Displaying publications 81 - 100 of 280 in total

Abstract:
Sort:
  1. Najjar A, Abdullah N, Saad WZ, Ahmad S, Oskoueian E, Abas F, et al.
    Int J Mol Sci, 2014;15(2):2274-88.
    PMID: 24504029 DOI: 10.3390/ijms15022274
    The presence of phorbol esters (PEs) with toxic properties limits the use of Jatropha curcas kernel in the animal feed industry. Therefore, suitable methods to detoxify PEs have to be developed to render the material safe as a feed ingredient. In the present study, the biological treatment of the extracted PEs-rich fraction with non-pathogenic fungi (Trichoderma harzianum JQ350879.1, T. harzianum JQ517493.1, Paecilomyces sinensis JQ350881.1, Cladosporium cladosporioides JQ517491.1, Fusarium chlamydosporum JQ350882.1, F. chlamydosporum JQ517492.1 and F. chlamydosporum JQ350880.1) was conducted by fermentation in broth cultures. The PEs were detected by liquid chromatography-diode array detector-electrospray ionization mass spectrometry (LC-DAD-ESIMS) and quantitatively monitored by HPLC using phorbol-12-myristate 13-acetate as the standard. At day 30 of incubation, two T. harzianum spp., P. sinensis and C. cladosporioides significantly (p < 0.05) removed PEs with percentage losses of 96.9%-99.7%, while F. chlamydosporum strains showed percentage losses of 88.9%-92.2%. All fungal strains could utilize the PEs-rich fraction for growth. In the cytotoxicity assay, cell viabilities of Chang liver and NIH 3T3 fibroblast cell lines were less than 1% with the untreated PEs-rich fraction, but 84.3%-96.5% with the fungal treated PEs-rich fraction. There was no inhibition on cell viability for normal fungal growth supernatants. To conclude, Trichoderma spp., Paecilomyces sp. and Cladosporium sp. are potential microbes for the detoxification of PEs.
  2. Fakhlaei R, Selamat J, Abdull Razis AF, Sukor R, Ahmad S, Khatib A, et al.
    Chemosphere, 2024 May;356:141736.
    PMID: 38554873 DOI: 10.1016/j.chemosphere.2024.141736
    Since ancient times, honey has been used for medical purposes and the treatment of various disorders. As a high-quality food product, the honey industry is prone to fraud and adulteration. Moreover, limited experimental studies have investigated the impact of adulterated honey consumption using zebrafish as the animal model. The aims of this study were: (1) to calculate the lethal concentration (LC50) of acid-adulterated Apis mellifera honey on embryos, (2) to investigate the effect of pure and acid-adulterated A. mellifera honey on hatching rate (%) and heart rate of zebrafish (embryos and larvae), (3) to elucidate toxicology of selected adulterated honey based on lethal dose (LD50) using adult zebrafish and (4) to screen the metabolites profile of adulterated honey from blood serum of adult zebrafish. The result indicated the LC50 of 31.10 ± 1.63 (mg/ml) for pure A. mellifera honey, while acetic acid demonstrates the lowest LC50 (4.98 ± 0.06 mg/ml) among acid adulterants with the highest mortality rate at 96 hpf. The treatment of zebrafish embryos with adulterated A. mellifera honey significantly (p ≤ 0.05) increased the hatching rate (%) and decreased the heartbeat rate. Acute, prolong-acute, and sub-acute toxicology tests on adult zebrafish were conducted at a concentration of 7% w/w of acid adulterants. Furthermore, the blood serum metabolite profile of adulterated-honey-treated zebrafish was screened by LC-MS/MS analysis and three endogenous metabolites have been revealed: (1) Xanthotoxol or 8-Hydroxypsoralen, (2) 16-Oxoandrostenediol, and (3) 3,5-Dicaffeoyl-4-succinoylquinic acid. These results prove that employed honey adulterants cause mortality that contributes to higher toxicity. Moreover, this study introduces the zebrafish toxicity test as a new promising standard technique for the potential toxicity assessment of acid-adulterated honey in this study and hazardous food adulterants for future studies.
  3. Koay GF, Chuah TG, Zainal-Abidin S, Ahmad S, Choong TS
    J Oleo Sci, 2011;60(5):237-65.
    PMID: 21502724
    Hydroxyl fatty acids and their derivatives are of high value due to their wide range of industrial application, including cosmetic, food, personal care and pharmaceutical products. Realizing the importance of hydroxyl fatty acids, and yet due to the absence of the conventional starting raw materials, Malaysia has developed 9,10-dihydroxystearic acid (9,10-DHSA) and its derivatives from locally abundant palm based oils. The aim of this article is to provide a general description of the works that have thus far being done on palm based 9,10-DHSA: starting from its conception and production from commercial grade palm based crude oleic acid via epoxidation and hydrolysis, purification through solvent crystallization and characterization through wet and analytical chemistry, moving on to developmental works done on producing its derivatives through blending, esterification, amidation and polymerization, and completing with applications of 9,10-DHSA and its derivatives, e.g. DHSA-stearates and DHSA-estolides, in commercial products such as soaps, deodorant sticks and shampoos. This article incorporates some of the patent filed technological knowhow on 9,10-DHSA and its derivatives, and will also point out some of the shortcomings in previously published documents and provide some recommendations for future research works in mitigating these shortcomings.
