Displaying publications 861 - 880 of 9998 in total

Abstract:
Sort:
  1. Ismail H, Ahmad MN, Normaya E
    Sci Rep, 2021 10 25;11(1):20963.
    PMID: 34697346 DOI: 10.1038/s41598-021-00264-z
    Chemosensor using organic based compound offering superior alternative method in recognizing metal ion in environmental water. The optimization process strongly affected the performance of the designed sensor. In this study, a highly sensitive and selective colorimetric sensor system utilizing an organic compound, namely thiosemicarbazone-linked acetylpyrazine (TLA), to recognize Co2+ ions in different environmental water samples was successfully developed using the response surface methodology (RSM) approach. The developed model was optimized successfully and had statistically significant independent variables (p 
  2. Jamil SNAM, Daik R, Ahmad I
    Materials (Basel), 2014 Sep 01;7(9):6207-6223.
    PMID: 28788187 DOI: 10.3390/ma7096207
    A synthesis of acrylonitrile (AN)/butyl acrylate (BA)/fumaronitrile (FN) and AN/EHA (ethyl hexyl acrylate)/FN terpolymers was carried out by redox polymerization using sodium bisulfite (SBS) and potassium persulphate (KPS) as initiator at 40 °C. The effect of comonomers, BA and EHA and termonomer, FN on the glass transition temperature (Tg) and stabilization temperature was studied using Differential Scanning Calorimetry (DSC). The degradation behavior and char yield were obtained by Thermogravimetric Analysis. The conversions of AN, comonomers (BA and EHA) and FN were 55%-71%, 85%-91% and 76%-79%, respectively. It was found that with the same comonomer feed (10%), the Tg of AN/EHA copolymer was lower at 63 °C compared to AN/BA copolymer (70 °C). AN/EHA/FN terpolymer also exhibited a lower Tg at 63 °C when compared to that of the AN/BA/FN terpolymer (67 °C). By incorporating BA and EHA into a PAN system, the char yield was reduced to ~38.0% compared to that of AN (~47.7%). It was found that FN reduced the initial cyclization temperature of AN/BA/FN and AN/EHA/FN terpolymers to 228 and 221 °C, respectively, in comparison to that of AN/BA and AN/EHA copolymers (~260 °C). In addition, FN reduced the heat liberation per unit time during the stabilization process that consequently reduced the emission of volatile group during this process. As a result, the char yields of AN/BA/FN and AN/EHA/FN terpolymers are higher at ~45.1% and ~43.9%, respectively, as compared to those of AN/BA copolymer (37.1%) and AN/EHA copolymer (38.0%).
  3. Alqasaimeh MS, Heng LY, Ahmad M
    Sensors (Basel), 2007 Oct 11;7(10):2251-2262.
    PMID: 28903225 DOI: 10.3390/s7102251
    An optical urea biosensor was fabricated by stacking several layers of sol-gelfilms. The stacking of the sol-gel films allowed the immobilization of a Nile Bluechromoionophore (ETH 5294) and urease enzyme separately without the need of anychemical attachment procedure. The absorbance response of the biosensor was monitoredat 550 nm, i.e. the deprotonation of the chromoionophore. This multi-layer sol-gel filmformat enabled higher enzyme loading in the biosensor to be achieved. The urea opticalbiosensor constructed from three layers of sol-gel films that contained urease demonstrateda much wider linear response range of up to 100 mM urea when compared with biosensorsthat constructed from 1-2 layers of films. Analysis of urea in urine samples with thisoptical urea biosensor yielded results similar to that determined by a spectrophotometricmethod using the reagent p-dimethylaminobenzaldehyde (R² = 0.982, n = 6). The averagerecovery of urea from urine samples using this urea biosensor is approximately 103%.
  4. Abilash K, Mohd Q, Ahmad Z, Towil B
    Malays Orthop J, 2017 Jul;11(2):75-77.
    PMID: 29021885 MyJurnal DOI: 10.5704/MOJ.1707.013
    Ankylosing spinal disorders (ASD) tend to result in fractures and/or dislocations after minor trauma because of the altered biomechanical properties. The relative risk of traumatic vertebral fractures in patients with ankylosing spondylitis has been estimated as three times higher than in the general population. These spine traumas, which are located at cervical level in 81% of patients with ankylosing spondylitis, are complicated by neurological lesions in 65% of patients, due to the high inherent instability of these fractures. Traditional massage is an ancient practice in many parts of Asia. It has many benefits that are currently recognized world-wide. However, it can be dangerous and even lethal if practised without adequate knowledge and skill. We report a case of C6-C7 fracture-dislocation with complete neurology and neurogenic shock in a middle aged man with undiagnosed ankylosing spondylitis.
  5. Yusuf NK, Lajis MA, Ahmad A
    Materials (Basel), 2017 Aug 03;10(8).
    PMID: 28771207 DOI: 10.3390/ma10080902
    Meltless recycling technique has been utilized to overcome the lack of primary resources, focusing on reducing the usage of energy and materials. Hot press was proposed as a novel direct recycling technique which results in astoundingly low energy usage in contrast with conventional recycling. The aim of this study is to prove the technical feasibility of this approach by characterizing the recycled samples. For this purpose, AA6061 aluminium chips were recycled by utilizing hot press process under various operating temperature (Ts = 430, 480, and 530 °C) and holding times (ts = 60, 90, and 120 min). The maximum mechanical properties of recycled chip are Ultimate tensile strength (UTS) = 266.78 MPa, Elongation to failure (ETF) = 16.129%, while, for surface integrity of the chips, the calculated microhardness is 81.744 HV, exhibited at Ts = 530 °C and ts = 120 min. It is comparable to theoretical AA6061 T4-temper where maximum UTS and microhardness is increased up to 9.27% and 20.48%, respectively. As the desired mechanical properties of forgings can only be obtained by means of a final heat treatment, T5-temper, aging after forging process was employed. Heat treated recycled billet AA6061 (T5-temper) are considered comparable with as-received AA6061 T6, where the value of microhardness (98.649 HV) at 175 °C and 120 min of aging condition was revealed to be greater than 3.18%. Although it is quite early to put a base mainly on the observations in experimental settings, the potential for significant improvement offered by the direct recycling methods for production aluminium scrap can be clearly demonstrated. This overtures perspectives for industrial development of solid state recycling processes as environmentally benign alternatives of current melting based practices.
  6. Mortell M, Abdullah KL, Ahmad C
    Br J Nurs, 2017 Sep 28;26(17):965-971.
    PMID: 28956990 DOI: 10.12968/bjon.2017.26.17.965
    AIM: To explore the perceptions of patient advocacy among Saudi Arabian intensive care unit (ICU) nurses.

