Displaying publications 81 - 100 of 149 in total

Abstract:
Sort:
  1. Liu J, Yinchai W, Siong TC, Li X, Zhao L, Wei F
    PLoS One, 2022;17(12):e0278819.
    PMID: 36508410 DOI: 10.1371/journal.pone.0278819
    Deep Residual Networks (ResNets) are prone to overfitting in problems with uncertainty, such as intrusion detection problems. To alleviate this problem, we proposed a method that combines the Adaptive Neuro-fuzzy Inference System (ANFIS) and the ResNet algorithm. This method can make use of the advantages of both the ANFIS and ResNet, and alleviate the overfitting problem of ResNet. Compared with the original ResNet algorithm, the proposed method provides overlapped intervals of continuous attributes and fuzzy rules to ResNet, improving the fuzziness of ResNet. To evaluate the performance of the proposed method, the proposed method is realized and evaluated on the benchmark NSL-KDD dataset. Also, the performance of the proposed method is compared with the original ResNet algorithm and other deep learning-based and ANFIS-based methods. The experimental results demonstrate that the proposed method is better than that of the original ResNet and other existing methods on various metrics, reaching a 98.88% detection rate and 1.11% false alarm rate on the KDDTrain+ dataset.
  2. Liu J, Yinchai W, Siong TC, Li X, Zhao L, Wei F
    Sci Rep, 2022 Dec 01;12(1):20770.
    PMID: 36456582 DOI: 10.1038/s41598-022-23765-x
    For generating an interpretable deep architecture for identifying deep intrusion patterns, this study proposes an approach that combines ANFIS (Adaptive Network-based Fuzzy Inference System) and DT (Decision Tree) for interpreting the deep pattern of intrusion detection. Meanwhile, for improving the efficiency of training and predicting, Pearson Correlation analysis, standard deviation, and a new adaptive K-means are used to select attributes and make fuzzy interval decisions. The proposed algorithm was trained, validated, and tested on the NSL-KDD (National security lab-knowledge discovery and data mining) dataset. Using 22 attributes that highly related to the target, the performance of the proposed method achieves a 99.86% detection rate and 0.14% false alarm rate on the KDDTrain+ dataset, a 77.46% detection rate on the KDDTest+ dataset, which is better than many classifiers. Besides, the interpretable model can help us demonstrate the complex and overlapped pattern of intrusions and analyze the pattern of various intrusions.
  3. Liu F, Wang H, Liang SN, Jin Z, Wei S, Li X, et al.
    Comput Biol Med, 2023 May;157:106790.
    PMID: 36958239 DOI: 10.1016/j.compbiomed.2023.106790
    Structural magnetic resonance imaging (sMRI) is a popular technique that is widely applied in Alzheimer's disease (AD) diagnosis. However, only a few structural atrophy areas in sMRI scans are highly associated with AD. The degree of atrophy in patients' brain tissues and the distribution of lesion areas differ among patients. Therefore, a key challenge in sMRI-based AD diagnosis is identifying discriminating atrophy features. Hence, we propose a multiplane and multiscale feature-level fusion attention (MPS-FFA) model. The model has three components, (1) A feature encoder uses a multiscale feature extractor with hybrid attention layers to simultaneously capture and fuse multiple pathological features in the sagittal, coronal, and axial planes. (2) A global attention classifier combines clinical scores and two global attention layers to evaluate the feature impact scores and balance the relative contributions of different feature blocks. (3) A feature similarity discriminator minimizes the feature similarities among heterogeneous labels to enhance the ability of the network to discriminate atrophy features. The MPS-FFA model provides improved interpretability for identifying discriminating features using feature visualization. The experimental results on the baseline sMRI scans from two databases confirm the effectiveness (e.g., accuracy and generalizability) of our method in locating pathological locations. The source code is available at https://github.com/LiuFei-AHU/MPSFFA.
  4. Lin Y, Sheng H, Ting TH, Xu A, Yin X, Cheng J, et al.
    PMID: 32792356 DOI: 10.1136/bmjdrc-2020-001345
    INTRODUCTION: A specific molecular diagnosis of monogenic diabetes mellitus (MDM) will help to predict the clinical course and guide management. This study aims to identify the causative genes implicated in Chinese patients with MDM with onset before 3 years of age.

