Displaying publications 841 - 860 of 2202 in total

Abstract:
Sort:
  1. Chung PY
    Curr Drug Targets, 2018;19(7):832-840.
    PMID: 28891454 DOI: 10.2174/1389450118666170911114604
    BACKGROUND: Bacterial resistance to antibiotics is one of the most serious challenge to global public health. The introduction of new antibiotics in clinical settings, i.e. agents that belong to a new class of antibacterials, act on new targets or has a novel mechanisms of action, may not be sufficient to cope with the emergence of multidrug-resistant pathogens such as Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii and Escherichia coli, which are increasingly prevalent in healthcare settings in Europe, the USA and Asia. Hence, coordinated efforts in minimizing the risk of spread of resistant bacteria and renewing research efforts in the search for novel antibacterial agents are urgently needed to manage this global crisis.

    OBJECTIVE: This review highlights the challenges and potential in using current technologies in the discovery and development of novel antibacterial agents to keep up with the constantly evolving resistance in bacteria.

    CONCLUSION: With the explosion of bacterial genomic data and rapid development of new sequencing technologies, the understanding of bacterial pathogenesis and identification of novel antibiotic targets have significantly improved.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  2. Balasubramanian A, Shah JR, Gazali N, Rajan P
    BMJ Case Rep, 2017 Oct 09;2017.
    PMID: 28993356 DOI: 10.1136/bcr-2017-221269
    Severe extensive deep neck abscess in an infant is uncommon. We share the case of a previously well 4-month old infant who was referred for a 4-day history of fever, lethargy and left lateral neck swelling. Contrast-enhanced CT scan revealed a large 5.3×8 cm collection involving the left parapharyngeal and retropharyngeal space, causing significant airway narrowing. 40 mL of frank pus was drained via intraoral incision and drainage with the aid of endoscope, and undesirable complications from an external approach were averted. The infant was extubated 48 hours postsurgery and was discharged home well after completion of 1 week of intravenous antibiotics. The child was discharged well from our follow-up at 1 month review. We discuss the pathophysiology of deep neck space abscesses, its incidence in the paediatric population and the various management options.
    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use*
  3. Shehzadi N, Hussain K, Khan MT, Salman M, Islam M
    Pak J Pharm Sci, 2017 Sep;30(5):1767-1777.
    PMID: 29084700
    The absence of chromophore and/or conjugated system, prerequisite for UV and florescent light detection, or absorbance at very low wavelength necessitates the development of simple and reliable methods for the determination of amikacin sulphate. Therefore, the present study describes for the first time dynamics of the drug derivatization using ninhydrin reagent and development and validation of a simple RP-HPLC method, using diode array detector (DAD). The variables such as heating time, heating type, drug-reagent ratio, reagent composition and storage temperature of the derivative were optimized. The analyte and aqueous ninhydrin solution upon heating for 2.00-5.00 min produced the colored drug-derivative which was stable for one month at refrigeration. The derivatized drug (20.00μL) was eluted through a column - Eclipse DB-C18 (5.00 µm, 4.60×150.00 mm), maintained at 25°C- using isocratic mobile phase comprising water and acetonitrile (70:30, v/v) at a flow rate of 1.00 mL/min, and detected at 400 nm. The method was found to be reliable (98.08-100.72% recovery), repeatable (98.02-100.72% intraday accuracy) and reproducible (98.47-101.27% inter day accuracy) with relative standard deviation less than 5%. The results of the present study indicate that the method is easy to perform, specific and sensitive, and suitable to be used for the determination of amikacin sulphate in bulk and pharmaceutical preparations using less expensive/laborious derivatization.
    Matched MeSH terms: Anti-Bacterial Agents/analysis*
  4. Rizwan M, Alias R, Zaidi UZ, Mahmoodian R, Hamdi M
    J Biomed Mater Res A, 2018 02;106(2):590-605.
    PMID: 28975693 DOI: 10.1002/jbm.a.36259
    Plasma electrolytic oxidation (PEO) is an advance technique to develop porous oxidation layer on light metals, primarily to enhance corrosion and wear resistance. The oxidation layer can also offer a wide variety of mechanical, biomedical, tribological, and antibacterial properties through the incorporation of several ions and particles. Due to the increasing need of antimicrobial surfaces for biomedical implants, antibacterial PEO coatings have been developed through the incorporation of antibacterial agents. Metallic nanoparticles that have been employed most widely as antibacterial agents are reported to demonstrate serious health and environmental threats. To overcome the current limitations of these coatings, there is a significant need to develop antibacterial surfaces that are not harmful for patient's health and environment. Attention of the readers has been directed to utilize bioactive glasses as antibacterial agents for PEO coatings. Bioactive glasses are well known for their excellent bioactivity, biocompatibility, and antibacterial character. PEO coatings incorporated with bioactive glasses can provide environment-friendly antimicrobial surfaces with exceptional bioactivity, biocompatibility, and osseointegration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 590-605, 2018.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  5. Jindal HM, Ramanathan B, Le CF, Gudimella R, Razali R, Manikam R, et al.
    J Biomed Sci, 2018 Feb 15;25(1):15.
    PMID: 29448938 DOI: 10.1186/s12929-018-0414-8
    BACKGROUND: Streptococcus pneumoniae or pneumococcus is a leading cause of morbidity and mortality worldwide, specifically in relation to community-acquired pneumonia. Due to the overuse of antibiotics, S. pneumoniae has developed a high degree of resistance to a wide range of antibacterial drugs.

