Displaying publications 81 - 100 of 178 in total

Abstract:
Sort:
  1. Nguyen VH, Nguyen BD, Pham HT, Lam SS, Vo DN, Shokouhimehr M, et al.
    Sci Rep, 2021 Feb 11;11(1):3641.
    PMID: 33574397 DOI: 10.1038/s41598-020-80886-x
    In this work, we proposed a facile approach to fabricate a superhydrophobic surface for anti-icing performance in terms of adhesive strength and freezing time. A hierarchical structure was generated on as-received Al plates using a wet etching method and followed with a low energy chemical compound coating. Surfaces after treatment exhibited the great water repellent properties with a high contact angle and extremely low sliding angle. An anti-icing investigation was carried out by using a custom-built apparatus and demonstrated the expected low adhesion and freezing time for icephobic applications. In addition, we proposed a model for calculating the freezing time. The experimented results were compared with theoretical calculation and demonstrated the good agreement, illustrating the importance of theoretical contribution in design icephobic surfaces. Therefore, this study provides a guideline for the understanding of icing phenomena and designing of icephobic surfaces.
  2. Nguyen TB, Nguyen TK, Chen CW, Chen WH, Bui XT, Lam SS, et al.
    Bioresour Technol, 2023 Aug;382:129182.
    PMID: 37210031 DOI: 10.1016/j.biortech.2023.129182
    In this study, biochar produced from sunflower seeds husk was activated through ZnCl2 to support the NiCo2O4 nanoparticles (NiCo2O4@ZSF) in catalytic activation of peroxymonosulfate (PMS) toward tetracycline (TC) removal from aqueous solution. The good dispersion of NiCo2O4 NPs on the ZSF surface provided sufficient active sites and abundant functional groups for the adsorption and catalytic reaction. The NiCo2O4@ZSF activating PMS showed high removal efficiency up to 99% after 30 min under optimal condition ([NiCo2O4@ZSF] = 25 mg L-1, [PMS] = 0.04 mM, [TC] = 0.02 mM and pH = 7). The catalyst also exhibited good adsorption performance with a maximum adsorption capacity of 322.58 mg g-1. Sulfate radicals (SO4•-), superoxide radical (O2•-), and singlet oxygen (1O2) played a decisive role in the NiCo2O4@ZSF/PMS system. In conclusion, our research elucidated the production of highly efficient carbon-based catalysts for environmental remediation, and also emphasized the potential application of NiCo2O4 doped biochar.
  3. Nauman Mahamood M, Zhu S, Noman A, Mahmood A, Ashraf S, Aqeel M, et al.
    Environ Pollut, 2023 Feb 15;319:120979.
    PMID: 36586554 DOI: 10.1016/j.envpol.2022.120979
    Soil heavy metal contamination is increasing rapidly due to increased anthropogenic activities. Lead (Pb) is a well-known human carcinogen causing toxic effects on humans and the environment. Its accumulation in food crops is a serious hazard to food security. Developing environment-friendly and cost-efficient techniques is necessary for Pb immobilization in the soil. A pot experiment was executed to determine the role of biochar (BC), zero-valent iron nanoparticles (n-ZVI), and zero-valent iron nanoparticles biochar composite (n-ZVI-BC) in controlling the Pb mobility and bioaccumulation in wheat (Triticum aestivum L.). The results showed that BC and n-ZVI significantly enhanced the wheat growth by increasing their photosynthetic and enzymatic activities. Among all the applied treatments, the maximum significant (p ≤ 0.05) improvement in wheat biomass was with the n-ZVI-BC application (T3). Compared to the control, the biomass of wheat roots, shoots & grains increased by 92.5, 58.8, and 49.1%, respectively. Moreover, the soil addition of T3 amendment minimized the Pb distribution in wheat roots, shoots, and grains by 33.8, 26.8, and 16.2%, respectively. The outcomes of this experiment showed that in comparison to control treatment plants, soil amendment with n-ZVI-BC (T3) increased the catalase (CAT), superoxide dismutase (SOD) activity by 49.8 and 31.1%, respectively, ultimately declining electrolyte leakage (EL), malondialdehyde (MDA) and hydrogen peroxide (H2O2) content in wheat by 38.7, 33.3, and 38%respectively. In addition, applied amendments declined the Pb mobility in the soil by increasing the residual Pb fractions. Soil amendment with n-ZVI-BC also increased the soil catalase (CAT), urease (UR), and acid phosphatase (ACP) activities by 68, 59, and 74%, respectively. Our research results provided valuable insight for the remediation of Pb toxicity in wheat. Hence, we can infer from our findings that n-ZVI-BC can be considered a propitious, environment friendly and affordable technique for mitigating Pb toxicity in wheat crop and reclamation of Pb polluted soils.