    RESEARCH DESIGN AND METHODS: 71 children with diabetes mellitus (43 diagnosed before 6 months of age, and 28 diagnosed between 6 months and 3 years of age who were negative for diabetes-associated autoantibodies) underwent genetic testing with a combination strategy of Sanger sequencing, chromosome microarray analysis and whole exome sequencing. They were categorized into four groups according to the age of onset of diabetes (at or less than 6 months, 6 to 12 months, 1 to 2 years, 2 to 3 years) to investigate the correlation between genotype and phenotype.

    RESULTS: Genetic abnormalities were identified in 39 of 71 patients (54.93%), namely KCNJ11 (22), ABCC8 (3), GCK (3), INS (3), BSCL2 (1) and chromosome abnormalities (7). The majority (81.40%, 35/43) of neonatal diabetes diagnosed less than 6 months of age and 33.33% (3/9) of infantile cases diagnosed between 6 and 12 months of age had a genetic cause identified. Only 11.11% (1/9) of cases diagnosed between 2 and 3 years of age were found to have a genetic cause, and none of the 10 patients diagnosed between 1 and 2 years had a positive result in the genetic analysis. Vast majority or 90.48% (19/21) of patients with KCNJ11 (19) or ABCC8 (2) variants had successful switch trial from insulin to oral sulfonylurea.

    CONCLUSIONS: This study suggests that genetic testing should be given priority in diabetes cases diagnosed before 6 months of age, as well as those diagnosed between 6 and 12 months of age who were negative for diabetes-associated autoantibodies. This study also indicates significant impact on therapy with genetic cause confirmation.