  4. Mirza MU, Saadabadi A, Vanmeert M, Salo-Ahen OMH, Abdullah I, Claes S, et al.
    Eur J Pharm Sci, 2020 Dec 01;155:105537.
    PMID: 32890663 DOI: 10.1016/j.ejps.2020.105537
    Chemokine receptors are key regulators of cell migration in terms of immunity and inflammation. Among these, CCR5 and CXCR4 play pivotal roles in cancer metastasis and HIV-1 transmission and infection. They act as essential co-receptors for HIV and furnish a route to the cell entry. In particular, inhibition of either CCR5 or CXCR4 leads very often the virus to shift to a more virulent dual-tropic strain. Therefore, dual receptor inhibition might improve the therapeutic strategies against HIV. In this study, we aimed to discover selective CCR5, CXCR4, and dual CCR5/CXCR4 antagonists using both receptor- and ligand-based computational methods. We employed this approach to fully incorporate the interaction attributes of the binding pocket together with molecular dynamics (MD) simulations and binding free energy calculations. The best hits were evaluated for their anti-HIV-1 activity against CXCR4- and CCR5-specific NL4.3 and BaL strains. Moreover, the Ca2+ mobilization assay was used to evaluate their antagonistic activity. From the 27 tested compounds, three were identified as inhibitors: compounds 27 (CCR5), 6 (CXCR4) and 3 (dual) with IC50 values ranging from 10.64 to 64.56 μM. The binding mode analysis suggests that the active compounds form a salt bridge with the glutamates and π-stacking interactions with the aromatic side chains binding site residues of the respective co-receptor. The presented hierarchical virtual screening approach provides essential aspects in identifying potential antagonists in terms of selectivity against a specific co-receptor. The compounds having multiple heterocyclic nitrogen atoms proved to be relatively more specific towards CXCR4 inhibition as compared to CCR5. The identified compounds serve as a starting point for further development of HIV entry inhibitors through synthesis and quantitative structure-activity relationship studies.
  5. Omar M, Ali HM, Abu MP, Kontol KM, Ahmad Z, Ahmad SH, et al.
    Appl Radiat Isot, 2004 May;60(5):779-82.
    PMID: 15082059
    Radium concentrations in 470 samples of the various types of waste from oil and gas industries were analysed using gamma spectrometers. The results showed that the radium concentration varied within a wide range. The highest mean 226Ra and 228Ra concentrations of 114,300 and 130,120 Bq/kg, respectively, were measured in scales. Overall, 75% of the waste, mostly sludge and extraction residue lies within the normal range of radium concentration in soils of Malaysia. However, some platform sludge can have radium concentration up to 560 Bq/kg.
  6. Martins JM, Gul A, Mata MN, Haider SA, Ahmad S
    Heliyon, 2023 Jun;9(6):e16668.
    PMID: 37292261 DOI: 10.1016/j.heliyon.2023.e16668
    This study evaluates the determinants of Economic freedom, innovation and technology concerning Chinese foreign direct investment. The aim of the study is to explore, that how these determinants influence Outward Foreign Direct Investment (OFDI) from China toward different regional economies. The study will enrich the existing literature by providing useful policies to the concerned economies to influence more Chinese FDI to host economies. The panel data set includes 27 (African, European, and Asian) Countries data over the period of 2003 to 2018. Moreover, the study employed panel data analysis and the result reveals that property rights, patents residents (pantentAR), Research & Development (R&D), Inflation, official exchange rate (OER), and Tax Burden (TaxB) have a strong positive and significant impact on Chinese OFDI in the selected sample countries, While Government Expenditures (GovE) has positive, but insignificant impact on Chinese OFDI. On the other hand, Chinese OFDI is negatively and statistically significant association with Business Freedom (BusF). This study will put forth considerable policies to the concerned to induce further inflows of Chinese FDI into the host countries. The policymakers should build policies that provide a comfortable environment for business activities and mostly focus on value-added production i.e., expenditures on R&D to enhance high-technology exports because they efficiently attract FDI into host countries. Another key factor is Tax Burden (TaxB), which significantly influences Chinese FDI along with other factors.
  7. Md Ali NA, El-Ansary D, Abdul Rahman MR, Ahmad S, Royse C, Huat CT, et al.
    BMJ Open, 2023 Jul 14;13(7):e067914.
    PMID: 37451709 DOI: 10.1136/bmjopen-2022-067914
    INTRODUCTION: There is no consistency in current practice pertaining to the prescription and progression of upper limb resistance exercise following cardiac surgery via median sternotomy. The aim of this study is to investigate whether less restrictive sternal precautions with the addition of early-supervised resistance training exercise improves upper limb function and facilitates recovery following median sternotomy.