    METHODS: In this study, whole genome sequencing (WGS) was performed for 10 clinical strains of S. pneumoniae with different levels of sensitivity to standard antibiotics. The main objective was to investigate genetic changes associated with antibiotic resistance in S. pneumoniae.

    RESULTS: Our results showed that resistant isolates contain a higher number of non-synonymous single nucleotide polymorphisms (SNPs) as compared to susceptible isolates. We were able to identify SNPs that alter a single amino acid in many genes involved in virulence and capsular polysaccharide synthesis. In addition, 90 SNPs were only presented in the resistant isolates, and 31 SNPs were unique and had not been previously reported, suggesting that these unique SNPs could play a key role in altering the level of resistance to different antibiotics.

    CONCLUSION: Whole genome sequencing is a powerful tool for comparing the full genome of multiple isolates, especially those closely related, and for analysing the variations found within antibiotic resistance genes that lead to differences in antibiotic sensitivity. We were able to identify specific mutations within virulence genes related to resistant isolates. These findings could provide insights into understanding the role of single nucleotide mutants in conferring drug resistance.

    Study site: University Malaya Medical Centre (UMMC)
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  6. Mienda BS, Salihu R, Adamu A, Idris S
    Future Microbiol, 2018 03;13:455-467.
    PMID: 29469596 DOI: 10.2217/fmb-2017-0195
    The growing number of multidrug-resistant pathogenic bacteria is becoming a world leading challenge for the scientific community and for public health. However, advances in high-throughput technologies and whole-genome sequencing of bacterial pathogens make the construction of bacterial genome-scale metabolic models (GEMs) increasingly realistic. The use of GEMs as an alternative platforms will expedite identification of novel unconditionally essential genes and enzymes of target organisms with existing and forthcoming GEMs. This approach will follow the existing protocol for construction of high-quality GEMs, which could ultimately reduce the time, cost and labor-intensive processes involved in identification of novel antimicrobial drug targets in drug discovery pipelines. We discuss the current impact of existing GEMs of selected multidrug-resistant pathogenic bacteria for identification of novel antimicrobial drug targets and the challenges of closing the gap between genome-scale metabolic modeling and conventional experimental trial-and-error approaches in drug discovery pipelines.
    Matched MeSH terms: Anti-Bacterial Agents*
  7. Rivas-Cáceres RR, Luis Stephano-Hornedo J, Lugo J, Vaca R, Del Aguila P, Yañez-Ocampo G, et al.
    Microb Pathog, 2018 Feb;115:358-362.
    PMID: 29305184 DOI: 10.1016/j.micpath.2017.12.075
    This study explored the use of silver nanoparticle as a bactericidal against the propagation of Clavibacter michiganensis onto tomatoes (Lycopersicon esculentum Mill). In Mexico, tomato production covers about 73% of the total vegetable production but it is affected by outbreak of bacteria canker caused by Clavibacter michiganensis subspecies michiganensis (Cmm). Silver ions possess inhibitor properties, bactericides and high specter antimicrobials. In this study, 6 groups of culture were prepared using 6 different petri dishes where silver nanoparticles of varying concentrations (120, 84, 48, 24, 12 and 0 μg) were added. Furthermore, each group was observed for 20 min, 1, 2, 12 and 24 h. The optimum concentration is 84 μg, which shows an average of 2 Cmm colonies after 20 min. Further increase to 120 μg shows no significant change. However, the average colonies was observed for 48 μg after 1, 2, 12, and 24 h. The obtained results indicate that silver nanoparticles are a promising inhibitor, bactericide and high a specter antimicrobial for treatment or prevention of Cmm.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  8. Ooi SY, Lee SW
    Med J Malaysia, 2017 12;72(6):367-369.
    PMID: 29308776 MyJurnal
    Pneumonia is primarily a disease that is usually managed medically with antibiotics. However, in rare cases it may progress to necrotising pneumonia, which is an uncommon but severe complication of bacterial pneumonia. This case illustrates a typical case of necrotising pneumonia complicated with parenchymal and pleural complication such as empyema, pneumothorax with possible bronchopleural fistula. Early consultation with thoracic surgeon can be life-saving.
    Matched MeSH terms: Anti-Bacterial Agents/administration & dosage
  9. Daniel DS, Lee SM, Gan HM, Dykes GA, Rahman S
    J Infect Public Health, 2017 02 21;10(5):617-623.
    PMID: 28254461 DOI: 10.1016/j.jiph.2017.02.006
    Enterococcus faecalis ranks as one of the leading causes of nosocomial infections. A strong epidemiological link has been reported between E. faecalis inhabiting animals and environmental sources. This study investigates the genetic diversity, antibiotic resistance and virulence determinants in E. faecalis from three sources in Malaysia. A total of 250 E. faecalis isolates were obtained consisting of 120 isolates from farm animals, 100 isolates from water sources and 30 isolates from hospitalized patients. Pulse-field gel electrophoresis-typing yielded 63 pulsotypes, with high diversity observed in all sources (D=≥0.901). No pulsotype was common to all the three sources. Each patient room had its own unique PFGE pattern which persisted after six months. Minimum inhibitory concentrations of Vancomycin, Gentamicin, Penicillin, Tetracycline, Nitrofurantoin, Levofloxacin, Ciprofloxacin and Fosfomycin were evaluated. Resistance to Tetracycline was most prevalent in isolates from farm animals (62%) and water sources (49%). Water isolates (86%) had a higher prevalence of the asa1 gene, which encodes for aggregation substance, whereas clinical (78%) and farm animal isolates (87%) had a higher prevalence of the esp gene, encoding a surface exposed protein. This study generates knowledge on the genetic diversity of E. faecalis with antibiotic resistance and virulence characteristics from various sources in Malaysia.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  10. Boo NY, Ang EBK, Neoh SH, Ang EL, Chee SC
    Malays J Pathol, 2022 Dec;44(3):443-459.
    PMID: 36591712
    OBJECTIVES: To determine the incidence, causative pathogens, morbidities, mortality, and risk factors associated with blood culture-positive early-onset sepsis (EOS, ≤72 hours of age) in symptomatic neonates admitted to the neonatal intensive care units (NICUs) of a middle-income country.

    STUDY DESIGN: Retrospective cohort study using data submitted prospectively to the Malaysian National Neonatal Registry (MNNR).

    SETTING: 44 Malaysian NICUs.

    PARTICIPANTS: All neonates born in 2015- 2020.