  4. Nasir NM, Bakar NS, Lananan F, Abdul Hamid SH, Lam SS, Jusoh A
    Bioresour Technol, 2015 Aug;190:492-8.
    PMID: 25791330 DOI: 10.1016/j.biortech.2015.03.023
    This study focuses on the evaluation of the performance of Chlorella sp. in removing nutrient in aquaculture wastewater and its correlation with the kinetic growth of Chlorella sp. The treatment was applied with various Chlorella sp. inoculation dosage ranging from 0% to 60% (v/v) of wastewater. The optimum inoculation dosage was recorded at 30% (v/v) with effluent concentration of ammonia and orthophosphate recording at 0.012mgL(-1) and 0.647mgL(-1), respectively on Day 11. The optimum dosage for bio-flocculation process was obtained at 30mgL(-1) of Aspergillus niger with a harvesting efficiency of 97%. This type of development of phytoremediation with continuous bio-harvesting could promote the use of sustainable green technology for effective wastewater treatment.
  5. Nam WL, Phang XY, Su MH, Liew RK, Ma NL, Rosli MHNB, et al.
    Sci Total Environ, 2018 May 15;624:9-16.
    PMID: 29245037 DOI: 10.1016/j.scitotenv.2017.12.108
    Microwave vacuum pyrolysis of palm kernel shell (PKS) was performed to produce biochar, which was then tested as bio-fertilizer in growing Oyster mushroom (Pleurotus ostreatus). The pyrolysis approach produced biochar containing a highly porous structure with a high BET surface area of up to 270m2/g and low moisture content (≤10wt%), exhibiting desirable adsorption properties to be used as bio-fertilizer since it can act as a housing that provides many sites on which living microorganisms (mycelium or plant-growth promoting bacteria) and organic nutrients can be attached or adsorbed onto. This could in turn stimulate plant growth by increasing the availability and supply of nutrients to the targeted host plant. The results from growing Oyster mushroom using the biochar recorded an impressive growth rate and a monthly production of up to about 550g of mushroom. A shorter time for mycelium growth on one whole baglog (21days) and the highest yield of Oyster mushroom (550g) were obtained from cultivation medium added with 20g of biochar. Our results demonstrate that the biochar-based bio-fertilizer produced from microwave vacuum pyrolysis of PKS shows exceptional promise as growth promoting material for mushroom cultivation.
  6. Munir M, Ahmad M, Rehan M, Saeed M, Lam SS, Nizami AS, et al.
    Environ Res, 2021 02;193:110398.
