from all over the world are showing interest in the unique features of Graphene oxide (GO), such as its excellent and versatile physicochemical properties, to explore further its potential and benefits towards breast cancer cell treatment. In this study, the cell viability and electrical response of GO, in terms of resistivity and impedance towards the breast cancer cells (MCF7) and normal breast cells (MCF10a), were investigated by varying the pH and concentration of GO. Firstly, the numbers of MCF7 and MCF10a were measured after being treated with GO for 24 and 48 h. Next, the electrical responses of these cells were evaluated by using interdigitated gold electrodes (IDEs) that are connected to an LCR meter. Based on the results obtained, as the pH of GO increased from pH 5 to pH 7, the number of viable MCF7 cells decreased while the number of viable MCF10a slightly increased after the incubation period of 48 h. Similarly, the MCF7 also experienced higher cytotoxicity effects when treated with GO concentrations of more than 25 µg/mL. The findings from the electrical characterization of the cells observed that the number of viable cells has corresponded to the impedance of the cells. The electrical impedance of MCF7 decreased as the number of highly insulating viable cell membranes decreased. But in contrast, the electrical impedance of MCF10a increased as the number of highly insulating viable cell membranes increased. Hence, it can be deduced that the GO with higher pH and concentration influence the MCF7 cancer cell line and MCF10a normal breast cell.
    Matched MeSH terms: MCF-7 Cells
  19. Ong YS, Bañobre-López M, Costa Lima SA, Reis S
    Mater Sci Eng C Mater Biol Appl, 2020 Nov;116:111255.
    PMID: 32806240 DOI: 10.1016/j.msec.2020.111255
    Methotrexate (MTX), an anti-neoplastic agent used for breast cancer treatment, has restricted clinical applications due to poor water solubility, non-specific targeting and adverse side effects. To overcome these limitations, MTX was co-encapsulated with an active-targeting platform known as superparamagnetic iron oxide nanoparticles (SPIONs) in a lipid-based homing system, nanostructured lipid carrier (NLC). This multi-modal therapeutic regime was successfully formulated with good colloidal stability, bio- and hemo-compatibility. MTX-SPIONs co-loaded NLC was time-dependent cytotoxic towards MDA-MB-231 breast cancer cell line with IC50 values of 137 μg/mL and 12 μg/mL at 48 and 72 h, respectively. The MTX-SPIONs co-loaded NLC was internalized in the MDA-MB-231 cells via caveolae-mediated endocytosis in a time-dependent manner, and the superparamagnetic properties were sufficient to induce, under a magnetic field, a localized temperature increase at cellular level resulting in apoptotic cell death. In conclusion, MTX-SPIONs co-loaded NLC is a potential magnetic guiding multi-modal therapeutic system for the treatment of breast cancer.
    Matched MeSH terms: MCF-7 Cells
  20. Beh CY, How CW, Foo JB, Foong JN, Selvarajah GT, Rasedee A
    Drug Des Devel Ther, 2017;11:771-782.
    PMID: 28352153 DOI: 10.2147/DDDT.S123939
    Tamoxifen (TAM) has been used in the treatment of breast cancers and is supplemented with erythropoietin (EPO) to alleviate the cancer-related anemia. The purported deleterious effects caused by the use of EPO with chemotherapeutic agents in the treatment of cancer-related anemia vary across studies and remain controversial. The use of nanoparticles as a drug delivery system has the potential to improve the specificity of anticancer drugs. In this study, we simultaneously incorporated two pharmacological active ingredients in one nanocarrier to develop EPO-conjugated TAM-loaded lipid nanoparticles (EPO-TAMNLC), a targeted delivery system, to enhance the cytotoxic activity while reducing the side effects of the ingredients. The effect of temperature in modulating the thermodynamic parameters associated with the binding of EPO and TAMNLC was assessed using isothermal titration calorimetry, while the unfolding of EPO structure was determined using fluorescence-quenching approach. The association efficiency of EPO and TAMNLC was 55.43%. Unlike binding of albumin to TAMNLC, the binding of EPO to TAMNLC occurred through endothermic and entropy-driven reaction. The EPO-TAMNLC formulation was stable because of the hydrophobic interaction and the high free energy, suggesting the spontaneity of the interactions between EPO and TAMNLC. The EPO-TAMNLC enhanced the in vitro cytotoxicity of TAM to MCF-7 cells. The EPO surface-functionalized TAMNLC could sequentially deliver EPO and TAM as well as improving site-specific delivery of these therapeutic compounds.
    Matched MeSH terms: MCF-7 Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links