MATERIALS AND METHODS: Ninety-seven ROs were randomly assigned to either manual or AI-assisted contouring of eight OARs for two head-and-neck cancer cases with an in-between teaching session on contouring guidelines. Thereby, the effect of teaching (yes/no) and AI-assisted contouring (yes/no) was quantified. Second, ROs completed short-term and long-term follow-up cases all using AI assistance. Contour quality was quantified with Dice Similarity Coefficient (DSC) between ROs' contours and expert consensus contours. Groups were compared using absolute differences in medians with 95% CIs.
RESULTS: AI-assisted contouring without previous teaching increased absolute DSC for optic nerve (by 0.05 [0.01; 0.10]), oral cavity (0.10 [0.06; 0.13]), parotid (0.07 [0.05; 0.12]), spinal cord (0.04 [0.01; 0.06]), and mandible (0.02 [0.01; 0.03]). Contouring time decreased for brain stem (-1.41 [-2.44; -0.25]), mandible (-6.60 [-8.09; -3.35]), optic nerve (-0.19 [-0.47; -0.02]), parotid (-1.80 [-2.66; -0.32]), and thyroid (-1.03 [-2.18; -0.05]). Without AI-assisted contouring, teaching increased DSC for oral cavity (0.05 [0.01; 0.09]) and thyroid (0.04 [0.02; 0.07]), and contouring time increased for mandible (2.36 [-0.51; 5.14]), oral cavity (1.42 [-0.08; 4.14]), and thyroid (1.60 [-0.04; 2.22]).
CONCLUSION: The study suggested that AI-assisted contouring is safe and beneficial to ROs working in LMICs. Prospective clinical trials on AI-assisted contouring should, however, be conducted upon clinical implementation to confirm the effects.
METHODOLOGY AND ANALYSIS: The population of interest is the coastal communities residing within the Tun Mustapha Park in Sabah, Malaysia. The data collection is planned for a duration of 6 months and the findings are expected by December 2020. A random cluster sampling will be conducted at three districts of Sabah. This study will collect 600 adult respondents (300 households are estimated to be collected) at age of 18 and above. The project is a cross sectional study via face-to-face interview with administered questionnaires, anthropometrics measurements and observation of the living condition performed by trained interviewers.
OBJECTIVES: Pioneering research on molecular mechanisms underlying the viral transmission, molecular pathogenicity, and potential treatments will be highlighted in this review. The development of antiviral drugs specific to SARS-CoV-2 is a complicated and tedious process. To accelerate scientific discoveries and advancement, researchers are consolidating available data from associated coronaviruses into a single pipeline, which can be readily made available to vaccine developers.
METHODS: In order to find studies evaluating the COVID-19 virus epidemiology, repurposed drugs and potential vaccines, web searches and bibliographical bases have been used with keywords that matches the content of this review.
RESULTS: The published results of SARS-CoV-2 structures and interactomics have been used to identify potential therapeutic candidates. We illustrate recent publications on SARS-CoV-2, concerning its molecular, epidemiological, and clinical characteristics, and focus on innovative diagnostics technologies in the production pipeline. This objective of this review is to enhance the comprehension of the unique characteristics of SARS-CoV-2 and strengthen future control measures.
Lay Summary: An innovative analysis is evaluating the nature of the COVID-19 pandemic. The aim is to increase knowledge of possible viral detection methods, which highlights several new technology limitations and advantages. We have assessed some drugs currently for patients (Lopinavir, Ritonavir, Anakinra and Interferon beta 1a), as the feasibility of COVID-19 specific antivirals is not presently known. The study explores the race toward vaccine development and highlights some significant trials and candidates in various clinical phases. This research addresses critical knowledge gaps by identifying repurposed drugs currently under clinical trials. Findings will be fed back rapidly to the researchers interested in COVID 19 and support the evidence and potential of possible therapeutics and small molecules with their mode of action.
METHODS: Relevant published studies, literature and reports were searched from accessible electronic databases and related institutional databases. We used keywords, viz; microbiome, microbiota, microbiome drug delivery and respiratory disease. Selected articles were carefully read through, clustered, segregated into subtopics and reviewed.
FINDINGS: The traditional belief of sterile lungs was challenged by the emergence of culture-independent molecular techniques and the recently introduced invasive broncho-alveolar lavage (BAL) sampling method. The constitution of a lung microbiome mainly depends on three main ecological factors, which include; firstly, the immigration of microbes into airways, secondly, the removal of microbes from airways and lastly, the regional growth conditions. In healthy conditions, the microbial communities that co-exist in our lungs can build significant pulmonary immunity and could act as a barrier against diseases, whereas, in an adverse way, microbiomes may interact with other pathogenic bacteriomes and viromes, acting as a cofactor in inflammation and host immune responses, which may lead to the progression of a disease. Thus, the use of microbiota as a target, and as a drug delivery system in the possible modification of a disease state, has started to gain massive attention in recent years. Microbiota, owing to its unique characteristics, could serve as a potential drug delivery system, that could be bioengineered to suit the interest. The engineered microbiome-derived therapeutics can be delivered through BC, bacteriophage, bacteria-derived lipid vesicles and microbe-derived extracellular vesicles. This review highlights the relationships between microbiota and different types of respiratory diseases, the importance of microbiota towards human health and diseases, including the role of novel microbiome drug delivery systems in targeting various respiratory diseases.