    PMID: 33127396 DOI: 10.1016/j.envres.2020.110398
    This study focused on producing high quality and yield of biodiesel from novel non-edible seed oil of abundantly available wild Raphnus raphanistrum L. using an efficient, recyclable and eco-friendly copper modified montmorillonite (MMT) clay catalyst. The maximum biodiesel yield of 83% was obtained by base catalyzed transesterification process under optimum operating conditions of methanol to oil ratio of 15:1, reaction temperature of 150 °C, reaction time of 5 h and catalyst loading of 3.5%. The synthesized catalyst and biodiesel were characterized for their structural features and chemical compositions using various state-of-the-art techniques, including x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance (1H, 13C) and gas chromatography-mass spectroscopy. The fuel properties of the biodiesel were estimated including kinematic viscosity (4.36 cSt), density (0.8312 kg/L), flash point (72 °C), acid value (0.172 mgKOH/g) and sulphur content (0.0002 wt.%). These properties were compared and found in good agreement with the International Biodiesel Standards of American (ASTM-951, 6751), European Committee (EN-14214) and China GB/T 20828 (2007). The catalyst was re-used in five consecutive transesterification reactions without losing much catalytic efficiency. Overall, non-edible Raphnus raphanistrum L.. seed oil and Cu doped MMT clay catalyst appeared to be highly active, stable, and cheap contenders for future biofuel industry. However, detailed life cycle assessment (LCA) studies of Raphnus raphanistrum L. seed oil biodiesel are highly recommended to assess the technical, ecological, social and economic challenges.
  7. Muhsin MF, Fujaya Y, Hidayani AA, Fazhan H, Wan Mahari WA, Lam SS, et al.
    PeerJ, 2023;11:e16252.
    PMID: 37842055 DOI: 10.7717/peerj.16252
    Sea cucumbers have high economic value, and in most forms of trade, their body wall is typically the only part that is harvested and sold. The organs of the sea cucumber, collectively known as the viscera, are frequently discarded, contributing to land and water pollution. However, discarded sea cucumber viscera contain various nutrients that can be used in many applications. Therefore, this review highlights the biological and economic aspects of sea cucumbers, followed by a critical discussion of the nutritional value of their internal organs and possible applications, including as functional feed additives in the aquaculture industry, sources of natural testosterone for application in sex reversal and production of monosex population, of neuroprotective agents against central nervous system disorders and of cosmetic ingredients, especially for skin whitening and anti-ageing products. The review further highlights the valorisation potential of viscera to maximize their economic potential, thus providing an enormous prospect for reusing sea cucumber waste, thereby reducing the negative impact of the sea cucumber fishery sector on the environment.
  8. Moogi S, Lam SS, Chen WH, Ko CH, Jung SC, Park YK
    Bioresour Technol, 2022 Oct 30;366:128209.
    PMID: 36323373 DOI: 10.1016/j.biortech.2022.128209
    Household food waste (FW) was converted into biohydrogen-rich gas via steam gasification over Ni and bimetallic Ni (Cu-Ni and Co-Ni) catalysts supported on mesoporous SBA-15. The effect of catalyst method on steam gasification efficiency of each catalyst was investigated using incipient wetness impregnation, deposition precipitation, and ethylenediaminetetraacetic acid metal complex impregnation methods. H2-TPR confirmed the synergistic interaction of the dopants (Co and Cu) and Ni. Furthermore, XRD and HR-TEM revealed that the size of the Ni particle varied depending on the method of catalyst synthesis, confirming the formation of solid solutions in Co- or Cu-doped Ni/SBA-15 catalysts due to dopant insertion into the Ni. Notably, the exceptional activity of the Cu-Ni/SBA-15-EMC catalyst in FW steam gasification was attributed to the fine distribution of the concise Ni nanoparticles (9 nm), which resulted in the highest hydrogen selectivity (62 vol%), gas yield (73.6 wt%). Likewise, Cu-Ni solid solution decreased coke to 0.08 wt%.
  9. Mohd Nasir N, Mohd Yunos FH, Wan Jusoh HH, Mohammad A, Lam SS, Jusoh A
    J Environ Manage, 2019 Nov 01;249:109373.
