Displaying publications 801 - 820 of 895 in total

Abstract:
Sort:
  1. Miskam M, Abu Bakar NK, Mohamad S
    Talanta, 2014 Mar;120:450-5.
    PMID: 24468395 DOI: 10.1016/j.talanta.2013.12.037
    A solid phase extraction (SPE) method has been developed using a newly synthesized titanium (IV) butoxide-cyanopropyltriethoxysilane (Ti-CNPrTEOS) sorbent for polar selective extraction of aromatic amines in river water sample. The effect of different parameters on the extraction recovery was studied using the SPE method. The applicability of the sorbents for the extraction of polar aromatic amines by the SPE was extensively studied and evaluated as a function of pH, conditioning solvent, sample loading volume, elution solvent and elution solvent volume. The optimum experimental conditions were sample at pH 7, dichloromethane as conditioning solvent, 10 mL sample loading volume and 5 mL of acetonitrile as the eluting solvent. Under the optimum conditions, the limit of detection (LOD) and limit of quantification (LOQ) for solid phase extraction using Ti-CNPrTEOS SPE sorbent (0.01-0.2; 0.03-0.61 µg L(-1)) were lower compared with those achieved using Si-CN SPE sorbent (0.25-1.50; 1.96-3.59 µg L(-1)) and C18 SPE sorbent (0.37-0.98; 1.87-2.87 µg L(-1)) with higher selectivity towards the extraction of polar aromatic amines. The optimized procedure was successfully applied for the solid phase extraction method of selected aromatic amines in river water, waste water and tap water samples prior to the gas chromatography-flame ionization detector separation.
    Matched MeSH terms: Adsorption
  2. Raoov M, Mohamad S, Abas MR
    Int J Mol Sci, 2014;15(1):100-19.
    PMID: 24366065 DOI: 10.3390/ijms15010100
    β-Cyclodextrin-ionic liquid polymer (CD-ILP) was first synthesized by functionalized β-cyclodextrin (CD) with 1-benzylimidazole (BIM) to form monofunctionalized CD (βCD-BIMOTs) and was further polymerized using a toluene diisocyanate (TDI) linker to form insoluble CD-ILP (βCD-BIMOTs-TDI). The βCD-BIMOTs-TDI polymer was characterized using various tools and the results obtained were compared with those derived from the native β-cyclodextrin polymer (βCD-TDI). The SEM result shows that the presence of ionic liquid (IL) increases the pore size, while the thermo gravimetric analysis (TGA) result shows that the presence of IL increases the stability of the polymer. Meanwhile, Brunauer-Emmett-Teller (BET) results show that βCD-BIMOTs-TDI polymer has 1.254 m(2)/g surface areas and the Barret-Joyner-Halenda (BJH) pore size distribution result reveals that the polymer exhibits macropores with a pore size of 77.66 nm. Preliminary sorption experiments were carried out and the βCD-BIMOTs-TDI polymer shows enhanced sorption capacity and high removal towards phenols and As(V).
    Matched MeSH terms: Adsorption
  3. Mohammed RR, Chong MF
    J Environ Manage, 2014 Jan;132:237-49.
    PMID: 24321284 DOI: 10.1016/j.jenvman.2013.11.031
    Palm Oil Mill Effluent (POME) treatment has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The main aim of this work is to evaluate the potential of applying natural, chemically and thermally modified banana peel as sorbent for the treatment of biologically treated POME. Characteristics of these sorbents were analyzed with BET surface area and SEM. Batch adsorption studies were carried out to remove color, total suspended solids (TSS), chemical oxygen demand (COD), tannin and lignin, and biological oxygen demand (BOD) onto natural banana peel (NBP), methylated banana peel (MBP), and banana peel activated carbon (BPAC) respectively. The variables of pH, adsorbent dosage, and contact time were investigated in this study. Maximum percentage removal of color, TSS, COD, BOD, and tannin and lignin (95.96%, 100%, 100%, 97.41%, and 76.74% respectively) on BPAC were obtained at optimized pH of 2, contact time of 30 h and adsorbent dosage of 30 g/100 ml. The isotherm data were well described by the Redlich-Peterson isotherm model with correlation coefficient of more than 0.99. Kinetic of adsorption was examined by Langergren pseudo first order, pseudo second order, and second order. The pseudo second order was identified to be the governing mechanism with high correlation coefficient of more than 0.99.