    METHODS AND ANALYSIS: This is double-blind randomised controlled trial, with parallel group, concealed allocation, blinding of patients and assessors, and intention-to-treat analysis. 240 adult participants who had median sternotomy from eight hospitals in Malaysia will be recruited. Sample size calculations were based on the unsupported upper limb test. All participants will be randomised to receive either standard or early supervised incremental resistance training. The primary outcomes are upper limb function and pain. The secondary outcomes will be functional capacity, multidomain recovery (physical and psychological), length of hospital stay, incidence of respiratory complications and quality of life. Descriptive statistics will be used to summarise data. Data will be analysed using the intention-to-treat principle. The primary hypothesis will be examined by evaluating the change from baseline to the 4-week postoperative time point in the intervention arm compared with the usual care arm. For all tests to be conducted, a p value of <0.05 (two tailed) will be considered statistically significant, and CIs will be reported. The trial is currently recruiting participants.

    ETHICS AND DISSEMINATION: The study was approved by a central ethical committee as well as the local Research Ethics Boards of the participating sites (UKM:JEP-2019-654; Ministry of Health: NMMR-50763; National Heart Centre: IJNREC/501/2021). Approval to start was given prior to the recruitment of participants commencing at any sites. Process evaluation findings will be published in peer-reviewed journals and presented at relevant academic conferences.

    TRIAL REGISTRATION NUMBER: International Standard Randomised Controlled Trials Number (ISRCTN17842822).