  5. Lim KY, Yasim-Anuar TAT, Sharip NS, Ujang FA, Husin H, Ariffin H, et al.
    Polymers (Basel), 2023 Mar 01;15(5).
    PMID: 36904501 DOI: 10.3390/polym15051258
    Lignin is a natural biopolymer with a complex three-dimensional network and it is rich in phenol, making it a good candidate for the production of bio-based polyphenol material. This study attempts to characterize the properties of green phenol-formaldehyde (PF) resins produced through phenol substitution by the phenolated lignin (PL) and bio-oil (BO), extracted from oil palm empty fruit bunch black liquor. Mixtures of PF with varied substitution rates of PL and BO were prepared by heating a mixture of phenol-phenol substitute with 30 wt.% NaOH and 80% formaldehyde solution at 94 °C for 15 min. After that, the temperature was reduced to 80 °C before the remaining 20% formaldehyde solution was added. The reaction was carried out by heating the mixture to 94 °C once more, holding it for 25 min, and then rapidly lowering the temperature to 60 °C, to produce the PL-PF or BO-PF resins. The modified resins were then tested for pH, viscosity, solid content, FTIR, and TGA. Results revealed that the substitution of 5% PL into PF resins is enough to improve its physical properties. The PL-PF resin production process was also deemed environmentally beneficial, as it met 7 of the 8 Green Chemistry Principle evaluation criteria.
  6. Li Z, Zhang F, Shi J, Chan NW, Tan ML, Kung HT, et al.
    Mar Pollut Bull, 2023 Nov;196:115653.
    PMID: 37879130 DOI: 10.1016/j.marpolbul.2023.115653
    Chromophoric dissolved organic matter (CDOM) occupies a critical part in biogeochemistry and energy flux of aquatic ecosystems. CDOM research spans in many fields, including chemistry, marine environment, biomass cycling, physics, hydrology, and climate change. In recent years, a series of remarkable research milestone have been achieved. On the basis of reviewing the research process of CDOM, combined with a bibliometric analysis, this study aims to provide a comprehensive review of the development and applications of remote sensing in monitoring CDOM from 2003 to 2022. The findings show that remote sensing data plays an important role in CDOM research as proven with the increasing number of publications since 2003, particularly in China and the United States. Primary research areas have gradually changed from studying absorption and fluorescence properties to optimization of remote sensing inversion models in recent years. Since the composition of oceanic and freshwater bodies differs significantly, it is important to choose the appropriate inversion method for different types of water body. At present, the monitoring of CDOM mainly relies on a single sensor, but the fusion of images from different sensors can be considered a major research direction due to the complex characteristics of CDOM. Therefore, in the future, the characteristics of CDOM will be studied in depth inn combination with multi-source data and other application models, where inversion algorithms will be optimized, inversion algorithms with low dependence on measured data will be developed, and a transportable inversion model will be built to break the regional limitations of the model and to promote the development of CDOM research in a deeper and more comprehensive direction.
  7. Li Y, Ouyang Y, Wu H, Wang P, Huang Y, Li X, et al.
    Eur J Med Chem, 2022 Jan 15;228:113979.
    PMID: 34802838 DOI: 10.1016/j.ejmech.2021.113979
    The shortage of new antibiotics makes infections caused by gram-negative (G-) bacteria a significant clinical problem. The key enzymes involved in folate biosynthesis represent important targets for drug discovery, and new antifolates with novel mechanisms are urgently needed. By targeting to dihydrofolate reductase (DHFR), a series of 1,3-diamino-7H-pyrrol[3,2-f]quinazoline (PQZ) compounds were designed, and exhibited potent antibacterial activities in vitro, especially against multi-drug resistant G- strains. Multiple experiments indicated that PQZ compounds contain a different molecular mechanism against the typical DHFR inhibitor, trimethoprim (TMP), and the thymidylate synthase (TS) was identified as another potential but a relatively weak target. A significant synergism between the representative compound, OYYF-175, and sulfamethoxazole (SMZ) was observed with a strong cumulative and significantly bactericidal effect at extremely low concentrations (2 μg/mL for SMZ and 0.03 pg/mL for OYYF-175), which could be resulted from the simultaneous inhibition of dihydropteroate synthase (DHPS), DHFR and TS. PQZ compounds exhibited therapeutic effects in a mouse model of intraperitoneal infections caused by Escherichia coli (E. coli). The co-crystal structure of OYYF-175-DHFR was solved and the detailed interactions were provided. The inhibitors reported represent innovative chemical structures with novel molecular mechanism of action, which will benefit the generation of new, efficacious bactericidal compounds.
  8. Li XP, Lin D, Zhang Y, Chen SQ, Bai HQ, Zhang SN, et al.
    Trop Biomed, 2020 Mar 01;37(1):116-126.
    PMID: 33612723
    Several bioactive molecules isolated from the saliva of blood-sucking arthropods, such as mosquitoes, have been shown to exhibit potential anticoagulant function. We have previously identified a 30kDa allergen named Aegyptin-like protein (alALP), which is highly homologous to Aegyptin, from the salivary glands of female Aedes albopictus (Asian tiger mosquito). In this study, we identified the conserved functional domain of alALP by using bioinformatic tools, and expressed the His-tagged alALP recombinant protein in sf9 insect cells by generation and transfection of a baculoviral expression plasmid carrying the fulllength cDNA of alALP. We purified this recombinant protein and examined its function on the inhibition of blood coagulation. The results showed that the purified His-alALP prolonged the Activated Partial Thromboplastin Time (APTT), Prothrombin Time (PT) and Thrombin Time (TT) in vitro as well as the Bleeding Time (BT) in vivo, which suggest that alALP could be a novel anticoagulant.