    Matched MeSH terms: Adsorption
  4. Foo KY, Lee LK, Hameed BH
    Bioresour Technol, 2013 Apr;134:166-72.
    PMID: 23500574 DOI: 10.1016/j.biortech.2013.01.139
    This study evaluates the sugarcane bagasse derived activated carbon (SBAC) prepared by microwave heating for the adsorptive removal of ammonical nitrogen and orthophosphate from the semi-aerobic landfill leachate. The physical and chemical properties of SBAC were examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and elemental analysis. The effects of adsorbent dosage, contact time and solution pH on the adsorption performance were investigated in a batch mode study at 30°C. Equilibrium data were favorably described by the Langmuir isotherm model, with a maximum monolayer adsorption capacity for ammonical nitrogen and orthophosphate of 138.46 and 12.81 mg/g, respectively, while the adsorption kinetic was best fitted to the pseudo-second-order kinetic model. The results illustrated the potential of sugarcane bagasse derived activated carbon for the adsorptive treatment of semi-aerobic landfill leachate.
    Matched MeSH terms: Adsorption
  5. Jalil AA, Triwahyono S, Yaakob MR, Azmi ZZ, Sapawe N, Kamarudin NH, et al.
    Bioresour Technol, 2012 Sep;120:218-24.
    PMID: 22820110 DOI: 10.1016/j.biortech.2012.06.066
    In this work, two low-cost wastes, bivalve shell (BS) and Zea mays L. husk leaf (ZHL), were investigated to adsorb malachite green (MG) from aqueous solutions. The ZHL was treated with calcined BS to give the BS-ZHL, and its ability to adsorb MG was compared with untreated ZHL, calcined BS and Ca(OH)(2)-treated ZHL under several different conditions: pH (2-8), adsorbent dosage (0.25-2.5 g L(-1)), contact time (10-30 min), initial MG concentration (10-200 mg L(-1)) and temperature (303-323 K). The equilibrium studies indicated that the experimental data were in agreement with the Langmuir isotherm model. The use of 2.5 g L(-1) BS-ZHL resulted in the nearly complete removal of 200 mg L(-1) of MG with a maximum adsorption capacity of 81.5 mg g(-1) after 30 min of contact time at pH 6 and 323 K. The results indicated that the BS-ZHL can be used to effectively remove MG from aqueous media.
    Matched MeSH terms: Adsorption
  6. Wan Ibrahim WA, Veloo KV, Sanagi MM
    J Chromatogr A, 2012 Mar 16;1229:55-62.
    PMID: 22326188 DOI: 10.1016/j.chroma.2012.01.022
    A novel sol-gel hybrid methyltrimethoxysilane-tetraethoxysilane (MTMOS-TEOS) was produced and applied as sorbent for solid phase extraction (SPE). Five selected organophosphorus pesticides (OPPs) were employed as model compounds to evaluate the extraction performance of the synthesized sol-gel organic-inorganic hybrid MTMOS-TEOS. Analysis was performed using gas chromatography-mass spectrometry. Several important SPE parameters were optimized. Under the optimum extraction conditions, the method using the sol-gel organic-inorganic hybrid MTMOS-TEOS as SPE sorbent showed good linearity in the range of 0.001-1 μg L(-1), good repeatability (RSD 2.1-3.1%, n=5), low limits of detection at S/N=3 (0.5-0.9 pg mL(-1)) and limit of quantification (1-3 pg mL(-1), S/N=10). The performance of the MTMOS-TEOS SPE was compared to commercial C18 Supelclean SPE since C18 SPE is widely used for OPPs. The MTMOS-TEOS SPE method LOD was 500-600 × lower than the LOD of commercial C18 SPE. The LOD achieved with the sol-gel organic-inorganic hybrid MTMOS-TEOS SPE sorbent allowed the detection of these OPPs in drinking water well below the level set by European Union (EU) at 0.1 μg L(-1) of each pesticides. The developed MTMOS-TEOS SPE method was successfully applied to real sample analysis of the selected OPPs from several water samples and its application extended to the analysis of several fruits samples. Excellent recoveries and RSDs of the OPPs were obtained from the various water samples (recoveries: 97-111%, RSDs 0.4-2.8%, n=3) and fruit samples (recoveries: 96-111%), RSDs 1-4%, n=5) using the sol-gel organic-inorganic hybrid MTMOS-TEOS SPE sorbent. Recoveries and RSDs of OPPs from river water samples and fruit samples using C18 Supelclean SPE sorbent were 91-97%, RSD 0.9-2.6, n=3 and 86-96%, RSD 3-8%, n=5, respectively). The novel sol-gel hybrid MTMOS-TEOS SPE sorbent demonstrate the potential as an alternative inexpensive extraction sorbent for OPPs with higher sensitivity for the OPPs.