  8. Shair EF, Ahmad SA, Marhaban MH, Mohd Tamrin SB, Abdullah AR
    Biomed Res Int, 2017;2017:3937254.
    PMID: 28303251 DOI: 10.1155/2017/3937254
    Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications.
  9. Ilyas S, Tabasum R, Iftikhar A, Nazir M, Hussain A, Hussain A, et al.
    Sci Rep, 2021 01 18;11(1):1708.
    PMID: 33462261 DOI: 10.1038/s41598-020-80579-5
    Ifosfamide is a widely used chemotherapeutic agent having broad-spectrum efficacy against several tumors. However, nephro, hepato, neuro cardio, and hematological toxicities associated with ifosfamide render its use limited. These side effects could range from organ failure to life-threatening situations. The present study aimed to evaluate the attenuating efficiency of Berberis vulgaris root extract (BvRE), a potent nephroprotective, hepatoprotective, and lipid-lowering agent, against ifosfamide-induced toxicities. The study design comprised eight groups of Swiss albino rats to assess different dose regimes of BvRE and ifosfamide. Biochemical analysis of serum (serum albumin, blood urea nitrogen, creatinine, alanine transaminase, aspartate transaminase, alkaline phosphatase, lactate dehydrogenase, total cholesterol, and triglycerides) along with complete blood count was performed. Kidney, liver, brain, and heart tissue homogenates were used to find malondialdehyde, catalase, and glutathione S-transferase levels in addition to the acetylcholinesterase of brain tissue. The results were further validated with the help of the histopathology of the selected organs. HeLa cells were used to assess the effect of BvRE on ifosfamide cytotoxicity in MTT assay. The results revealed that pre- and post-treatment regimens of BvRE, as well as the combination therapy exhibited marked protective effects against ifosfamide-induced nephro, hepato, neuro, and cardiotoxicity. Moreover, ifosfamide depicted a synergistic in vitro cytotoxic effect on HeLa cells in the presence of BvRE. These results corroborate that the combination therapy of ifosfamide with BvRE in cancer treatment can potentiate the anticancer effects of ifosfamide along with the amelioration of its conspicuous side effects.
  10. Abu Bakar, M.A., Ahmad, S., Kuntjoro, W.
    MyJurnal
    Kenaf fibre that is known as Hibiscus cannabinus, L. family Malvaceae is an herbaceous plant that can be grown under a wide range of weather conditions. The uses of kenaf fibres as a reinforcement material in the polymeric matrix have been widely investigated. It is known that epoxy has a disadvantage of brittleness and exhibits low toughness. In this research, liquid epoxidized natural rubber (LENR) was introduced to the epoxy to increase its toughness. Kenaf fibres, with five different fibre loadings of 5%, 10%, 15%, 20% and 25% by weight, were used to reinforce the epoxy resins (with and without addition of epoxidized natural rubber) as the matrices. The flexural strength, flexural modulus and fracture toughness of the rubber toughened epoxy reinforced kenaf fibre composites were investigated. The results showed that the addition of liquid epoxidized natural rubber (LENR) had improved the flexural modulus, flexural strength and fracture toughness by 48%, 30%, and 1.15% respectively at 20% fibre loading. The fractured surfaces of these composites were investigated by using scanning electron microscopic (SEM) technique to determine the interfacial bonding between the matrix and the fibre reinforcement.
  11. Ahmad, S., Anuar, M.S., Taip, F.S., Shamsudin, R.
    MyJurnal
    This study was conducted to determine the influence of raw material variation, equipment
    process variables and device stability on the drying process of rambutan seed using oven and
    microwave drying equipments. The raw material variations studied were skin colour (yellow
    and fully red), storage period (fresh and stored) and seed mass (5 and 10 g). The important
    equipment process variables studied were oven temperature (40 and 60°C) and microwave
    power (250 and 1000 W).The output power and drying distribution in the drying chamber were
    studied to examine the device stability. Results indicated that the seed mass, oven temperature
    and microwave power influenced the drying time. The skin colour and storage period were
    negatively correlated with drying time due to drying time speculate to relay on time required for
    moisture removal that associated to initial moisture content and seed mass. It is also observed
    that the drying time will be shorten if the sample was located at the central of the microwave
    drying chamber. In contrast, the oven exhibited higher stability compared to microwave due
    to its ability to provide similar level of heating at each location in the drying chamber. This
    information will aid researchers and industrial operators to design an effective drying process
    using microwave and oven thus reducing cost and time.
  12. Rosli MA, Mohd Nasir NA, Mustafa MZ, Othman MA, Zakaria Z, Halim AS
    J Taibah Univ Med Sci, 2024 Feb;19(1):209-219.
    PMID: 38124990 DOI: 10.1016/j.jtumed.2023.11.003
    PURPOSE: Kelulut honey contains trehalulose and has high antioxidant content, such as phenolic and flavonoid substances, which can promote wound healing. This study evaluated the effectiveness of Kelulut honey in diabetic wound healing compared to a commercially available conventional gel dressing (Intrasite gel).