    BACKGROUND: Despite advocacy being a crucial role for nurses, its scope is often limited in clinical practice. Although numerous studies have identified barriers to patient advocacy, their recommendations for resolution were unclear.

    METHOD: The study employed a constructivist grounded theory methodology, with 13 Saudi Arabian registered nurses, working in critical care, in a tertiary academic teaching hospital. Semi-structured interviews, with broad open-ended questions, and reflective participant journals were used to collect data. All interviews were concurrently analysed and transcribed verbatim.

    RESULTS: Gender, culture, education, subjugation, communal patronage, organisational support and repercussions, and role-associated risks were all revealed as factors affecting their ability to act as advocates for critically ill patients.

    CONCLUSION: Saudi Arabian ICU nurses in the study believed that advocacy is problematic. Despite attempting to advocate for their patients, they are unable to act to an optimal level, instead choosing avoidance of the potential risks associated with the role, or confrontation, which often had undesirable outcomes. Patient advocacy from a Saudi Arabian nursing perspective is contextually complex, controversial and remains uncertain. Further research is needed to ensure patient safety is supported by nurses as effective advocates.

  7. Ahmad S, Singh VA, Hussein SI
    J Orthop Surg (Hong Kong), 2017 8 29;25(3):2309499017727946.
    PMID: 28844199 DOI: 10.1177/2309499017727946
    Meniscal allograft transplantation may be a better alternative for the treatment of irreparable meniscal injury compared to other forms of treatment. However, it remains to be seen whether the use fresh frozen allograft is better than cryopreserved allograft in treating this type of injury. We hypothesized that cryopreserved meniscal allograft would work better in maintaining the original biomechanical properties compared to fresh frozen ones, due to the lower amount of damage it incurs during the storage process. We examined young and healthy human menisci obtained from orthopedic oncology patients who underwent resection surgeries around the knee. The menisci obtained were preserved via cryopreservation and deep-freezing process. Traction tests were carried out on the menisci after 6 weeks of preservation. Twelve pairs ( N = 24) of menisci were divided equally into two groups, cryopreservation and deep frozen. There were six males and six female menisci donors for this study. The age range was between 15 and 35 years old (24.9 ± 8.6 years). Cryopreserved specimens had a higher ultimate tensile strength (UTS; 8.2 ± 1.3 Mpa vs. 13.3 ± 1.7 Mpa: p < 0.05) and elastic modulus (61.7 ± 27.6 Mpa vs. 87.0 ± 44.10 Mpa: p < 0.05) compared to the fresh frozen specimens. There was a significant difference in UTS ( p < 0.05) between the two groups but no significant difference in their elastic modulus ( p > 0.05). The elastic modulus of the preserved meniscus was similar to fresh normal menisci taken from other studies (60-120 Mpa; cryopreserved (87.0 ± 44.1) and fresh frozen (61.7 ± 27.5)). Cryopreserved menisci had a higher elastic modulus and point of rupture (UTS) compared to fresh frozen menisci. Cryopreservation proved to be a significantly better method of preservation, among the two methods of preservation in this study.
  8. Dasan YK, Bhat AH, Ahmad F
    Carbohydr Polym, 2017 Feb 10;157:1323-1332.
    PMID: 27987839 DOI: 10.1016/j.carbpol.2016.11.012
    The current research discusses the development of poly (lactic acid) (PLA) and poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced nanocrystalline cellulose bionanocomposites. The nanocrystalline cellulose was derived from waste oil palm empty fruit bunch fiber by acid hydrolysis process. The resulting nanocrystalline cellulose suspension was then surface functionalized by TEMPO-mediated oxidation and solvent exchange process. Furthermore, the PLA/PHBV/nanocrystalline cellulose bionanocomposites were produced by solvent casting method. The effect of the addition of nanocrystalline cellulose on structural, morphology, mechanical and barrier properties of bionanocomposites was investigated. The results revealed that the developed bionanocomposites showed improved mechanical properties and decrease in oxygen permeability rate. Therefore, the developed bio-based composite incorporated with an optimal composition of nanocrystalline cellulose exhibits properties as compared to the polymer blend.
  9. Ahmad M, Jung LT, Bhuiyan AA
    Comput Methods Programs Biomed, 2017 Oct;149:11-17.
    PMID: 28802326 DOI: 10.1016/j.cmpb.2017.06.021
    BACKGROUND AND OBJECTIVE: Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals.

    METHODS: This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise.

    RESULTS: Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms.

    CONCLUSION: This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary to fixed window length conventional filters.