    Matched MeSH terms: Adsorption
  7. Yahya SK, Zakaria ZA, Samin J, Raj AS, Ahmad WA
    Colloids Surf B Biointerfaces, 2012 Jun 1;94:362-8.
    PMID: 22398363 DOI: 10.1016/j.colsurfb.2012.02.016
    The potential use of non-viable biomass of a Gram negative bacterium i.e. Acinetobacter haemolyticus to remove Cr(III) species from aqueous environment was investigated. Highest Cr(III) removal of 198.80 mg g(-1) was obtained at pH 5, biomass dosage of 15 mg cell dry weight, initial Cr(III) of 100 mg L(-1) and 30 min of contact time. The Langmuir and Freundlich models fit the experimental data (R(2)>0.95) while the kinetic data was best described using the pseudo second-order kinetic model (R(2)>0.99). Cr(III) was successfully recovered from the bacterial biomass using either 1M of CH(3)COOH, HNO(3) or H(2)SO(4) with 90% recovery. TEM and FTIR suggested the involvement of amine, carboxyl, hydroxyl and phosphate groups during the biosorption of Cr(III) onto the cell surface of A. haemolyticus. A. haemolyticus was also capable to remove 79.87 mg g(-1) Cr(III) (around 22.75%) from raw leather tanning wastewater. This study demonstrates the potential of using A. haemolyticus as biosorbent to remove Cr(III) from both synthetic and industrial wastewater.
    Matched MeSH terms: Adsorption
  8. Foo KY, Hameed BH
    Bioresour Technol, 2012 Jan;104:679-86.
    PMID: 22101073 DOI: 10.1016/j.biortech.2011.10.005
    This work explores the feasibility of orange peel, a citrus processing biomass as an alternative precursor for preparation of activated carbon (OPAC) via microwave assisted K(2)CO(3) activation. The operational parameters, chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were investigated. The virgin characteristics of OPAC were examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherm, elemental analysis, surface acidity/basicity and zeta potential measurement. The optimum conditions resulted in OPAC with a monolayer adsorption capacity of 382.75 mg/g for methylene blue and carbon yield of 80.99%. The BET surface area, Langmuir surface area and total pore volume were identified to be 1104.45 m(2)/g, 1661.04 m(2)/g and 0.615 m(3)/g, respectively. Equilibrium data were simulated using the Langmuir, Freundlich, Dubinin-Radushkevich, Redlich-Peterson, and Toth isotherms, and kinetic data were fitted to the pseudo-first-order, pseudo-second-order and Elovich kinetic models.
    Matched MeSH terms: Adsorption
  9. Khuzaimah N, Nour UM, Maitra S
    J Environ Sci Eng, 2011 Jul;53(3):257-62.
    PMID: 23029925
    The presence of heavy metals in the environment results in a number of environmental problems. In this study, the potential of Rambai stem (Baccaurea motleyana) of Malaysia in removing nickel ion from aqueous solution has been evaluated. The raw material used in this study was obtained from local orchard. The collected material passed through physical preparation and treatment process. The adsorbent was thoroughly characterized by SEM, EDX and FTIR studies. The effect of initial nickel concentration, dosage of adsorbent and pH on the adsorption process were investigated. The highest adsorption capacity obtained at weak acidic conditions (pH 4-5) when dosage and initial concentrations are 0.1 and 30 ppm respectively. The percentage of removal of nickel from the solution was found to be 51%. The experimental data fitted well in Freundlich isotherms indicating the adsorption of nickel on Rambai stem (Baccaurea motleyana) followed heterogenous surface phenomena.
