Displaying publications 81 - 100 of 871 in total

Abstract:
Sort:
  1. Javad Sajjadi Shourije SM, Dehghan P, Bahrololoom ME, Cobley AJ, Vitry V, Pourian Azar GT, et al.
    Chemosphere, 2023 Mar;317:137829.
    PMID: 36640980 DOI: 10.1016/j.chemosphere.2023.137829
    In this study, fish scales (Pomadasys kaakan's scales) were used as new biosorbent for removing Ni2+ and Cu2+ ions from wastewater. The effects of electric and magnetic fields on the absorption efficiency were also investigated. The effects of sorbent content, ion concentration, contact time, pH, electric field (EF), and magnetic field (MF) on absorption efficiency were assertained. In addition, the isotherm of absorption was studied in this work. This study revealed that electric field and magnetic field have significant effects on the absorption efficiency of ions from wastewater. An increase in the electric field enhanced the removal percentage of the ions and accelerated the absorption process by up to 40% in comparison with the same condition without an electric field or a magnetic field. By increasing contact time from 10 to 120 min, the removal of Ni2+ ions was increased from 1% to 40% and for Cu2+ ions, the removal increased from 20% to almost 95%, respectively. In addition, increasing pH, ion concentration and scales dose increased removal percentage effectively. The results indicated that using fish scales for Cu2+ ions absorption is ideal due to the very high removal percentage (approximately 95%) without using either an electric or magnetic field.
    Matched MeSH terms: Adsorption
  2. Lim CC, Shuit SH, Ng QH, Rahim SKEA, Hoo PY, Yeoh WM, et al.
    Environ Sci Pollut Res Int, 2023 Mar;30(14):40242-40259.
    PMID: 36604398 DOI: 10.1007/s11356-022-25064-4
    In view of the simple and rapid conveniency of magnetic separation, magnetic nanocomposites had notably gained attention from researchers for environmental field applications. In this work, carboxylated magnetic multi-walled carbon nanotubes (c-MMWCNTs) and novel sulfonated MMWCNTs (s-MMWCNTs) were synthesized by a facile solvent-free direct doping method. Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, vibrating sample magnetometer, and point of zero charge analyses confirmed the successful doping of the Fe3O4 nanoparticles into the functionalized MWCNTs to form MMWCNTs. Besides, the bonding stabilities of both c-MMWCNTs and s-MMWCNTs were compared, and results showed that s-MMWCNTs possessed more substantial bonding stability than that of c-MMWCNTs with significantly less leaching amount of Fe3O4. The adsorption capacity of s-MMWCNTs was higher than that of c-MMWCNTs owing to the stronger electronegativity sulfonic group in s-MMWCNTs. Moreover, the reusability experiments proved that the adsorbent remained consistently excellent MB removal efficiency (R > 94%) even reused for twelve cycles of batch adsorption. The finding of the present work highlights the simple fabrication of novel s-MMWCNTs and its potential to be served as a promising and sustainable adsorbent for water remediation owing to its enhanced bonding stability, high adsorption performance, magnetic separability, and supreme recyclability.
    Matched MeSH terms: Adsorption
  3. Vejan P, Abdullah R, Ahmad N, Khadiran T
    Environ Sci Pollut Res Int, 2023 Mar;30(13):38738-38750.
    PMID: 36585594 DOI: 10.1007/s11356-022-24970-x
    The oil palm kernel shell biochar (OPKS-B) and oil palm kernel shell activated carbon (OPKS-AC) were used as a framework to entrap urea using adsorption method. Batch adsorption studies were performed to gauge the influence of contact time on the adsorption of urea onto both OPKS-B and OPKS-AC. To evaluate the physicochemical traits of the studied materials, energy dispersive X-ray spectrometer (EDS), N2-sorption, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), elemental analysis, differential thermal gravity (TG/DTG) and thermal gravity were applied. Result shows OPKS-AC has a better sorption capacity for urea compared to OPKS-B. The Langmuir isotherm model better justified the sorption isotherms of urea. For the adsorption process for both OPKS-B and OPKS-AC, the pseudo-second-order kinetic model was picked as it best fitted the experimental sorption outcome with the superior R2 values of > 65.1% and > 74.5%, respectively. The outcome of the experiments showcased that the maximum monolayer adsorption capacity of the OPKS-AC towards urea was 239.68 mg/g. OPKS-AC has showed promising attributes to be picked as an organic framework in the production of controlled release urea fertiliser for a greener and environmentally friendly agricultural practices.