    PMID: 31415924 DOI: 10.1016/j.jenvman.2019.109373
    Microalgae have been increasingly used to generate biofuel, thus a sustainable technique should be implemented to harvest the biomass to ensure its existence in the environment. Aspergillus niger was used as bio-flocculant to harvest microalgae from aquaculture wastewater via flocculation technique over a range of pH and mixing rate. The bio-flocculant showed ability to adapt at a wide range of pH from 3.0 to 9.0 and at a mixing rate of 100-150 rpm, producing a harvesting efficiency of higher than 90%. The treated water possessed low concentration of chlorophyll-a (0.3-0.6 mg L-1) and cell density (2 × 106-3 × 106 cell mL-1). These indicate that Aspergillus niger is a promising bio-flocculant to be used in harvesting microalgae, thus promoting the use of flocculation as a green technology in aquaculture wastewater treatment.
  10. Mohd Ali MA, Gimbun J, Lau KL, Cheng CK, Vo DN, Lam SS, et al.
    Environ Res, 2020 06;185:109452.
    PMID: 32259725 DOI: 10.1016/j.envres.2020.109452
    A synergistic effect of the activated limestone-based catalyst (LBC) and microwave irradiation on the transesterification of waste cooking oil (WCO) was screened using a two-level factorial design and response surface methodology. The catalyst was prepared using a wet-impregnation method and was characterised for its surface element, surface morphology, surface area and porosity. The reaction was performed in a purpose-built continuous microwave assisted reactor (CMAR), while the conversion and yield of biodiesel were measured using a gas chromatography. The results showed that the catalyst loading, methanol to oil molar ratio and the reaction time significantly affect the WCO conversion. The optimum conversion of oil to biodiesel up to 96.65% was achieved at catalyst loading of 5.47 wt%, methanol to oil molar ratio of 12.21:1 and the reaction time of 55.26 min. The application of CMAR in this work reduced the transesterification time by about 77% compared to the reaction time needed for a conventional reactor. The biodiesel produced in this work met the specification of American Society for Testing and Materials (ASTM D6751). Engine test results shows the biodiesel has a lower NOx and particulate matters emissions compared to petrodiesel.
  11. Mohammadi P, Taghavi E, Foong SY, Rajaei A, Amiri H, de Tender C, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124841.
    PMID: 37182628 DOI: 10.1016/j.ijbiomac.2023.124841
    Depending on its physicochemical properties and antibacterial activities, chitosan can have a wide range of applications in food, pharmaceutical, medicine, cosmetics, agriculture, and aquaculture. In this experimental study, chitosan was extracted from shrimp waste through conventional extraction, microwave-assisted extraction, and conventional extraction under microwave process conditions. The effects of the heating source on the physicochemical properties and antibacterial activity were investigated. The results showed that the heating process parameters affected the physicochemical properties considerably. The conventional procedure yielded high molecular weight chitosan with a 12.7 % yield, while the microwave extraction procedure yielded a porous medium molecular weight chitosan at 11.8 %. The conventional extraction under microwave process conditions led to medium molecular weight chitosan with the lowest yield (10.8 %) and crystallinity index (79 %). Antibacterial assessment findings revealed that the chitosan extracted using the conventional method had the best antibacterial activity in the agar disk diffusion assay against Listeria monocytogenes (9.48 mm), Escherichia coli. (8.79 mm), and Salmonella Typhimurium (8.57 mm). While the chitosan obtained by microwave-assisted extraction possessed the highest activity against E. coli. (8.37 mm), and Staphylococcus aureus (8.05 mm), with comparable antibacterial activity against S. Typhimurium (7.34 mm) and L. monocytogenes (6.52 mm). Moreover, the minimal inhibitory concentration and minimal bactericidal concentration assays demonstrated that among the chitosan samples investigated, the conventionally-extracted chitosan, followed by the chitosan extracted by microwave, had the best antibacterial activity against the target bacteria.
  12. Ma X, Cai L, Chen L, Fei B, Lu J, Xia C, et al.
    J Environ Manage, 2021 May 15;286:112190.