    Matched MeSH terms: Adsorption
  10. Lim SL, Chu WL, Phang SM
    Bioresour Technol, 2010 Oct;101(19):7314-22.
    PMID: 20547057 DOI: 10.1016/j.biortech.2010.04.092
    The potential application of Chlorella vulgaris UMACC 001 for bioremediation of textile wastewater (TW) was investigated using four batches of cultures in high rate algae ponds (HRAP) containing textile dye (Supranol Red 3BW) or TW. The biomass attained ranged from 0.17 to 2.26 mg chlorophyll a/L while colour removal ranged from 41.8% to 50.0%. There was also reduction of NH(4)-N (44.4-45.1%), PO(4)-P (33.1-33.3%) and COD (38.3-62.3%) in the TW. Supplementation of the TW with nutrients of Bold's Basal Medium (BBM) increased biomass production but did not improve colour removal or reduction of pollutants. The mechanism of colour removal by C. vulgaris is biosorption, in accordance with both the Langmuir and Freundlich models. The HRAP using C. vulgaris offers a good system for the polishing of TW before final discharge.
    Matched MeSH terms: Adsorption
  11. Mohammad M, Maitra S, Ahmad N, Bustam A, Sen TK, Dutta BK
    J Hazard Mater, 2010 Jul 15;179(1-3):363-72.
    PMID: 20362390 DOI: 10.1016/j.jhazmat.2010.03.014
    The potential of physic seed hull (PSH), Jantropha curcas L. as an adsorbent for the removal of Cd(2+) and Zn(2+) metal ions from aqueous solution has been investigated. It has been found that the amount of adsorption for both Cd(2+) and Zn(2+) increased with the increase in initial metal ions concentration, contact time, temperature, adsorbent dosage and the solution pH (in acidic range), but decreased with the increase in the particle size of the adsorbent. The adsorption process for both metal ions on PSH consists of three stages-a rapid initial adsorption followed by a period of slower uptake of metal ions and virtually no uptake at the final stage. The kinetics of metal ions adsorption on PSH followed a pseudo-second-order model. The adsorption equilibrium data were fitted in the three adsorption isotherms-Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The data best fit in the Langmuir isotherm indication monolayer chemisorption of the metal ions. The adsorption capacity of PSH for both Zn(2+) and Cd(2+) was found to be comparable with other available adsorbents. About 36-47% of the adsorbed metal could be leached out of the loaded PSH using 0.1M HCl as the eluting medium.
    Matched MeSH terms: Adsorption
  12. Tee HC, Seng CE, Noor AM, Lim PE
    Sci Total Environ, 2009 May 15;407(11):3563-71.
    PMID: 19272632 DOI: 10.1016/j.scitotenv.2009.02.017
    This study aims to compare the performance of planted and unplanted constructed wetlands with gravel- and raw rice husk-based media for phenol and nitrogen removal. Four laboratory-scale horizontal subsurface-flow constructed wetland units, two of which planted with cattail (Typha latifolia) were operated outdoors. The units were operated at a nominal hydraulic retention time of 7 days and fed with domestic wastewater spiked with phenol concentration at 300 mg/L for 74 days and then at 500 mg/L for 198 days. The results show that planted wetland units performed better than the unplanted ones in the removal and mineralization of phenol. This was explained by the creation of more micro-aerobic zones in the root zone of the wetland plants which allow a faster rate of phenol biodegradation, and the phenol uptake by plants. The better performance of the rice husk-based planted wetland compared to that of the gravel-based planted wetland in phenol removal could be explained by the observation that more rhizomes were established in the rice husk-based wetland unit thus creating more micro-aerobic zones for phenol degradation. The role of rice husk as an adsorbent in phenol removal was considered not of importance.
    Matched MeSH terms: Adsorption
  13. Halim AA, Aziz HA, Johari MA, Ariffin KS, Adlan MN
    J Hazard Mater, 2010 Mar 15;175(1-3):960-4.