  9. Li X, Wang X, Song T, Lu W, Chen Z, Shi X
    J Anal Methods Chem, 2015;2015:675827.
    PMID: 26491602 DOI: 10.1155/2015/675827
    DNA strand displacement technique is widely used in DNA programming, DNA biosensors, and gene analysis. In DNA strand displacement, leaky reactions can cause DNA signals decay and detecting DNA signals fails. The mostly used method to avoid leakage is cleaning up after upstream leaky reactions, and it remains a challenge to develop reliable DNA strand displacement technique with low leakage. In this work, we address the challenge by experimentally evaluating the basic factors, including reaction time, ratio of reactants, and ion concentration to the leakage in DNA strand displacement. Specifically, fluorescent probes and a hairpin structure reporting DNA strand are designed to detect the output of DNA strand displacement, and thus can evaluate the leakage of DNA strand displacement reactions with different reaction time, ratios of reactants, and ion concentrations. From the obtained data, mathematical models for evaluating leakage are achieved by curve derivation. As a result, it is obtained that long time incubation, high concentration of fuel strand, and inappropriate amount of ion concentration can weaken leaky reactions. This contributes to a method to set proper reaction conditions to reduce leakage in DNA strand displacement.
  10. Li X, Hussain SA, Sobri S, Md Said MS
    Chemosphere, 2021 May;271:129502.
    PMID: 33465622 DOI: 10.1016/j.chemosphere.2020.129502
    Most developing countries in the world face the common challenges of reducing air pollution and advancing the process of sustainable development, especially in China. Air pollution research is a complex system and one of the main methods is through numerical simulation. The air quality model is an important technical method, it allows researchers to better analyze air pollutants in different regions. In addition, the SCB is a high-humidity and foggy area, and the concentration of atmospheric pollutants is always high. However, research on this region, one of the four most polluted regions in China, is still lacking. Reviewing the application of air quality models in the SCB air pollution has not been reported thoroughly. To fill these gaps, this review provides a comprehensive narration about i) The status of air pollution in SCB; ii) The application of air quality models in SCB; iii) The problems and application prospects of air quality models in the research of air pollution. This paper may provide a theoretical reference for the prevention and control of air pollution in the SCB and other heavily polluted areas in China and give some1inspirations for air pollution forecast in other countries with complex terrain.
  11. Li X, Tan CP, Liu YF, Xu YJ
    J Agric Food Chem, 2020 Dec 16;68(50):14728-14738.
    PMID: 33289375 DOI: 10.1021/acs.jafc.0c07378
    The intestine is an important digestive organ of the human body, and its barrier is the guardian of the body from the external environment. The impairment of the intestinal barrier is believed to be an important determinant in various foodborne diseases. Food hazards can lead to the occurrence of many foodborne diseases represented by inflammation. Therefore, understanding the mechanisms of the impact of the food hazards on intestinal barriers is essential for promoting human health. This review examined the relationship between food hazards and the intestinal barrier in three aspects: apoptosis, imbalance of gut microbiota, and pro-inflammatory cytokines. The mechanism of dysfunctional gut microbiota caused by food hazards was also discussed. This review discusses the interaction among food hazards, intestinal barrier, and foodborne diseases and, thus, offers a new thought to deal with foodborne disease.
  12. Li X, Liu YJ, Nian BB, Cao XY, Tan CP, Liu YF, et al.
    Food Chem, 2022 Mar 30;373(Pt B):131285.
    PMID: 34740049 DOI: 10.1016/j.foodchem.2021.131285
    The digestion behavior of epoxy triglyceride, the main cytotoxic product of deep-frying oil, remains unknown, which may affect its biosafety. In this study, epoxy triglyceride (EGT) and triglyceride (GT) were used to reveal the effect of epoxy group on digestion. Digestibility rate analysis showed that the free fatty acids release rate of EGT was slower. To clarify this phenomenon, binding ability with salt ions in digestive juice and particle size were also been studied. Cluster size analysis indicated that epoxy group increased triglyceride particle size, resulting in smaller contact area between EGT and lipase. Interface behaviors displayed EGT decreased binding ability with salt ions in digestive juice. Spectroscopic analysis showed EGT caused the red shift of lipase peak, indicating that epoxy group changed lipase structure. Molecular dynamics simulation suggested EGT leads to loosen lipase structure. In conclusion, this study highlights that epoxy group could weaken the triglyceride digestion.
  13. Li X, Nian BB, Tan CP, Liu YF, Xu YJ
    J Sci Food Agric, 2021 Nov 17.
    PMID: 34786719 DOI: 10.1002/jsfa.11659
    BACKGROUND: Deep-frying oil has been found to cause inflammatory bowel disease (IBD). However, the molecular mechanism of the effect of deep-frying palm oil on IBD still remains undetermined.