    Matched MeSH terms: Adsorption
  4. Abunowara M, Bustam MA, Sufian S, Babar M, Eldemerdash U, Mukhtar A, et al.
    Environ Res, 2023 Feb 01;218:114905.
    PMID: 36442522 DOI: 10.1016/j.envres.2022.114905
    CO2 sequestration into coalbed seams is one of the practical routes for mitigating CO2 emissions. The adsorption mechanisms of CO2 onto Malaysian coals, however, are not yet investigated. In this research CO2 adsorption isotherms were first performed on dry and wet Mukah-Balingian coal samples at temperatures ranging from 300 to 348 K and pressures up to 6 MPa using volumetric technique. The dry S1 coal showed the highest CO2 adsorption capacity of 1.3 mmol g-1, at 300 K and 6 MPa among the other coal samples. The experimental results of CO2 adsorption were investigated using adsorption isotherms, thermodynamics, and kinetic models. Nonlinear analysis has been employed to investigate the data of CO2 adsorption onto coal samples via three parameter isotherm equilibrium models, namely Redlich Peterson, Koble Corrigan, Toth, Sips, and Hill, and four parameter equilibrium model, namely Jensen Seaton. The results of adsorption isotherm suggested that the Jensen Seaton model described the experimental data well. Gibb's free energy change values are negative, suggesting that CO2 adsorption onto the coal occurred randomly. Enthalpy change values in the negative range established that CO2 adsorption onto coal is an exothermic mechanism. Webber's pore-diffusion model, in particular, demonstrated that pore-diffusion was the main controlling stage in CO2 adsorption onto coal matrix. The activation energy of the coals was calculated to be below -13 kJ mol-1, indicating that adsorption of CO2 onto coals occurred through physisorption. The results demonstrate that CO2 adsorption onto coal matrix is favorable, spontaneous, and the adsorbed CO2 molecules accumulate more onto coal matrix. The observations of this investigation have significant implications for a more accurate measurement of CO2 injection into Malaysian coalbed seams.
    Matched MeSH terms: Adsorption
  5. Nor NM, Chung LL, Mohamed AR
    Environ Sci Pollut Res Int, 2023 Feb;30(7):17129-17148.
    PMID: 35554814 DOI: 10.1007/s11356-022-20627-x
    Removal of H2S (hydrogen sulfide) from biogas is anticipated for higher energy conversion of methane (CH4), while reducing the detrimental impacts of corroding the metal parts in the plant and its hazardous effect on humans and the environment. The introduction of microwave (MW) heating and nitrogen-modification could generate superior adsorbent features, contributing to high H2S removal. Up to date, there is no work reported on the influence of physicochemical characteristics of nitrogen-modified carbon synthesized via MW and conventional heating (TH) methods and their performance in H2S removal. Palm shell activated carbon (PSAC) was functionalized with nitrogen groups via urea impregnation, followed by the synthesis of MW and TH at 950 °C, 500 ml/min of N2 flow rate and 30 min of heating time. MW and TH heating effects on the modified PSAC adsorbent were analysed and compared towards hydrogen sulfide (H2S) removal. PSAC with nitrogen functionalization produced using MW heating (PSAC-MW) demonstrates superior performance, with an adsorption capacity of 356.94 mg/g. The adsorbent sample generated using MW heating exhibited notable properties, including a large surface area and a sponge-like structure, with new pores developed within the current pores. Instead of that, there was an observation of 'hot spot' appearance during the MW heating process, which is believed to be responsible for the development of physical and chemical characteristics of the adsorbent. Thus, it is believed that MW heating was assisted in the development of the adsorbent's properties and at the same time contributed to the high removal of H2S at low adsorption temperature. The utilization of biomass-based adsorbent (PSAC) for H2S removal can address the lignocellulosic waste disposal problem, while mitigating the H2S release from the biogas production plants thus has several environmental merits. This indirectly contributed to zero-waste generation, while overcoming the adverse effects of H2S.
    Matched MeSH terms: Adsorption
  6. Tran TV, Nguyen DTC, Nguyen TTT, Nguyen DH, Alhassan M, Jalil AA, et al.
    Sci Total Environ, 2023 Jan 15;856(Pt 1):158817.