    RESULTS: EOS was reported in 991 neonates. The annual incidence of EOS increased from 0.46 to 0.49/1000 livebirths over the six years. The most common pathogen was Streptococcus agalactiae or Group B haemolytic streptococcus (GBS) (n=388, 39.2%), followed by Escherichia coli (E. coli) (n=80, 8.1%), Klebsiella spp (n=73, 7.4%), coagulase negative staphylococcus (CONS) (n=73, 7.4%), Pseudomonas spp (n=44, 4.4%) and methicillin-sensitive Staphylococcus aureus (n=34, 3.4%). The incidence of EOS due to GBS increased from 0.17 to 0.22/1000 livebirths. Morbidities and mortality were higher in those with EOS than without EOS. Multiple logistic regression analysis showed that Indian ethnic group, chorioamnionitis, gestation≥37weeks, female, spontaneous vaginal delivery, instrumental delivery, and surfactant therapy were significantly associated with increased risk of EOS due to GBS. Four factors were significantly associated with increased risk of non-GBS EOS (outborns, birthweight lt;1000 g, vaginal delivery, and surfactant therapy). Early continuous positive airway pressure was associated with significantly lower risk of EOS.

    CONCLUSION: The incidence of EOS showed an increasing trend in Malaysian NICUs. GBS was the most common causative pathogen. Several modifiable risk factors associated with EOS have been identified.