    PMID: 33636623 DOI: 10.1016/j.jenvman.2021.112190
    As an abundant and fast-growing biomass, bamboo can be used as construction materials owing to its desirable physical and mechanical properties, environmentally friendly features, and alternative to replace toxic and hazardous wastes in industrial processing. In this study, grid material made from bamboo (termed 'bamboo grid') was developed and compared to commercially used polyvinyl chloride (PVC) as packing material in cooling towers; PVC packing has drawbacks such as fouling, deposit buildup, low durability, and is harmful to environments. The cooling capacity, energy efficiency and environmental impact of bamboo grid packing were evaluated via life cycle assessment (LCA), particularly the cumulative energy demand (CED) and the Building for Environmental and Economic Sustainability (BEES). Although the thermal performance of the PVC packing was found higher than that of the bamboo grid packing, the bamboo grid packing showed improved resistance characteristic, recording a total saving of 529.2 tons of standard coal during a six-month field test in a real thermal power generation plant. LCA results revealed that the utilization of bamboo-grid packing to replace PVC packing in cooling towers reduced total CED from 3420 MJ to 561 MJ per functional unit, achieving 6 times reduction. A desirable reduction ranging from 1.5 to 10.5 times was also recorded for the BEES indices. This LCA comparison analysis confirmed the improvement of energy efficiency and reduction of environmental impact by using the bamboo grid to replace PVC as packing material in cooling towers. The major environmental impact (BEES) indices (e.g., the total Global warming potential, Acidification, Eutrophication and Smog) were reduced by 1.5-10.5 times via the use of bamboo grid. The results demonstrate that bamboo grid packing is a good alternative to replace existing grid packing materials such as concrete and PVC that are harmful to human health and environments.
  13. Ma NL, Teh KY, Lam SS, Kaben AM, Cha TS
    Bioresour Technol, 2015 Aug;190:536-42.
    PMID: 25812996 DOI: 10.1016/j.biortech.2015.03.036
    This study demonstrates the use of NMR techniques coupled with chemometric analysis as a high throughput data mining method to identify and examine the efficiency of different disruption techniques tested on microalgae (Chlorella variabilis, Scenedesmus regularis and Ankistrodesmus gracilis). The yield and chemical diversity from the disruptions together with the effects of pre-oven and pre-freeze drying prior to disruption techniques were discussed. HCl extraction showed the highest recovery of oil compounds from the disrupted microalgae (up to 90%). In contrast, NMR analysis showed the highest intensity of bioactive metabolites obtained for homogenized extracts pre-treated with freeze-drying, indicating that homogenizing is a more favorable approach to recover bioactive substances from the disrupted microalgae. The results show the potential of NMR as a useful metabolic fingerprinting tool for assessing compound diversity in complex microalgae extracts.
  14. Ma NL, Aziz A, Teh KY, Lam SS, Cha TS
    Sci Rep, 2018 06 27;8(1):9746.
    PMID: 29950688 DOI: 10.1038/s41598-018-27894-0
    Nitrate is required to maintain the growth and metabolism of plant and animals. Nevertheless, in excess amount such as polluted water, its concentration can be harmful to living organisms such as microalgae. Recently, studies on microalgae response towards nutrient fluctuation are usually limited to lipid accumulation for the production of biofuels, disregarding the other potential of microalgae to be used in wastewater treatments and as source of important metabolites. Our study therefore captures the need to investigate overall metabolite changes via NMR spectroscopy approach coupled with multivariate data to understand the complex molecular process under high (4X) and low (1/4X) concentrations of nitrate ([Formula: see text]). NMR spectra with the aid of chemometric analysis revealed contrasting metabolites makeup under abundance and limited nitrate treatment. By using NMR technique, 43 types of metabolites and 8 types of fatty acid chains were detected. Nevertheless, only 20 key changes were observed and 16 were down regulated in limited nitrate condition. This paper has demonstrated the feasibility of NMR-based metabolomics approach to study the physiological impact of changing environment such as pollution to the implications for growth and productivity of microalgae population.