    PMID: 36116641 DOI: 10.1016/j.scitotenv.2022.158817
    Each year, nearly 30 million tons of pineapple fruit are harvested for food and drinking industries, along with the release of a huge amount of pineapple wastes. Without the proper treatment, pineapple wastes can cause adverse impacts on the environment, calling for new technologies to convert them into valuable products. Here, we review the production and application of adsorbents derived from pineapple wastes. The thermal processing or chemical modification improved the surface chemistry and porosity of these adsorbents. The specific surface areas of the pineapple wastes-based adsorbents were in range from 4.2 to at 522.9 m2·g-1. Almost adsorption systems followed the pseudo second order kinetic model, and Langmuir isotherm model. The adsorption mechanism was found with the major role of electrostatic attraction, complexation, chelation, and ion exchange. The pineapple wastes based adsorbents could be easily regenerated. We suggest the potential of the pineapple wastes towards circular economy.
    Matched MeSH terms: Adsorption
  7. Kamaruddin NAL, Taha MF, Wilfred CD
    Molecules, 2023 Jan 13;28(2).
    PMID: 36677888 DOI: 10.3390/molecules28020830
    The main objectives of this study are to synthesize a new solid-supported ionic liquid (SSIL) that has a covalent bond between the solid support, i.e., activated silica gel, with thiosalicylate-based ionic liquid and to evaluate the performance of this new SSIL as an extractant, labelled as Si-TS-SSIL, and to remove Pb(II) ions from an aqueous solution. In this study, 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium thiosalicylate ([MTMSPI][TS]) ionic liquid was synthesized and the formation of [MTMSPI][TS] was confirmed through structural analysis using NMR, FTIR, IC, TGA, and Karl Fischer Titration. The [MTMSPI][TS] ionic liquid was then chemically immobilized on activated silica gel to produce a new thiosalicylate-based solid-supported ionic liquid (Si-TS-SSIL). The formation of these covalent bonds on Si-TS-SSIL was confirmed by solid-state NMR analysis. Meanwhile, BET analysis was performed to study the surface area of the activated silica gel and the prepared Si-TS-SSIL (before and after washing with solvent) with the purpose to show that all physically immobilized [MTMSPI][TS] has been washed off from Si-TS-SSIL, leaving only chemically immobilized [MTMSPI][TS] on Si-TS-SSIL before proceeding with removal study. The removal study of Pb(II) ions from an aqueous solution was carried out using Si-TS-SSIL as an extractant, whereby the amount of Pb(II) ions removed was determined by AAS. In this removal study, the experiments were carried out at a fixed agitation speed (400 rpm) and fixed amount of Si-TS-SSIL (0.25 g), with different contact times ranging from 2 to 250 min at room temperature. The maximum removal capacity was found to be 8.37 mg/g. The kinetics study was well fitted with the pseudo-second order model. Meanwhile, for the isotherm study, the removal process of Pb(II) ions was well described by the Freundlich isotherm model, as this model exhibited a higher correlation coefficient (R2), i.e., 0.99, as compared to the Langmuir isotherm model.
    Matched MeSH terms: Adsorption
  8. Gebretatios AG, Kadiri Kanakka Pillantakath AR, Witoon T, Lim JW, Banat F, Cheng CK
    Chemosphere, 2023 Jan;310:136843.
    PMID: 36243081 DOI: 10.1016/j.chemosphere.2022.136843
    Following the discovery of Stöber silica, the realm of morphology-controlled mesoporous silica nanomaterials like MCM-41, SBA-15, and KCC-1 has been expanded. Due to their high BET surface area, tunable pores, easiness of functionalization, and excellent thermal and chemical stability, these materials take part a vital role in the advancement of techniques and technologies for tackling the world's largest challenges in the area of water and the environment, energy storage, and biotechnology. Synthesizing these materials with excellent physicochemical properties from cost-efficient biomass wastes is a foremost model of sustainability. Particularly, SiO2 with a purity >98% can be obtained from rice husk (RH), one of the most abundant biomass wastes, and can be template engineered into various forms of mesoporous silica materials in an economic and eco-friendly way. Hence, this review initially gives insight into why to valorize RH into value-added silica materials. Then the thermal, chemical, hydrothermal, and biological methods of high-quality silica extraction from RH and the principles of synthesis of mesoporous and fibrous mesoporous silica materials like SBA-15, MCM-41, MSNs, and KCC-1 are comprehensively discussed. The potential applications of rice husk-derived mesoporous silica materials in catalysis, drug delivery, energy, adsorption, and environmental remediation are explored. Finally, the conclusion and the future outlook are briefly highlighted.