    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use
  11. Kuan YC, How SH, Ng TH, Fauzi AR
    Singapore Med J, 2010 Feb;51(2):e43-5.
    PMID: 20358143
    Melioidosis is known to cause abscesses in various organs, including the cranium, though less commonly. We present a patient with scalp abscess and subdural empyema that was visible on computed tomography of the brain. The neurosurgical drainage grew Burkholderia pseudomallei. Despite our best effort to treat the patient using parenteral antibiotics and surgical drainage, the patient did not survive.
    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use
  12. Loh LC, Chin HK, Chong YY, Jeyaratnam A, Raman S, Vijayasingham P, et al.
    Singapore Med J, 2007 Sep;48(9):813-8.
    PMID: 17728961
    Klebsiella pneumoniae ranks high as a cause of community-acquired pneumonia in hospitalised patients in Malaysia.
    Matched MeSH terms: Anti-Bacterial Agents/administration & dosage*
  13. Mohd Noh L, Noah RM, Wu LL, Nasuruddin BA, Junaidah E, Ooi CP, et al.
    Singapore Med J, 1994 Oct;35(5):505-8.
    PMID: 7701372
    Chronic granulomatous disease (CGD) is a very rare disease whose defect lies in an abnormal intracellular killing resulting in recurrent abscesses, lymphadenitis and granuloma formation. We describe 2 Malay male infants with CGD whom we believe to be the first report of this disorder in Malays. Both children presented with recurrent abscesses, pneumoniae and hepatosplenomegaly; lymphadenopathy was also present in one of the patients. The organisms isolated were catalase positive bacteria. Both neutrophil chemiluminescence (against fungal and bacterial antigens, phorbol myristate acetate) and intracellular killing assays were severely depressed. Recognition of CGD is important as great strides have been made in the treatment of this disease which include gamma interferon therapy besides the conventional prophylactic antibacterial therapy.
    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use
  14. Favaro L, Campanaro S, Fugaban JII, Treu L, Jung ES, d'Ovidio L, et al.
    Benef Microbes, 2023 Mar 14;14(1):57-72.
    PMID: 36815495 DOI: 10.3920/BM2022.0067
    Bacteriocins produced by lactic acid bacteria are proteinaceous antibacterial metabolites that normally exhibit bactericidal or bacteriostatic activity against genetically closely related bacteria. In this work, the bacteriocinogenic potential of Pediococcus pentosaceus strain ST58, isolated from oral cavity of a healthy volunteer was evaluated. To better understand the biological role of this strain, its technological and safety traits were deeply investigated through a combined approach considering physiological, metabolomic and genomic properties. Three out of 14 colonies generating inhibition zones were confirmed to be bacteriocin producers and, according to repPCR and RAPD-PCR, differentiation assays, and 16S rRNA sequencing it was confirmed to be replicates of the same strain, identified as P. pentosaceus, named ST58. Based on multiple isolation of the same strain (P. pentosaceus ST58) over the 26 weeks in screening process for the potential bacteriocinogenic strains from the oral cavity of the same volunteer, strain ST58 can be considered a persistent component of oral cavity microbiota. Genomic analysis of P. pentosaceus ST58 revealed the presence of operons encoding for bacteriocins pediocin PA-1 and penocin A. The produced bacteriocin(s) inhibited the growth of Listeria monocytogenes, Enterococcus spp. and some Lactobacillus spp. used to determine the activity spectrum. The highest levels of production (6400 AU/ml) were recorded against L. monocytogenes strains after 24 h of incubation and the antimicrobial activity was inhibited after treatment of the cell-free supernatants with proteolytic enzymes. Noteworthy, P. pentosaceus ST58 also presented antifungal activity and key metabolites potentially involved in these properties were identified. Overall, this strain can be of great biotechnological interest towards the development of effective bio-preservation cultures as well as potential health promoting microbes.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  15. Jaffari ZH, Lam SM, Sin JC, Mohamed AR