    RESULTS: In the present study, bioinformatics and cell biology were used to investigate the functions and signal pathway enrichments of differentially expressed genes. The bioinformatics analysis of three original microarray datasets (GSE73661, GSE75214 and GSE126124) in the NCBI-Gene Expression Omnibus database showed 17 down-regulated genes (logFC  0) existed in the enteritis tissue. Meanwhile, pathway enrichment and protein-protein interaction network analysis suggested that IBD is relevant to cytotoxicity, inflammation and apoptosis. Furthermore, Caco-2 cells were treated with the main oxidation products of deep-frying oil-total polar compounds (TPC) and its components (polymerized triglyceride, oxidized triglycerides and triglyceride degradation products) isolated from deep-frying oil. The flow cytometry experiment revealed that TPC and its components could induce apoptosis, especially for oxidized triglyceride. A quantitative polymerase chain reaction analysis demonstrated that TPC and its component could induce Caco-2 cell apoptosis through AQP8/CXCL1/TNIP3/IL-1.

    CONCLUSION: The present study provides fundamental knowledge for understanding the effects of deep-frying oils on the cytotoxic and inflammatory of Caco-2 cells, in addition to clarifying the molecular function mechanism of deep-frying oil in IBD. © 2021 Society of Chemical Industry.

  14. Li X, Gopinath SCB, Peng X, Lv J
    J Biomed Nanotechnol, 2021 Dec 01;17(12):2495-2504.
    PMID: 34974872 DOI: 10.1166/jbn.2021.3213
    An aptasensor was developed on an interdigitated microelectrode (IDME) by current-volt sensing for the diagnosis of ulcerative colitis by detecting the biomarker lipocalin-2. Higher immobilization of the anti-lipocalin-2 aptamer as a probe was achieved by using sodium dodecyl benzenesulfonate-aided zeolite particles. FESEM and FETEM observations revealed that the size of the zeolite particles was <200 nm, and they displayed a uniform distribution and spherical shape. XPS analysis attested the occurrence of Si, Al, and O groups on the zeolite particles. Zeolite particles were immobilized on IDME by a (3-aminopropyl)-trimethoxysilane amine linker, and then, the aptamer as the probe was tethered on the zeolite particles through a biotin-streptavidin strategy assisted by a bifunctional aldehyde linker. Due to the high occupancy of the aptamer and the efficient electric transfer from zeolite particles, higher changes in current can be observed upon interaction of the aptamer with lipocalin-2. The lower detection of lipocalin-2 was noted as 10 pg/mL, with a linear range from 10 pg/mL to 1 μg/mL and a linear regression equation of y=8E-07x+8E-08; R² = 0.991. Control experiments with complementary aptamer and matrix metalloproteinase-9 indicate the specific detection of lipocalin-2. Furthermore, spiking lipocalin-2 in human serum does not interfere with the identification.
  15. Li X, Gao D, Paudel YN, Li X, Zheng M, Liu G, et al.
    ACS Chem Neurosci, 2022 Feb 02;13(3):330-339.
    PMID: 35044760 DOI: 10.1021/acschemneuro.1c00656
    Parkinson's disease (PD) is a devastating disease of the central nervous system that occurs mainly in the elderly age group, affecting their quality of life. The PD pathogenesis is not yet fully understood and lacks the disease-modifying treatment strategies. Sanghuangprous vaninii (S. vaninii) is a perennial fungus with a plethora of pharmacological activities including anti-cancer and antioxidant activity and so on. However, no study till date has reported its neuroprotective effect against symptoms that are similar to PD in pre-clinical investigation. In the current study, we investigated anti-PD-like effects of S. vaninii mycelium extracts (SvMEs) on MPTP-induced PD in zebrafish. We observed that the loss of dopaminergic neurons and neurovascular reduction were reversed by using SvMEs in the zebrafish brain in a concentration-independent manner. Moreover, it also relieved locomotor impairments in MPTP-induced PD zebrafish. In addition, SvMEs exerted significant antioxidant activity in vitro, which was also demonstrated in vivo on ktr4:NTR-hKikGR zebrafish. Upon investigating the underlying mechanism, we found that SvMEs may alleviate oxidant stress and accelerate α-synuclein degradation and then alleviate PD-like symptoms. Antioxidant-related genes (sod1, gss, gpx4a, gclm, and cat) implied that the SvMEs exhibited anti-PD activity due to the antioxidation mechanism. Finally, upon analysis of chemical composition of SvMEs by liquid chromatography-mass spectrometry, we identified 10 compounds that are plausibly responsible for the anti-PD-like effect of SvMEs. On the limiting part, the finding of the study would have been more robust had we investigated the protein expression of genes related to PD and oxidative stress and compared the effects of SvMEs with any standard anti-PD therapy. Despite this, our results indicated that SvMEs possess anti-PD effects, indicating SvMEs as a potential candidate that is worth exploring further in this avenue.
  16. Li X, Xu A, Sheng H, Ting TH, Mao X, Huang X, et al.
    Pediatr Diabetes, 2018 03;19(2):251-258.
    PMID: 28791793 DOI: 10.1111/pedi.12560
    BACKGROUND: Sulfonylurea therapy can improve glycemic control and ameliorate neurodevelopmental outcomes in patients suffering from neonatal diabetes mellitus (NDM) with KCNJ11 or ABCC8 mutations. As genetic testing results are often delayed, it remains controversial whether sulfonylurea treatment should be attempted immediately at diagnosis or doctors should await genetic confirmation.