  15. Ma NL, Hansen M, Roland Therkildsen O, Kjær Christensen T, Skjold Tjørnløv R, Garbus SE, et al.
    Environ Int, 2020 09;142:105866.
    PMID: 32590281 DOI: 10.1016/j.envint.2020.105866
    The Baltic/Wadden Sea Flyway of common eiders has declined over the past three decades. Multiple factors such as contaminant exposure, global warming, hunting, white-tailed eagle predation, decreased agricultural eutrophication and infectious diseases have been suggested to explain the decline. We collected information on body mass, mercury (Hg) concentration, biochemistry and untargeted metabolomics of incubating birds in two colonies in the Danish Straits (Hov Røn, n = 100; Agersø, n = 29) and in one colony in the Baltic proper (Christiansø, n = 23) to look into their metabolisms and energy balance. Body mass was available from early and late incubation for Hov Røn and Christiansø, showing a significant decline (25-30%) in both colonies with late body mass at Christiansø being the lowest. Whole blood concentrations of total mercury Hg were significantly higher in birds at Christiansø in the east compared to Hov Røn in the west. All birds in the three colonies had Hg concentrations in the range of ≤1.0 μg/g ww, which indicates that the risk of effects on reproduction is in the no to low risk category for wild birds. Among the biochemical measures, glucose, fructosamine, amylase, albumin and protein decreased significantly from early to late incubation at Hov Røn and Christiansø, reflecting long-term fastening as supported by the decline in body mass. Untargeted metabolomics performed on Christiansø eiders revealed presence of 8,433 plasma metabolites. Of these, 3,179 metabolites changed significantly (log2-fold change ≥1, p ≤ 0.05) from the early to late incubation. For example, smaller peptides and vitamin B2 (riboflavin) were significantly down-regulated while 11-deoxycorticosterone and palmitoylcarnitine were significantly upregulated. These results show that cumulative stress including fasting during incubation affect the eiders' biochemical profile and energy metabolism and that this may be most pronounced for the Christiansø colony in the Baltic proper. This amplify the events of temperature increases and food web changes caused by global warming that eventually accelerate the loss in body weight. Future studies should examine the relationship between body condition, temperature and reproductive outcomes and include mapping of food web contaminant, energy and nutrient content to better understand, manage and conserve the populations.
  16. Ma NL, Rahmat Z, Lam SS
    Int J Mol Sci, 2013 Apr 08;14(4):7515-41.
    PMID: 23567269 DOI: 10.3390/ijms14047515
    Physiological and ecological constraints that cause the slow growth and depleted production of crops have raised a major concern in the agriculture industry as they represent a possible threat of short food supply in the future. The key feature that regulates the stress signaling pathway is always related to the reactive oxygen species (ROS). The accumulation of ROS in plant cells would leave traces of biomarkers at the genome, proteome, and metabolome levels, which could be identified with the recent technological breakthrough coupled with improved performance of bioinformatics. This review highlights the recent breakthrough in molecular strategies (comprising transcriptomics, proteomics, and metabolomics) in identifying oxidative stress biomarkers and the arising opportunities and obstacles observed in research on biomarkers in rice. The major issue in incorporating bioinformatics to validate the biomarkers from different omic platforms for the use of rice-breeding programs is also discussed. The development of powerful techniques for identification of oxidative stress-related biomarkers and the integration of data from different disciplines shed light on the oxidative response pathways in plants.
  17. Lu L, Fan W, Meng X, Xue L, Ge S, Wang C, et al.
    Sci Total Environ, 2023 Jan 15;856(Pt 1):158798.