    Environ Sci Pollut Res Int, 2019 Apr;26(10):10204-10218.
    PMID: 30758796 DOI: 10.1007/s11356-019-04503-9
    Visible light-responsive Pt-loaded coral-like BiFeO3 (Pt-BFO) nanocomposite at different Pt loadings was synthesized via a two-step hydrothermal synthesis method. The as-synthesized photocatalyst was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence (PL) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and magnetic hysteresis loop (M-H loop) analyses. The FESEM images revealed that Pt nanoparticles were evenly distributed on the coral-like BFO. The UV-vis DRS results indicated that the addition of Pt dopant modified the optical properties of the BFO. The as-synthesized Pt-BFO nanocomposite was effectively applied for the photodegradation of malachite green (MG) dye under visible light irradiation. Specifically, 0.5 wt% Pt-BFO nanocomposite presented boosted photocatalytic performance than those of the pure BFO and commercial TiO2. Such a remarkably improved photoactivity could be mainly attributed to the formation of good interface between Pt and BFO, which not only boosted the separation efficiency of charge carriers but also possessed great redox ability for significant photocatalytic reaction. Moreover, the strong magnetic property of the Pt-BFO nanocomposite was helpful in the particle separation along with its great recyclability. The radical scavenger test indicated that hole (h+), hydroxyl (·OH) radical, and hydrogen peroxide (H2O2) were the main oxidative species for the Pt-BFO photodegradation of MG. Finally, the Pt-BFO nanocomposite was revealed high antibacterial activity towards Bacillus cereus (B. cereus) and Escherichia coli (E. coli) microorganisms, highlighting its potential photocatalytic and antibacterial properties at different industrial and biomedical applications.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry*
  16. Van Tran T, Nguyen DTC, Nguyen HT, Nanda S, Vo DN, Do ST, et al.
    Environ Sci Pollut Res Int, 2019 Sep;26(27):28106-28126.
    PMID: 31363978 DOI: 10.1007/s11356-019-06011-2
    The occurrence and fate of antibiotic compounds in water can adversely affect human and animal health; hence, the removal of such substrates from soil and water is indispensable. Herein, we described the synthesis method of mesoporous carbon (MPC) via the pyrolysis route from a coordination polymer Fe-based MIL-53 (or MIL-53, shortly). The MPC structure was analyzed by several physical techniques such as SEM, TEM, BET, FT-IR, VSM, and XRD. The response surface methodology (RSM) was applied to find out the effects of initial concentration, MPC dosage, and pH on the removal efficiency of trimethoprim (TMP) and sulfamethoxazole (SMX) antibiotics in water. Under the optimized conditions, the removal efficiencies of TMP and SMX were found to be 87% and 99%, respectively. Moreover, the adsorption kinetic and isotherm studies showed that chemisorption and the monolayer adsorption controlled the adsorption process. The leaching test and recyclability studies indicated that the MPC structure was stable and can be reused for at least four times without any considerable change in the removal efficiency. Plausible adsorption mechanisms were also addressed in this study. Because of high maximum adsorption capacity (85.5 mg/g and 131.6 mg/g for TMP and SMX, respectively) and efficient reusability, MPC is recommended to be a potential adsorbent for TMP and SMX from water media.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  17. Ting SMV, Ismail Z, Hanafiah A
    Malays J Pathol, 2024 Apr;46(1):79-89.
    PMID: 38682847
    INTRODUCTION: Beta-lactamase producing bacterial infection has been on surge due to selection pressure and injudicious antibiotics usage. Organisms that co-produced more than one beta lactamase enzyme posed diagnostic challenges which may result in inadequate treatment. To date, there is no standardised guideline offering phenotypic detection of AmpC β-lactamase. The purpose of this study was to determine the prevalence of ESBLs, AmpC β-lactamase and co-producer organisms in a teaching hospital.