    OBJECTIVE: This study aimed to investigate the effectiveness and safety of sulfonylurea therapy in Chinese NDM patients during infancy before genetic testing results were available.

    METHODS: The medical records of NDM patients with their follow-up details were reviewed and molecular genetic analysis was performed. Sulfonylurea transfer regimens were applied in patients diagnosed after May 2010, and glycemic status and side effects were evaluated in each patient.

    RESULTS: There were 23 NDM patients from 22 unrelated families, 10 had KCNJ11 mutations, 3 harbored ABCC8 mutations, 1 had INS mutations, 4 had chromosome 6q24 abnormalities, 1 had a deletion at chromosome 1p36.23p36.12, and 4 had no genetic abnormality identified. Sixteen NDM infants were treated with glyburide at an average age of 49 days (range 14-120 days) before genetic confirmation. A total of 11 of 16 (69%) were able to successfully switch to glyburide with a more stable glucose profile. The responsive glyburide dose was 0.51 ± 0.16 mg/kg/d (0.3-0.8 mg/kg/d), while the maintenance dose was 0.30 ± 0.07 mg/kg/d (0.2-0.4 mg/kg/d). No serious adverse events were reported.

    CONCLUSIONS: Molecular genetic diagnosis is recommended in all patients with NDM. However, if genetic testing results are delayed, sulfonylurea therapy should be considered before such results are received, even in infants with newly diagnosed NDM.

  17. Li X, Ting TH, Sheng H, Liang CL, Shao Y, Jiang M, et al.
    BMC Pediatr, 2018 03 06;18(1):101.
    PMID: 29510678 DOI: 10.1186/s12887-018-1060-8
    BACKGROUND: There is scarcity of information on the clinical features and genetics of glucokinase-maturity-onset diabetes of the young (GCK-MODY) in China. The aim of the study was to investigate the clinical and molecular characteristics of Chinese children with GCK-MODY.