  10. Ahmad A, Lajis MA, Yusuf NK
    Materials (Basel), 2017 Sep 19;10(9).
    PMID: 28925963 DOI: 10.3390/ma10091098
    Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future.
  11. Ibrahim RW, Ahmad MZ, Mohammed MJ
    Springerplus, 2016;5(1):824.
    PMID: 27390664 DOI: 10.1186/s40064-016-2386-z
    Fractional differential equations have been discussed in this study. We utilize the Riemann-Liouville fractional calculus to implement it within the generalization of the well known class of differential equations. The Rayleigh differential equation has been generalized of fractional second order. The existence of periodic and positive outcome is established in a new method. The solution is described in a fractional periodic Sobolev space. Positivity of outcomes is considered under certain requirements. We develop and extend some recent works. An example is constructed.
  12. Murali U, Ahmad MAA, Najihah F
    J Clin Diagn Res, 2017 Mar;11(3):PD06-PD08.
    PMID: 28511446 DOI: 10.7860/JCDR/2017/23807.9507
    Thromboangitis Obliterans (TAO) or Buerger's disease is a non-atherosclerotic, occlusive, progressive and highly inflammatory disorder of distal arteries seen predominantly affecting the lower limb in smokers. TAO presenting itself in upper limb or bilaterally involving the upper limb is a very rare entity. We report on a rare case of TAO in a 46-year-old gentleman who presented with bilateral upper extremity digital gangrene with 18 pack-years of smoking. Brachial and radial pulses were palpable bilaterally and were of good volume but right ulnar pulse was faintly felt, while on the left side it was not appreciated due to malunion. Further Computed Tomography (CT)- angiography showed occlusion of distal right ulnar artery, stenosis of distal left ulnar artery with bilateral poor opacification of palmar and digital arteries. This case reports on the unusual and rare presentation of TAO in upper extremity involving both limbs. The case is reported for the first time from Malaysia.
  13. Ahmad Kamal NH, Selamat J, Sanny M
    PMID: 29334335 DOI: 10.1080/19440049.2018.1425553
    This study investigated the simultaneous formation of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HCAs) in gas-grilled beef satay at different temperatures (150, 200, 250, 300, and 350°C). Solid-phase extraction (SPE) was used for sample clean-up. Fifteen PAHs were determined using high performance liquid chromatography with fluorescence detection (HPLC-FLD) and nine HCAs were quantified using liquid chromatography tandem-mass spectrometry (LC-MS/MS) with a gradient programme. The lowest significantly concentrations of PAHs and HCAs were generated at 150°C; the formation of PAHs and HCAs simultaneously increased with temperatures. Benzo[a]pyrene was detected in all samples and increased markedly at 300 and 350°C. The sums of 4 PAHs (PAH4) in marinated beef satay at 300 and 350°C exceeded the maximum level in Commission Regulation (EU) 2015/1125. Significant reductions of polar and non-polar HCAs (except PhIP) were found in marinated beef satay across all temperatures. Overall, PAHs and HCAs showed opposite trends of formation in beef satay with marination.
  14. Ahmad A, Bhat AH, Buang A
    Environ Technol, 2019 Jun;40(14):1793-1809.
    PMID: 29345546 DOI: 10.1080/09593330.2018.1430171
    In this study freely suspended and Ca-alginate immobilized C. vulgaris cells were used for the biosorption of Fe(II), Mn(II), and Zn(II) ions, from the aqueous solution. Experimental data showed that biosorption capacity of algal cells was strongly dependent on the operational condition such as pH, initial metal ions concentration, dosages, contact time and temperature. The maximum biosorption of Fe(II) 43.43, Mn(II) 40.98 and Zn(II) 37.43 mg/g was achieved with Ca-alginate immobilized algal cells at optimum pH of 6.0, algal cells dosage 0.6 g/L, and contact time of 450 min at room temperature. The biosorption efficiency of freely suspended and immobilized C. vulgaris cells for heavy metals removal from the industrial wastewater was validated. Modeling of biosorption kinetics showed good agreements with