    MATERIALS AND METHODS: Three hundred and four isolates of E. coli and Klebsiella sp. had been selected via convenient sampling. These isolates were identified using conventional laboratory methods and their antimicrobial susceptibilities were determined using disc diffusion method. Those isolates were then proceeded with ESBL confirmatory test, cloxacillin-containing Muller Hinton confirmatory test, modified double disk synergy test and AmpC disk test.

    RESULTS: Out of 304 isolates, 159 isolates were E. coli and 145 were Klebsiella sp. The prevalence of organisms which co-produced AmpC β-lactamase and ESBL enzymes were 3.0%. Besides that, 39 cefoxitin resistant and three cefoxitin susceptible isolates (13.8%) were proven to produce AmpC β-lactamase through AmpC disk test. Through the CLSI confirmatory test, 252 (82.9%) isolates were identified as ESBLs producers and the prevalence increased slightly when cloxacillin-containing Muller Hinton were used. Only three ESBLs positive organisms were positive for modified double disk synergy test.

    CONCLUSION: Distinguishing between AmpC β-lactamase and ESBL-producing organisms has epidemiological significance as well as therapeutic importance. Moreover, AmpC β-lactamase and ESBLs co-producing organisms can lead to false negative ESBL confirmatory test. Therefore, knowing the local prevalence can guide the clinician in navigating the treatment.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  18. Bujanda L, Nyssen OP, Ramos J, Bordin DS, Tepes B, Perez-Aisa A, et al.
    Am J Gastroenterol, 2024 Apr 01;119(4):646-654.
    PMID: 37983769 DOI: 10.14309/ajg.0000000000002600
    INTRODUCTION: Antibiotic resistance is one of the main factors that determine the efficacy of treatments to eradicate Helicobacter pylori infection. Our aim was to evaluate the effectiveness of first-line and rescue treatments against H. pylori in Europe according to antibiotics resistance.

    METHODS: Prospective, multicenter, international registry on the management of H. pylori (European Registry on H. pylori Management). All infected and culture-diagnosed adult patients registered in the Spanish Association of Gastroenterology-Research Electronic Data Capture from 2013 to 2021 were included.

    RESULTS: A total of 2,852 naive patients with culture results were analyzed. Resistance to clarithromycin, metronidazole, and quinolones was 22%, 27%, and 18%, respectively. The most effective treatment, regardless of resistance, were the 3-in-1 single capsule with bismuth, metronidazole, and tetracycline (91%) and the quadruple with bismuth, offering optimal cure rates even in the presence of bacterial resistance to clarithromycin or metronidazole. The concomitant regimen with tinidazole achieved an eradication rate of 99% (90/91) vs 84% (90/107) with metronidazole. Triple schedules, sequential, or concomitant regimen with metronidazole did not achieve optimal results. A total of 1,118 non-naive patients were analyzed. Resistance to clarithromycin, metronidazole, and quinolones was 49%, 41%, and 24%, respectively. The 3-in-1 single capsule (87%) and the triple therapy with levofloxacin (85%) were the only ones that provided encouraging results.

    DISCUSSION: In regions where the antibiotic resistance rate of H. pylori is high, eradication treatment with the 3-in-1 single capsule, the quadruple with bismuth, and concomitant with tinidazole are the best options in naive patients. In non-naive patients, the 3-in-1 single capsule and the triple therapy with levofloxacin provided encouraging results.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  19. Purwasena IA, Fitri DK, Putri DM, Endro H, Zakaria MN
    J Dent, 2024 May;144:104961.
    PMID: 38527516 DOI: 10.1016/j.jdent.2024.104961
    OBJECTIVES: Lipopeptide Biosurfactant (LB) is a bacteria derived compound able to reduce surface tension between water and hydrophobic substances and exhibit antimicrobial and anti-biofilm properties. This study aimed to investigate the antimicrobial and anti-biofilm effect of a Lipopeptide Biosurfactant (LB) on Enterococcus faecalis, and its potential use in root canal treatment, either as a standalone irrigation solution or in conjunction with sodium hypochlorite (NaOCl).