    PMID: 19945216 DOI: 10.1016/j.jhazmat.2009.10.103
    The performance of a carbon-mineral composite adsorbent used in a fixed bed column for the removal of ammoniacal nitrogen and aggregate organic pollutant (COD), which are commonly found in landfill leachate, was evaluated. The breakthrough capacities for ammoniacal nitrogen and COD adsorption were 4.46 and 3.23 mg/g, respectively. Additionally, the optimum empty bed contact time (EBCT) was 75 min. The column efficiency for ammoniacal nitrogen and COD adsorption using fresh adsorbent was 86.4% and 92.6%, respectively, and these values increased to 90.0% and 93.7%, respectively, after the regeneration process.
    Matched MeSH terms: Adsorption
  14. Ahmad AA, Hameed BH
    J Hazard Mater, 2010 Mar 15;175(1-3):298-303.
    PMID: 19883979 DOI: 10.1016/j.jhazmat.2009.10.003
    In this work, the adsorption potential of bamboo waste based granular activated carbon (BGAC) to remove C.I. Reactive Black (RB5) from aqueous solution was investigated using fixed-bed adsorption column. The effects of inlet RB5 concentration (50-200mg/L), feed flow rate (10-30 mL/min) and activated carbon bed height (40-80 mm) on the breakthrough characteristics of the adsorption system were determined. The highest bed capacity of 39.02 mg/g was obtained using 100mg/L inlet dye concentration, 80 mm bed height and 10 mL/min flow rate. The adsorption data were fitted to three well-established fixed-bed adsorption models namely, Adam's-Bohart, Thomas and Yoon-Nelson models. The results fitted well to the Thomas and Yoon-Nelson models with coefficients of correlation R(2)>or=0.93 at different conditions. The BGAC was shown to be suitable adsorbent for adsorption of RB5 using fixed-bed adsorption column.
    Matched MeSH terms: Adsorption
  15. Saaid M, Saad B, Rahman IA, Ali AS, Saleh MI
    Talanta, 2010 Jan 15;80(3):1183-90.
    PMID: 20006072 DOI: 10.1016/j.talanta.2009.09.006
    Three sorbent materials (A18C6-MS, DA18C6-MS and AB18C6-MS) based on the crown ether ligands, 1-aza-18-crown-6, 1,4,10,13-tetraoxa-7,16-diazacyclo octadecane and 4'-aminobenzo-18-crown-6, respectively, were prepared by the chemical immobilization of the ligand onto mesoporous silica support. The sorbents were characterized by FT-IR, scanning electron microscopy-energy dispersive X-ray microanalysis, elemental analysis and nitrogen adsorption-desorption test. The applicability of the sorbents for the extraction of biogenic amines by the batch sorption method was extensively studied and evaluated as a function of pH, biogenic amines concentration, contact time and reusability. Under the optimized conditions, all the sorbents exhibited highest selectivity toward spermidine (SPD) compared to other biogenic amines (tryptamine, putrescine, histamine and tyramine). Among the sorbents, AB18C6-MS offer the highest capacity and best selectivity towards SPD in the presence of other biogenic amines. The AB18C6-MS sorbent can be repeatedly used three times as there was no significant degradation in the extraction of the biogenic amines (%E>85). The optimized procedure was successfully applied for the separation of SPD in food samples prior to the reversed-phase high performance liquid chromatography separation.
    Matched MeSH terms: Adsorption
  16. Ahmad AA, Hameed BH
    J Hazard Mater, 2009 Dec 30;172(2-3):1538-43.
    PMID: 19740605 DOI: 10.1016/j.jhazmat.2009.08.025
    In this work, activated carbon was prepared from bamboo waste by chemical activation method using phosphoric acid as activating agent. The activated carbon was evaluated for chemical oxygen demand (COD) and color reduction of a real textile mill effluent. A maximum reduction in color and COD of 91.84% and 75.21%, respectively was achieved. As a result, the standard B discharge limit of color and COD under the Malaysian Environmental Quality act 1974 was met. The Freundlich isotherm model was found best to describe the obtained equilibrium adsorption data at 30 degrees C. The Brunauer-Emmett-Teller (BET) surface area, total pore volume and the average pore diameter were 988.23 m(2)/g, 0.69 cm(3)/g and 2.82 nm, respectively. Various functional groups on the prepared bamboo activated carbon (BAC) were determined from the FTIR results.