    METHODS: A prospective, randomized, single-blinded control trial was performed on eligible diabetic patients with full-thickness cavity wounds. Patients' demographics, size and site of wounds, and baseline routine blood investigations were recorded. The wounds were dressed every other day with Kelulut honey for the intervention group or gel for the control group. The wound size reduction and granulation tissue formation percentage were calculated every 6 days for 1 month.

    RESULTS: Seventy-one patients were randomized. After 30 days of follow-up, 62 participants were available for analysis: 30 from the control group and 32 from the treatment group. The control group had increased granulation tissue at baseline and more wounds on the lower limb and posterior trunk. Both groups showed an increasing mean and median percentage of wound epithelialization and granulation tissue over time, with significantly higher values at every timepoint in the honey group (p 

  13. Citalingam K, Zareen S, Shaari K, Ahmad S
    BMC Complement Altern Med, 2013 Aug 23;13:213.
    PMID: 23971790 DOI: 10.1186/1472-6882-13-213
    BACKGROUND: Hyaluronidases have been found as the target enzymes in the development of osteoarthritis (OA) disease. While there is still no curative treatment for this disease, recent studies on the treatment of OA were focused on the effectiveness of natural products which are expected to improve the symptoms with minimal side effects. The aim of this study was to screen selected Malaysian plants on their anti-hyaluronidase activity as well as to evaluate the active plant and its derived fractions on its potential anti-arthritic and antioxidant activities.

    METHODS: A total of 20 methanolic crude extracts (bark and leaf) from ten different plants were screened using a colorimetric hyaluronidase enzymatic assay. The active plant extract (Payena dasyphylla) was then studied for its hyaluronidase inhibitory activity in the interleukin-1β (IL-1β) stimulated human chondrocytes cell line (NHAC-kn) using zymography method. The Payena dasyphylla methanolic bark extract was then fractionated into several fractions in where the ethyl acetate (EA) fraction was evaluated for its inhibitory effects on the HYAL1 and HYAL2 gene expressions using reverse transcription-polymerase chain reaction (RT-PCR) technique. While the MMP-3 and MMP-13 protein expressions were evaluated using western blot method. The phenolic and flavonoid contents of the three fractions as well as the antioxidant property of the EA fraction were also evaluated.

    RESULTS: Bark extract of Payena dasyphylla (100 μg/ml) showed the highest inhibitory activity against bovine testicular hyaluronidase with 91.63%. The plant extract also inhibited hyaluronidase expression in the cultured human chondrocyte cells in response to IL-1β (100 ng/ml). Similarly, treatment with Payena dasyphylla ethyl acetate (EA) fraction (100 μg/ml) inhibited the HYAL1 and HYAL2 mRNA gene expressions as well as MMP-3 and MMP-13 protein expression in a dose dependent manner. Payena dasyphylla EA fraction has demonstrated the highest amount of phenolic and flavonoid content with 168.62 ± 10.93 mg GAE/g and 95.96 ± 2.96 mg RE/g respectively as compared to water and hexane fractions. In addition, the Payena dasyphylla EA fraction showed strong antioxidant activity with IC₅₀ value of 11.64 ± 1.69 μg/mL.