    METHODS: LB was extracted from Bacillus clausii isolate and the dry extract was diluted in deionized water. The antimicrobial effect of LB against planktonic E. faecalis was evaluated by determining the Minimal Inhibitory Concentration (MIC50). The anti-biofilm effect was evaluated by Minimal Biofilm Inhibitory Concentration (MBIC50) and Minimal Biofilm Eradication Concentration (MBEC50) assays on biofilm grown on dentin specimen surface. To evaluate the effectiveness of LB as a single irrigation solution and as a pre-irrigation prior to NaOCl, live and dead bacterial cells were quantified using Confocal Laser Scanning Microscopy (CLSM), and cell biomass was assessed.

    RESULTS: LB exhibited an MIC50 and MBIC50 of 100 ppm, with an MBEC50 of 1000 ppm, resulting in 52.94 % biofilm inhibition and 60.95 % biofilm eradication on dentin specimens. The effectiveness was concentration-dependent, at 500 ppm, LB demonstrated comparable antimicrobial efficacy to 2.5 % NaOCl. Pre-irrigation with LB resulted in lower biofilm biomass compared to NaOCl alone.

    CONCLUSION: Pre-irrigation with LB enhanced the antimicrobial effect when followed by NaOCl irrigation. Consequently, LB shows promise as both a standalone root canal irrigation solution and as an adjunct to NaOCl in root canal treatment.

    CLINICAL SIGNIFICANCE: The study highlights the potential of Lipopeptide Biosurfactant (LB) as an environmentally friendly irrigation solution for root canal treatment, demonstrating potent antimicrobial and anti-biofilm properties against Enterococcus faecalis. LB exhibits concentration-dependent efficacy comparable to 2.5 % NaOCl and can be used as a standalone irrigation solution or in conjunction with NaOCl.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  20. Lau EPM, Ing M, Vekaria S, Tan AL, Charlesworth C, Fysh E, et al.
    Trials, 2024 Apr 10;25(1):249.
    PMID: 38594766 DOI: 10.1186/s13063-024-08065-1
    BACKGROUND: Malignant pleural effusion (MPE) is a debilitating condition as it commonly causes disabling breathlessness and impairs quality of life (QoL). Indwelling pleural catheter (IPC) offers an effective alternative for the management of MPE. However, IPC-related infections remain a significant concern and there are currently no long-term strategies for their prevention. The Australasian Malignant PLeural Effusion (AMPLE)-4 trial is a multicentre randomised trial that evaluates the use of topical mupirocin prophylaxis (vs no mupirocin) to reduce catheter-related infections in patients with MPE treated with an IPC.

    METHODS: A pragmatic, multi-centre, open-labelled, randomised trial. Eligible patients with MPE and an IPC will be randomised 1:1 to either regular topical mupirocin prophylaxis or no mupirocin (standard care). For the interventional arm, topical mupirocin will be applied around the IPC exit-site after each drainage, at least twice weekly. Weekly follow-up via phone calls or in person will be conducted for up to 6 months. The primary outcome is the percentage of patients who develop an IPC-related (pleural, skin, or tract) infection between the time of catheter insertion and end of follow-up period. Secondary outcomes include analyses of infection (types and episodes), hospitalisation days, health economics, adverse events, and survival. Subject to interim analyses, the trial will recruit up to 418 participants.

    DISCUSSION: Results from this trial will determine the efficacy of mupirocin prophylaxis in patients who require IPC for MPE. It will provide data on infection rates, microbiology, and potentially infection pathways associated with IPC-related infections.

    ETHICS AND DISSEMINATION: Sir Charles Gairdner and Osborne Park Health Care Group Human Research Ethics Committee has approved the study (RGS0000005920). Results will be published in peer-reviewed journals and presented at scientific conferences.

    TRIAL REGISTRATION: Australia New Zealand Clinical Trial Registry ACTRN12623000253606. Registered on 9 March 2023.

    Matched MeSH terms: Anti-Bacterial Agents/adverse effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links