    Matched MeSH terms: Adsorption
  9. Manimegalai S, Vickram S, Deena SR, Rohini K, Thanigaivel S, Manikandan S, et al.
    Chemosphere, 2023 Jan;312(Pt 1):137319.
    PMID: 36410505 DOI: 10.1016/j.chemosphere.2022.137319
    Water treatment is a worldwide issue. This review aims to present current problems and future challenges in water treatments with the existing methodologies. Carbon nanotube production, characterization, and prospective uses have been the subject of considerable and rigorous research around the world. They have a large number of technical uses because of their distinct physical characteristics. Various catalyst materials are used to make carbon nanotubes. This review's primary focus is on integrated and single-treatment technologies for all kinds of drinking water resources, including ground and surface water. Inorganic non-metallic matter, heavy metals, natural organic matter, endocrine-disrupting chemicals, disinfection by-products and microbiological pollutants are among the contaminants that these treatment systems can remediate in polluted drinking water resources. Significant advances in the antibacterial and adsorption capabilities of carbon-based nanomaterials have opened up new options for excluding organic/inorganic and biological contaminants from drinking water in recent years. The advancements in multifunctional nanocomposites synthesis pave the possibility for their use in enhanced wastewater purification system design. The adsorptive and antibacterial characteristics of six main kinds of carbon nanomaterials are single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, graphene oxide, fullerene and single-walled carbon nanohorns. This review potentially addressed the essential metallic and polymeric nanocomposites, are described and compared. Barriers to use these nanoparticles in long-term water treatment are also discussed.
    Matched MeSH terms: Adsorption
  10. Nayeem A, Mizi F, Ali MF, Shariffuddin JH
    Environ Res, 2023 Jan 01;216(Pt 2):114514.
    PMID: 36216117 DOI: 10.1016/j.envres.2022.114514
    The paper demonstrates the capability of using cockle shells as an adsorbent for phosphorus removal from simulated petrochemical wastewater, focusing on the actual condition of the petrochemical facultative pond. In this study, the physicochemical properties of shell powder were determined, such as the functional groups, surface morphology, crystalline structure, and surface area using FTIR, SEM, EDX, XRD, and BET. It was observed that the optimum conditions for effective phosphorus removal are under the presence of rotational speed (125 rpm), higher dosage (7 g/L), and larger surface area (smaller particle size) of the shell powder. Fine powder achieved up to 52.27% of phosphorus removal after 40 min compared to coarse powder which could only give 16.67% removal. Additionally, calcined shell powder demonstrated a higher phosphorus removal rate, i.e., up to 62.37%, compared to raw shell powders. The adsorption isotherm was studied using Langmuir and Freundlich models, but the isothermal data fit better for the Freundlich model (R2 = 0.9836). Overall, this study has successfully generated a greener and low-cost adsorbent.
    Matched MeSH terms: Adsorption
  11. Nayeem A, Ali MF, Shariffuddin JH
    Environ Res, 2023 Jan 01;216(Pt 1):114306.
    PMID: 36191616 DOI: 10.1016/j.envres.2022.114306
    Inverse vulcanized polysulfides have been used as low-cost and effective adsorbents to remediate heavy metals in wastewater. Inverse vulcanization introduces sustainable polysulfide synthesis by solving the rapid desulfurization problem of unstable polysulfides, and provides superior performance compared to conventional commercial adsorbents. The review discussed the brief applications of the inverse vulcanized polysulfides to remove heavy metal wastewater and emphasized the modified synthesis processes for enhanced uptake ratios. The characteristics of polysulfide adsorbents, which play a vital role during the removal process are highlighted with a proper discussion of the interaction between metal ions and polysulfides. The review paper concludes with remarks on the future outlook of these low-cost adsorbents with high selectivity to heavy metals. These polysulfide adsorbents can be prepared using a wide variety of crosslinker monomers including organic hydrocarbons, cooking oils, and agro-based waste materials. They have shown good surface area and excellent metal-binding capabilities compared to the commercially available adsorbents. Proper postmodification processes have enabled the benefits of repetitive uses of the polysulfide adsorbents. The improved surface area obtained by appropriate choice of crosslinkers, modified synthesis techniques, and regeneration through post-modification has made inverse vulcanized polysulfides capable of removing.