pseudo-second-order. Langmuir and D-R isotherm models exhibited the best fit of experimental data. The thermodynamic parameters (ΔG°, ΔH°, and ΔS°) revealed that the biosorption of considered metal ions was feasible, spontaneous and exothermic at 25-45°C. The SEM showed porous morphology which greatly helps in the biosorption of heavy metals. The Fourier transform infrared spectrophotometer (FTIR) and X-rays Photon Spectroscopy (XPS) data spectra indicated that the functional groups predominately involved in the biosorption were C-N, -OH, COO-, -CH, C=C, C=S and -C-. These results shows that immobilized algal cells in alginate beads could potentially enhance the biosorption of considered metal ions than freely suspended cells. Furthermore, the biosorbent has significantly removed heavy metals from industrial wastewater at the optimized condition.
  15. Abdullah S, Ahmad AA, Lalonde D
    Plast Reconstr Surg Glob Open, 2020 Aug;8(8):e3023.
    PMID: 32983779 DOI: 10.1097/GOX.0000000000003023
    Tendon transfer for radial nerve palsy is a common procedure done under general anesthesia. We describe a surgical technique of triple tendon transfer with wide awake local anesthesia no tourniquet (WALANT). We transfer flexor carpi radialis to extensor digitorum communis, palmaris longus to extensor pollicis longus, and pronator teres to extensor carpi radialis brevis. This is commonly known as the Brand transfer. Our anesthetic or WALANT solution consists of up to 200 mL of 1:400,000 epinephrine, 0.25% lidocaine buffered with sodium bicarbonate. This technique overcomes the problem of judging the appropriate amount of transfer tension by observing awake patients actively extend their fingers, thumb, and wrist during the surgery and making adjustments before we close the wound. In our experience, there is no need of brain retraining because a patient is able to immediately use the flexor muscles to perform extension movements. WALANT is a safe and viable option for radial nerve tendon transfers.
  16. Daker M, Ahmad M, Khoo AS
    Cancer Cell Int, 2012;12(1):34.
    PMID: 22809533
    Nasopharyngeal carcinoma (NPC) is a unique tumour of epithelial origin with a distinct geographical distribution, genetic predisposition and environmental as well as dietary influence as aetiological factors. Standard NPC treatment regimes, such as radiotherapy and concurrent chemotherapy with cytotoxic drugs, can produce undesirable complications often associated with significant toxicity. Here, we report the effects of a widely distributed flavonoid, quercetin, on cell proliferation, apoptosis and cell cycle arrest. The effects of combining quercetin and cisplatin on human NPC cells were explored.
  17. Gaur R, Shahabuddin S, Ahmad I, Sridewi N
    Nanomaterials (Basel), 2022 Nov 09;12(22).
    PMID: 36432233 DOI: 10.3390/nano12223950
    The present study reported the synthesis of SnS2 nanoparticles by using a thermal decomposition approach using tin chloride and thioacetamide in diphenyl ether at 200 °C over 60 min. SnS2 nanoparticles with novel morphologies were prepared by the use of different alkylamines (namely, octylamine (OCA), dodecylamine (DDA), and oleylamine (OLA)), and their role during the synthesis was explored in detail. The synthesized SnS2 nanostructures were characterized using an array of analytical techniques. The XRD results confirmed the formation of hexagonal SnS2, and the crystallite size varied from 6.1 nm to 19.0 nm and from 2.5 to 8.8 nm for (100) and (011) reflections, respectively. The functional group and thermal analysis confirmed the presence of organics on the surface of nanoparticles. The FE-SEM results revealed nanoparticles, nanoplates, and flakes assembled into flower-like morphologies when dodecylamine, octylamine, and oleylamine were used as capping agents, respectively. The analysis of optical properties showed the variation in the bandgap and the concentration of surface defects on the SnS2 nanoparticles. The role of alkylamine as a capping agent was explored and discussed in detail in this paper and the mechanism for the evolution of different morphologies of SnS2 nanoparticles was also proposed.