    METHODS: Eleven children with asymptomatic hyperglycemia and clinically suspected GCK-MODY were identified from the database of children with diabetes in the biggest children's hospital in South China. Clinical data were obtained from medical records. Blood was collected from the patients and their parents for glucokinase (GCK) gene analysis. Parents without diabetes were tested for fasting glucose and HbA1c. Clinical information and blood for GCK gene analysis were obtained from grandparents with diabetes. GCK gene mutational analysis was performed by polymerase chain reaction and direct sequencing. Patients without a GCK gene mutation were screened by targeted next-generation sequencing (NGS) technology for other MODY genes.

    RESULTS: Nine children tested positive for GCK gene mutations while two were negative. The nine GCK-MODY patients were from unrelated families, aged 1 month to 9 years and 1 month at first detection of hyperglycaemia. Fasting glucose was elevated (6.1-8.5 mmol/L), HbA1c 5.2-6.7% (33.3-49.7 mmol/mol), both remained stable on follow-up over 9 months to 5 years. Five detected mutations had been previously reported: p.Val182Met, c.679 + 1G > A, p.Gly295Ser, p.Arg191Gln and p.Met41Thr. Four mutations were novel: c.483 + 2 T > A, p.Ser151del, p.Met57GlyfsX29 and p.Val374_Ala377del. No mutations were identified in the other two patients, who were also tested by NGS.

    CONCLUSIONS: GCK gene mutations are detected in Chinese children and their family members with typical clinical features of GCK-MODY. Four novel mutations are detected.
  18. Li X, Abdullah LC, Sobri S, Syazarudin Md Said M, Aslina Hussain S, Poh Aun T, et al.
    J Air Waste Manag Assoc, 2023 Sep;73(9):649-678.
    PMID: 37449903 DOI: 10.1080/10962247.2023.2232744
    Clarifying the spatiotemporal distribution and impact mechanism of pollution is the prerequisite for megacities to formulate relevant air pollution prevention and control measures and achieve carbon neutrality goals. Chongqing is one of the dual-core key megacities in Cheng-Yu region and as a typical mountain-city in China, environmental problems are complex and sensitive. This research aims to investigate the exceeding standard levels and spatio-temporal evolution of criteria pollutants between 2014 and 2020. The results indicated that PM10, PM2.5, CO and SO2 were decreased significantly by 45.91%, 52.86%, 38.89% and 66.67%, respectively. Conversely, the concentration of pollutant O3 present a fluctuating growth and found a "seesaw" phenomenon between it and PM. Furthermore, PM and O3 are highest in winter and summer, respectively. SO2, NO2, CO, and PM showed a "U-shaped", and O3 showed an inverted "U-shaped" seasonal variation. PM and O3 concentrations are still far behind the WHO, 2021AQGs standards. Significant spatial heterogeneity was observed in air pollution distribution. These results are of great significance for Chongqing to achieve "double control and double reduction" of PM2.5 and O3 pollution, and formulate a regional carbon peaking roadmap under climate coordination. Besides, it can provide an important platform for exploring air pollution in typical terrain around the world and provide references for related epidemiological research.Implications: Chongqing is one of the dual-core key megacities in Cheng-Yu region and as a typical mountain city, environmental problems are complex and sensitive. Under the background of the "14th Five-Year Plan", the construction of the "Cheng-Yu Dual-City Economic Circle" and the "Dual-Carbon" goal, this article comprehensively discussed the annual and seasonal excess levels and spatiotemporal evolution of pollutants under the multiple policy and the newest international standards (WHO,2021AQG) backgrounds from 2014 to 2020 in Chongqing. Furthermore, suggestions and measures related to the collaborative management of pollutants were discussed. Finally, limitations and recommendations were also put forward.Clarifying the spatiotemporal distribution and impact mechanism of pollution is the prerequisite for cities to formulate relevant air pollution control measures and achieve carbon neutrality goals. This study is of great significance for Chongqing to achieve "double control and double reduction" of PM2.5 and O3 pollution, study and formulate a regional carbon peaking roadmap under climate coordination and an action plan for sustained improvement of air quality.In addition, this research can advanced our understanding of air pollution in complex terrain. Furthermore, it also promote the construction of the China national strategic Cheng-Yu economic circle and build a beautiful west. Moreover, it provides scientific insights for local policymakers to guide smart urban planning, industrial layout, energy structure, and transportation planning to improve air quality throughout the Cheng-Yu region. Finally, this is also conducive to future scientific research in other regions of China, and even megacities with complex terrain in the world.
  19. Li X, Che CC, Li Y, Wang L, Chong MC
    BMC Nurs, 2023 Sep 12;22(1):312.
    PMID: 37700282 DOI: 10.1186/s12912-023-01473-9
    BACKGROUND: Studies have shown that second-victim experiences could increase risks of the compassion fatigue while support from individuals and organisations is most often protection. However, the risk for poor compassion satisfaction and increased compassion fatigue in nurses aroused by adverse events remains an underestimated problem, meanwhile, litter known about the role of positive and negative coping styles among nurses suffering from adverse events. This study aims to investigate the effect of second-victim experiences on the professional quality of life among nurses and to determine the mediating role of coping styles in the relationship between second-victim experiences and professional quality of life.