    CONCLUSION: These findings have shown that Payena dasyphylla might contained potential phenolic compounds that inhibiting the key enzyme in osteoarthritis development, which is the hyaluronidase enzyme through interruption of HYAL1 and HYAL1 gene expressions. The degradation of cartilage could also be inhibited by the plant through suppression of MMP-3 and MMP-13 protein expressions. We also reported that the inhibitory effect of Payena dasyphylla on hyaluronidase activity and expression might be due to its anti-oxidant property.

  14. Ahmad S, Valli H, Edling CE, Grace AA, Jeevaratnam K, Huang CL
    Pflugers Arch., 2017 Dec;469(12):1579-1590.
    PMID: 28821956 DOI: 10.1007/s00424-017-2054-3
    A range of chronic clinical conditions accompany cardiomyocyte energetic dysfunction and constitute independent risk factors for cardiac arrhythmia. We investigated pro-arrhythmic and arrhythmic phenotypes in energetically deficient C57BL mice with genetic ablation of the mitochondrial promoter peroxisome proliferator-activated receptor-γ coactivator-1β (Pgc-1β), a known model of ventricular arrhythmia. Pro-arrhythmic and cellular action potential (AP) characteristics were compared in intact Langendorff-perfused hearts from young (12-16 week) and aged (> 52 week), wild-type (WT) and Pgc-1β -/- mice. Simultaneous electrocardiographic and intracellular microelectrode recordings were made through successive trains of 100 regular stimuli at progressively incremented heart rates. Aged Pgc-1β -/- hearts displayed an increased incidence of arrhythmia compared to other groups. Young and aged Pgc-1β -/- hearts showed higher incidences of alternans in both AP activation (maximum AP upshoot velocity (dV/dt)max and latency), recovery (action potential duration (APD90) and resting membrane potential (RMP) characteristics compared to WT hearts. This was particularly apparent at lower pacing frequencies. These findings accompanied reduced (dV/dt)max and increased AP latency values in the Pgc-1β -/- hearts. APs observed prior to termination of the protocol showed lower (dV/dt)max and longer AP latencies, but indistinguishable APD90 and RMPs in arrhythmic compared to those in non-arrhythmic hearts. APD restitution analysis showed that Pgc-1β -/- and WT hearts showed similar limiting gradients. However, Pgc-1β -/- hearts had shortened plateau AP wavelengths, particularly in aged Pgc-1β -/- hearts. Pgc-1β -/- hearts therefore show pro-arrhythmic instabilities attributable to altered AP conduction and activation rather than recovery characteristics.
  15. Ahmad S, Lambuk L, Ahmed N, Mussa A, Tee V, Mohd Idris RA, et al.
    Nanomedicine (Lond), 2023 Oct;18(24):1733-1744.
    PMID: 37982749 DOI: 10.2217/nnm-2022-0300
    Background: Nab-paclitaxel is formulated to address several limitations of paclitaxel. Methods: A systematic review was done of several databases and a meta-analysis with a random-effects model was conducted to assess the efficacy and safety of nab-paclitaxel in metastatic gastric cancer (MGC). Results: Included studies revealed that nab-paclitaxel provides a 30.4% overall response rate and 65.7% disease control rate in MGC patients. The overall survival was 9.65 months and progression-free survival was 4.48 months, associated with the treatment line and regimen. The highest incidence of grade 3 and higher treatment-related adverse events was for neutropenia (29.9%). Conclusion: Nab-paclitaxel provides better disease response and longer survival with manageable side effects in MGC compared with paclitaxel.
  16. Halim AS, Nor FM, Mat Saad AZ, Mohd Nasir NA, Norsa'adah B, Ujang Z
    J Taibah Univ Med Sci, 2018 Dec;13(6):512-520.
    PMID: 31435371 DOI: 10.1016/j.jtumed.2018.10.004
    Objectives: Chitosan, the N-deacetylated derivative of chitin, has useful biological properties that promote haemostasis, analgesia, wound healing, and scar reduction; chitosan is bacteriostatic, biocompatible, and biodegradable. This study determined the efficacy of chitosan derivative film as a superficial wound dressing.