    Matched MeSH terms: Adsorption
  17. Rafatullah M, Sulaiman O, Hashim R, Ahmad A
    J Hazard Mater, 2009 Oct 30;170(2-3):969-77.
    PMID: 19520510 DOI: 10.1016/j.jhazmat.2009.05.066
    The present study proposed the use of meranti sawdust in the removal of Cu(II), Cr(III), Ni(II) and Pb(II) ions from synthetic aqueous solutions. Batch adsorption studies showed that meranti sawdust was able to adsorb Cu(II), Cr(III), Ni(II) and Pb(II) ions from aqueous solutions in the concentration range 1-200mg/L. The adsorption was favoured with maximum adsorption at pH 6, whereas the adsorption starts at pH 1 for all metal ions. The effects of contact time, initial concentration of metal ions, adsorbent dosage and temperature have been reported. The applicability of Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm was tried for the system to completely understand the adsorption isotherm processes. The adsorption kinetics tested with pseudo-first-order and pseudo-second-order models yielded high R(2) values from 0.850 to 0.932 and from 0.991 to 0.999, respectively. The meranti sawdust was found to be cost effective and has good efficiency to remove these toxic metal ions from aqueous solution.
    Matched MeSH terms: Adsorption
  18. Ho CW, Tan WS, Chong FC, Ling TC, Tey BT
    J Microbiol Biotechnol, 2009 Apr;19(4):416-23.
    PMID: 19421000
    Hepatitis B core antigen (HBcAg) is an important serological marker used in the diagnosis of hepatitis B virus (HBV) infections. In the current study, a fast and efficient preparative purification protocol for truncated HBcAg from Escherichia coli disruptate was developed. The recombinant HBcAg was first captured by anion exchange expanded bed adsorption chromatography integrated with a cell disruption process. This online capture process has shortened the process time and eliminated the "hold-up" period that may be detrimental to the quality of target protein. The eluted product from the expanded bed adsorption chromatography was subsequently purified using size-exclusion chromatography. The results showed that this novel purification protocol achieved a recovery yield of 45.1% with a product purity of 88.2%, which corresponds to a purification factor of 4.5. The recovered HBcAg is still biologically active as shown by ELISA test.
    Matched MeSH terms: Adsorption
  19. Hameed BH
    J Hazard Mater, 2009 Jan 30;161(2-3):753-9.
    PMID: 18499346 DOI: 10.1016/j.jhazmat.2008.04.019
    In the present study, spent tea leaves (STL) were used as a new non-conventional and low-cost adsorbent for the cationic dye (methylene blue) adsorption in a batch process at 30 degrees C. Equilibrium sorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The adsorption isotherm data were fitted well to the Langmuir isotherm and the monolayer adsorption capacity was found to be 300.052mg/g at 30 degrees C. The kinetic data obtained at different initial concentrations were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. The results revealed that the spent tea leaves, being waste, have the potential to be used as a low-cost adsorbent for the removal of methylene blue from aqueous solutions.
    Matched MeSH terms: Adsorption
  20. Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR
    J Hazard Mater, 2009 Jul 30;166(2-3):1556-9.
    PMID: 19147280 DOI: 10.1016/j.jhazmat.2008.12.028
    In this work, the removal of SO(2) and NO from simulated flue gas from combustion process was investigated in a fixed-bed reactor using rice husk ash (RHA)/CaO-based sorbent. Various metal precursors were used in order to select the best metal impregnated over RHA/CaO sorbents. The results showed that RHA/CaO sorbents impregnated with CeO(2) had the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NO. Infrared spectroscopic results indicated the formation of both sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) species due to the catalytic role played by CeO(2). Apart from that, the catalytic activity of the RHA/CaO/CeO(2) sorbent was found to be closely related to its physical properties (specific surface area, total pore volume and average pore diameter).
    Matched MeSH terms: Adsorption
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links