    METHODS: Multistage sampling was used to recruit registered nurses from Hunan province in China. Registered nurses who identified themselves as experiencing adverse events from nine tertiary hospitals were included in this study. Participants were recruited to complete a survey on the second victim experience and support tool, the simplified coping style questionnaire, and the professional quality of life scale. The stress coping theory was used to develop the framework in this study. The structural equation modelling approach was used for conducting the mediating effects analysis via IBM SPSS Statistics 26.0 and Mplus 8.3.

    RESULTS: In total, 67% (n = 899) of nurses reported a second victim experience during their careers. In a bivariate analysis, both second-victims experiences and coping styles were significantly associated with their professional quality of life. The results showed that the effects of second victim experiences on their professional quality of life were fully mediated by coping styles. A total of 10 significantly indirect pathways were estimated, ranging from -0.243 to 0.173.

    CONCLUSIONS: Second-victim experiences are common among nurses in this study. Since the mediating effects of coping styles were clarified in this study, it is imperative to promote the perception of negative coping styles and encourage nurses to adopt more positive coping styles with adequate support systems.

  20. Li X, Cui W, Chee WM
    Heliyon, 2023 Jul;9(7):e17896.
    PMID: 37483812 DOI: 10.1016/j.heliyon.2023.e17896
    A top-notch travel experience is vital for boosting a destination's competitiveness. Outbound travel notes of online travel agency capture tourists' experiences and emotions during their journeys, providing valuable insights for understanding tourist consumption behavior and improving tourism service policies. This study analyzes 1,012 travel blogs of Chinese tourists visiting Malaysia using grounded theory methodology. A dual-factor theoretical model is developed through open coding, spindle coding, and selective coding, illustrating the attention allocation problem of outbound tourists in their travel experiences. The study's hygiene factors comprise basic features, management aspects, and transportation components, while motivational factors include cultural elements, resource considerations, emotional factors, media influences, and commercial aspects. Research findings indicate that outbound tourists prioritize motivational factors, such as interpersonal service attributes and inherent emotional components. These factors play a crucial role in stimulating travel motivation and crafting memorable experiences. Moreover, hygiene factors, like infrastructure and security conditions, also impact tourists' experiences and are crucial for reducing dissatisfaction among outbound travelers. These results provide fresh perspectives on the factors influencing outbound tourists' experiences and their focal points during trips. The findings have significant implications for public sectors and industry professionals in tourism. By addressing the motivating and hygiene factors important to outbound tourists, they can enhance and fine-tune tourism service policies, ultimately increasing destination competitiveness. Measures such as improving infrastructure, raising service quality, and amplifying cultural experiences at the destination can all contribute to better travel experiences for tourists.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links