    PMID: 36116663 DOI: 10.1016/j.scitotenv.2022.158798
    The rapid development of the textile industry and improvement of people's living standards have led to the production of cotton textile and simultaneously increased the production of textile wastes. Cotton is one of the most common textile materials, and the waste cotton accounts for 24% of the total textile waste. To effectively manage the waste, recycling and reusing waste cotton are common practices to reduce global waste production. This paper summarizes the characteristics of waste cotton and high-value products derived from waste cotton (e.g., yarns, composite reinforcements, regenerated cellulose fibers, cellulose nanocrystals, adsorptive materials, flexible electronic devices, and biofuels) via mechanical, chemical, and biological recycling methods. The advantages and disadvantages of making high-value products from waste cotton are summarized and discussed. New technologies and products for recycling waste cotton are proposed, providing a guideline and direction for merchants and researchers. This review paper can shed light on converting textile wastes other than cotton (e.g., bast, silk, wool, and synthetic fibers) into value-added products.
  18. Low EJ, Yusoff HM, Batar N, Nor Azmi INZ, Chia PW, Lam SS, et al.
    Environ Sci Pollut Res Int, 2023 Jul;30(31):76297-76307.
    PMID: 37246180 DOI: 10.1007/s11356-023-27823-3
    Corrosion inhibitors have offered new opportunities to bring positive impacts on our society, especially when it has helped in protecting metals against corrosion in an aqueous solution. Unfortunately, the commonly known corrosion inhibitors used to protect metals or alloys against corrosion are invariably related to one or more drawbacks such as the employment of hazardous anti-corrosion agents, leakage of anti-corrosion agents in aqueous solution, and high solubility of anti-corrosion agents in water. Over the years, using food additives as anti-corrosion agents have drawn interest as it offers biocompatibility, less toxic, and promising applications. In general, food additives are considered safe for human consumption worldwide, and it was rigorously tested and approved by the US Food and Drug Administration. Nowadays, researchers are more interested in innovating and using green, less toxic, and economical corrosion inhibitors in metal and alloy protection. As such, we have reviewed the use of food additives to protect metals and alloys against corrosion. The current review is significant and differs from the previous review articles made on corrosion inhibitors, in which the new role of food additives is highlighted as green and environmental-friendly substances in the protection of metals and alloys against corrosion. It is anticipated that the next generation will be utilizing non-toxic and sustainable anti-corrosion agents, in which food additives might be the potential to fulfill the green chemistry goals.
  19. Lim LS, Tan KS, Fu MY, Au HL, Ebi I, Mohamad Lal MT, et al.
    Environ Res, 2021 07;198:110472.
    PMID: 33189743 DOI: 10.1016/j.envres.2020.110472
    The Bokashi leachate (BL) is a by-product from the anaerobic digestion of food waste, following the Bokashi composting method. Bokashi leachate is acidic and it contains effective microorganisms hence it has potential to be a functional feed additive to the plant proteins based diets for fish farming. This study evaluated the growth performance and feed utilization of the red tilapia (Oreochromis sp.) fingerlings fed with the BL supplemented soybean meal (SBM) based diets. After an 8-week feeding trial, fish fed with the 5% BL supplemented SBM diet attained the highest weight gain. This result was significantly higher (p  0.05) to those fed with the control full fish meal (FM) diet. Generally, dietary inclusion of BL enhanced the fish feed intake on the SBM diet but it did not show clear sign of improvement in their feed utilization. In addition, no significant difference was found across the hepatosomatic index and viscerosomatic index from all dietary treatments. These outcomes concluded that dietary inclusion of BL can enhance the feed intake and growth performance of the red tilapia fingerlings fed with the SBM based diet without compromising their health, and the optimum BL inclusion level was 5%. Nevertheless, further study on the properties and substances content of the BL produced from different types and ratios of food waste is strongly recommended. In this study, BL was also discovered to be capable of reducing the crude fiber content in the SBM diets. Such observation deserves a further exploitation on the application of BL to manipulate the crude fiber content in the plant proteins based diets in fish farming.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links