METHODS: In assessing the safety of DC resin methanol extract, acute and sub-acute oral toxicity tests performed following OECD guidelines 423 and 407, respectively, with slight modifications. In acute oral toxicity test, DC resin methanol extract administered to female Sprague Dawley rats by oral gavage at a single dose of 300 and 2000 mg/kg body weight. Rats observed for toxic signs for 14 days. In sub-acute oral toxicity test, DC resin methanol extract administered to the rats by oral gavage at 500, 1000, and 1500 mg/kg body weight daily up to 28 days to male and female Spradgue Dawley rats. The control and high dose in satellite groups were also maintained and handled as the previous groups to determine the late onset toxicity of DC resin methanol extract. At the end of each test, hematological and biochemical analysis of the collected blood were performed as well as gross and microscopic pathology.
RESULTS: In acute oral toxicity, no treatment-related death or toxic signs were observed. It revealed that the DC resin methanol extract could be well tolerated up to the dose 2000 mg/kg body weight and could be classified as Category 5. The sub-acute test observations indicated that there are no treatment-related changes up to the high dose level compared to the control. Food consumption, body weight, organ weight, hematological parameters, biochemical parameters and histopathological examination (liver, kidney, heart, spleen and lung) revealed no abnormalities. Water intake was significantly higher in the DC resin methanol extract treated groups compared to the control.
CONCLUSION: This study demonstrates tolerability of DC resin methanol extract administered daily for 28 days up to 1500 mg/kg dose.
OBJECTIVES: The main aim of this study was to determine the effect of dexamethasone on the histomorphometric characteristics of perirenal adipocytes of adrenalectomized, dexamethasone-treated rats (ADR+Dexa) and the association of dexamethasone treatment with the expression and activity of 11 β-hydroxysteroid dehydrogenase type 1 (11 β-hydroxysteroid dehydrogenase type 1).
METHODS: A total of 20 male Sprague Dawley rats were divided into 3 groups: a baseline control group (n = 6), a sham-operated group (n = 7) and an adrenalectomized group (n=7). The adrenalectomized group was given intramuscular dexamethasone (ADR+Dexa) 2 weeks post adrenalectomy, and the rats from the sham-operated group were administered intramuscular vehicle (olive oil).
RESULTS: Treatment with 120 μg/kg intramuscular dexamethasone for 8 weeks resulted in a significant decrease in the diameter of the perirenal adipocytes (p<0.05) and a significant increase in the number of perirenal adipocytes (p<0.05). There was minimal weight gain but pronounced fat deposition in the dexamethasone-treated rats. These changes in the perirenal adipocytes were associated with high expression and dehydrogenase activity of 11β-hydroxysteroid dehydrogenase type 1.
CONCLUSIONS: In conclusion, dexamethasone increased the deposition of perirenal fat by hyperplasia, which causes increases in the expression and dehydrogenase activity of 11 β-hydroxysteroid dehydrogenase type 1 in adrenalectomized rats.