    Methods: This multicentre randomised controlled trial included 244 patients, of whom 86 were treated with chitosan derivative film and 84 with hydrocolloid. The percentage of epithelisation, as well as patient comfort, clinical signs, and patient convenience in application and removal of the dressings were assessed.

    Results: The primary outcome of this study was the percentage of epithelisation. Except for race (p = 0.04), there were no significant differences between groups in sex, age, antibiotic usage, or initial wound size (p > 0.05). There was no significant difference in the mean epithelisation percentage between groups (p = 0.29). Patients using chitosan derivative film experienced more pain during removal of dressing than those in the hydrocolloid group (p = 0.007). The chitosan derivative film group showed less exudate (p = 0.036) and less odour (p = 0.024) than the control group. Furthermore, there were no significant differences between groups in terms of adherence, ease of removal, wound drainage, erythema, itchiness, pain, and tenderness. No oedema or localised warmth was observed during the study.

    Conclusion: This study concluded that chitosan derivative film is equivalent to hydrocolloid dressing and can be an option in the management of superficial and abrasion wounds.

    Clinical trial No: NMRR-11-948-10565.

  17. Othman AR, Abdullah N, Ahmad S, Ismail IS, Zakaria MP
    PMID: 25652309 DOI: 10.1186/s12906-015-0528-4
    BACKGROUND: The Jatropha curcas plant or locally known as "Pokok Jarak" has been widely used in traditional medical applications. This plant is used to treat various conditions such as arthritis, gout, jaundice, wound and inflammation. However, the nature of compounds involved has not been well documented. Hence, this study was conducted to investigate the anti-inflammatory activity of different parts of J. curcas plant and to identify the active compounds involved.
    METHODS: In this study, methanol (80%) extraction of four different parts (leaves, fruits, stem and root) of J. curcas plant was carried out. Phenolic content of each part was determined by using Folin-Ciocalteau reagent. Gallic acid was used as the phenol standard. Each plant part was screened for anti-inflammatory activity using cultured macrophage RAW 264.7 cells. The active plant part was then partitioned with hexane, chloroform, ethyl acetate and water. Each partition was again screened for anti-inflammatory activity. The active partition was then fractionated using an open column chromatography system. Single spots isolated from column chromatography were assayed for anti-inflammatory and cytotoxicity activities. Spots that showed activity were subjected to gas chromatography mass spectrophotometry (GC-MS) analysis for identification of active metabolites.
    RESULTS: The hexane partition from root extract showed the highest anti-inflammatory activity. However, it also showed high cytotoxicity towards RAW 264.7 cells at 1 mg/mL. Fractionation process using column chromatography showed five spots. Two spots labeled as H-4 and H-5 possessed anti-inflammatory activity, without cytotoxicity activity. Analysis of both spots by GC-MS showed the presence of hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid.
    CONCLUSION: This finding suggests that hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid could be responsible for the anti-inflammatory activity of the J. curcas root extract.
  18. Chen RS, Mohd Ruf MFH, Shahdan D, Ahmad S
    PLoS One, 2019;14(9):e0222662.
    PMID: 31545820 DOI: 10.1371/journal.pone.0222662
    Thermoplastic natural rubber (TPNR) was compounded with graphene nanoplatelets (GNP) via ultrasonication and melt blending. The effects of ultrasonication period (1-4 hours) and GNP weight fraction (0.5, 1.0, 1.5 and 2.0 wt.%) on the mechanical, thermal and conductivity properties were investigated. Results showed that the 3 hours of ultrasonic treatment on LNR/GNP gave the greatest improvement in tensile strength of 25.8% (TPNR/GNP nanocomposites) as compared to those without ultrasonication. The TPNR nanocomposites containing 1.5 wt.% GNP exhibited the highest strength (16 MPa for tensile, 14 MPa for flexural and 11 kJm-2 for impact) and modulus (556 MPa and 869 MPa for tensile and flexural, respectively). The incorporation of GNP had enhanced the thermal stability. It can be concluded that the GNP had imparted the thermally and electrically conductive nature to the TPNR blend.