  18. Chia MR, Phang SW, Ahmad I
    Polymers (Basel), 2022 Nov 28;14(23).
    PMID: 36501566 DOI: 10.3390/polym14235168
    Intrinsically conducting polymers (ICPs) have been widely studied in various applications, such as sensors, tissue engineering, drug delivery, and semiconductors. Specifically, polyaniline (PANI) stands out in food industry applications due to its advantageous reversible redox properties, electrical conductivity, and simple modification. The rising concerns about food safety and security have encouraged the development of PANI as an antioxidant, antimicrobial agent, food freshness indicator, and electronic nose. At the same time, it plays an important role in food safety control to ensure the quality of food. This study reviews the emerging applications of PANI in the food industry. It has been found that the versatile applications of PANI allow the advancement of modern active and intelligent food packaging and better food quality monitoring systems.
  19. Sattar K, Akram A, Ahmad T, Bashir U
    Medicine (Baltimore), 2021 Mar 05;100(9):e23580.
    PMID: 33655905 DOI: 10.1097/MD.0000000000023580
    Changeover phases are essential and inevitable times in professional life, which let the learners adapt and grasp emerging opportunities for learning based on the past experiences with the catering of novel creativity as required in the present as well as emerging time. This study was carried out to examine the effectiveness of a professionalism course, during the transition from a non-clinical to clinical setting, within the context of undergraduate medical education.This observational study was conducted during 2019 to 2020, with pre- and post-professionalism course evaluation. We used the Dundee Poly-professionalism inventory-1: Academic Integrity, among the undergraduate medical students.Our results are based on the medical student's professional progress with the transition from 2nd year to 3rd year. During the 1st phase of the study, the participants at their Pre-Professionalism Course (PrPC) level in their 2nd medical year (only attended the introductory lectures for professionalism), showed a good understanding of professionalism. For the 2nd phase, when the same students, at their Post-Professionalism Course (PoPC) level, in their 3rd year (completed professionalism course) filled the same survey and it was found that there was no decline in their understanding of the topic, even after more than a year. They were even more aware of the significance of professionalism in their clinical settings.Despite a year gap, the understanding of professionalism among students was stable. Results helped us infer that time laps did not affect the professionalism concept learned earlier; rather during clinical settings, students become more aware of professionalism.
  20. Mohammad R, Ahmad M, Heng LY
    Sensors (Basel), 2013 Aug 05;13(8):10014-26.
    PMID: 23921830 DOI: 10.3390/s130810014
    Chili hotness is very much dependent on the concentration of capsaicin present in the chili fruit. A new biosensor based on a horseradish peroxidase enzyme-capsaicin reaction mediated by ferrocene has been successfully developed for the amperometric determination of chili hotness. The amperometric biosensor is fabricated based on a single-step immobilization of both ferrocene and horseradish peroxidase in a photocurable hydrogel membrane, poly(2-hydroxyethyl methacrylate). With mediation by ferrocene, the biosensor could measure capsaicin concentrations at a potential 0.22 V (vs. Ag/AgCl), which prevented potential interference from other electroactive species in the sample. Thus a good selectivity towards capsaicin was demonstrated. The linear response range of the biosensor towards capsaicin was from 2.5-99.0 µM with detection limit of 1.94 µM. A good relative standard deviation (RSD) for reproducibility of 6.4%-9.9% was obtained. The capsaicin biosensor demonstrated long-term stability for up to seven months. The performance of the biosensor has been validated using a standard method for the analysis of capsaicin based on HPLC.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links