  19. Valli H, Ahmad S, Sriharan S, Dean LD, Grace AA, Jeevaratnam K, et al.
    Clin Exp Pharmacol Physiol, 2018 03;45(3):278-292.
    PMID: 29027245 DOI: 10.1111/1440-1681.12870
    Acute RyR2 activation by exchange protein directly activated by cAMP (Epac) reversibly perturbs myocyte Ca2+ homeostasis, slows myocardial action potential conduction, and exerts pro-arrhythmic effects. Loose patch-clamp studies, preserving in vivo extracellular and intracellular conditions, investigated Na+ current in intact cardiomyocytes in murine atrial and ventricular preparations following Epac activation. Depolarising steps to varying test voltages activated typical voltage-dependent Na+ currents. Plots of peak current against depolarisation from resting potential gave pretreatment maximum atrial and ventricular currents of -20.23 ± 1.48 (17) and -29.8 ± 2.4 (10) pA/μm2 (mean ± SEM [n]). Challenge by 8-CPT (1 μmol/L) reduced these currents to -11.21 ± 0.91 (12) (P  .05). Assessment of the inactivation that followed by applying subsequent steps to a fixed voltage 100 mV positive to resting potential gave concordant results. Half-maximal inactivation voltages and steepness factors, and time constants for Na+ current recovery from inactivation in double-pulse experiments, were similar through all the pharmacological conditions. Intracellular sharp microelectrode membrane potential recordings in intact Langendorff-perfused preparations demonstrated concordant variations in maximum rates of atrial and ventricular action potential upstroke, (dV/dt)max . We thus demonstrate an acute, reversible, Na+ channel inhibition offering a possible mechanism for previously reported pro-arrhythmic slowing of AP propagation following modifications of Ca2+ homeostasis, complementing earlier findings from chronic alterations in Ca2+ homeostasis in genetically-modified RyR2-P2328S hearts.
  20. Sha'fie MSA, Rathakrishnan S, Hazanol IN, Dali MHI, Khayat ME, Ahmad S, et al.
    Antioxidants (Basel), 2020 Dec 09;9(12).
    PMID: 33317056 DOI: 10.3390/antiox9121253
    Microglial cells are the primary immune cell resident in the brain. Growing evidence indicates that microglial cells play a prominent role in alcohol-induced brain pathologies. However, alcohol-induced effects on microglial cells and the underlying mechanisms are not fully understood, and evidence exists to support generation of oxidative stress due to NADPH oxidases (NOX_-mediated production of reactive oxygen species (ROS). Here, we investigated the role of the oxidative stress-sensitive Ca2+-permeable transient receptor potential melastatin-related 2 (TRPM2) channel in ethanol (EtOH)-induced microglial cell death using BV2 microglial cells. Like H2O2, exposure to EtOH induced concentration-dependent cell death, assessed using a propidium iodide assay. H2O2/EtOH-induced cell death was inhibited by treatment with TRPM2 channel inhibitors and also treatment with poly(ADP-ribose) polymerase (PARP) inhibitors, demonstrating the critical role of PARP and the TRPM2 channel in EtOH-induced cell death. Exposure to EtOH, as expected, led to an increase in ROS production, shown using imaging of 2',7'-dichlorofluorescein fluorescence. Consistently, EtOH-induced microglial cell death was suppressed by inhibition of NADPH oxidase (NOX) as well as inhibition of protein kinase C. Taken together, our results suggest that exposure to high doses of ethanol can induce microglial cell death via the NOX/ROS/PARP/TRPM2 signaling pathway, providing novel and potentially important insights into alcohol-induced brain pathologies.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links