    Matched MeSH terms: Adsorption
  12. Ubah PC, Dashti AF, Saaid M, Imam SS, Adnan R
    Environ Sci Pollut Res Int, 2023 Jan;30(2):4462-4484.
    PMID: 35969341 DOI: 10.1007/s11356-022-22245-z
    The purpose of this research is to synthesize environmentally friendly nanosorbents for the novel adsorption of diesel range organics (DRO) from contaminated water. Central composite design (CCD) analysis of response surface methodology (RSM) was employed in a model fitting of the variables predicting the adsorption efficiency of Moringa oleifera-functionalized zerovalent iron particles (ZINPs) for the removal of DRO. The effects of the reaction parameters on the response were screened using 24 factorial designs to determine the statistically significant independent variables. A quadratic model predicting the DRO adsorption efficiency of ZINPs with an F value of 276.84 (p value 
    Matched MeSH terms: Adsorption
  13. Tran TV, Jalil AA, Nguyen DTC, Alhassan M, Nabgan W, Cao ANT, et al.
    Environ Res, 2023 Jan 01;216(Pt 1):114422.
    PMID: 36162476 DOI: 10.1016/j.envres.2022.114422
    Nowadays, emerging hazardous pollutants have caused many harmful effects on the environment and human health, calling for the state of the art methods for detection, qualification, and treatment. Metal-organic frameworks are porous, flexible, and versatile materials with unique structural properties, which can solve such problems. In this work, we reviewed the synthesis, activation, and characterization, and potential applications of NH2-MIL-53(Al). This material exhibited intriguing breathing effects, and obtained very high surface areas (182.3-1934 m2/g) with diverse morphologies. More importantly, NH2-MIL-53(Al) based materials could be used for the detection and removal of various toxic pollutants such as organic dyes, pharmaceuticals, herbicides, insecticides, phenols, heavy metals, and fluorides. We shed light on plausible adsorption mechanisms such as hydrogen bonds, π-π stacking interactions, and electrostatic interactions onto NH2-MIL-53(Al) adsorbents. Interestingly, NH2-MIL-53(Al) based adsorbents could be recycled for many cycles with high stability. This review also recommended that NH2-MIL-53(Al) based materials can be a good platform for the environmental remediation fields.
    Matched MeSH terms: Adsorption
  14. Gul Zaman H, Baloo L, Kutty SR, Aziz K, Altaf M, Ashraf A, et al.
    Environ Sci Pollut Res Int, 2023 Jan;30(3):6216-6233.
    PMID: 35989404 DOI: 10.1007/s11356-022-22438-6
    Heavy metal contamination has increased over the globe, causing significant environmental issues owing to direct and indirect releases into water bodies. As a result, metal removal from water entities must be addressed soon. Various adsorbents such as MOFs and chitosan have demonstrated promising results in water treatment. The present study prepared a composite material (chitosan-UiO-66-glycidyl methacrylate MOF) by a microwave-assisted method. The structure and morphology of the chitosan-MOF composite were studied using FE-SEM, EDX, XRD, BET, FT-IR, and TGA techniques. In addition, the adsorption of Pb(II) from aqueous solution onto the chitosan-MOF composite was analyzed in a batch study concerning pH, contact time, initial metal ion concentration, and adsorbent dosage. The composite has a large surface area of 867 m2/g with a total pore volume of 0.51 cm3/g and thermal stability of up to 400 [Formula: see text]. Following an analysis of the adsorption isotherms, kinetics, and thermodynamics, the Langmuir model showed an excellent fit with the adsorption data (R2 = 0.99) and chi-squared (X2 = 3.609). The adsorption process was a spontaneous exothermic reaction and the pseudo-second-order rate equation fitted the kinetic profile well. Moreover, the composite is recyclable, retaining 83.45% of its removal effectiveness after 5 consecutive cycles, demonstrating it as a sustainable adsorbent for metal recovery. This study introduces a novel synthesized composite with enhanced recyclability and a higher potential for eliminating pollutants from industrial wastewater.
    Matched MeSH terms: Adsorption
  15. Tamjid Farki NNANL, Abdulhameed AS, Surip SN, ALOthman ZA, Jawad AH
    Int J Phytoremediation, 2023;25(12):1567-1578.
    PMID: 36794599 DOI: 10.1080/15226514.2023.2175780
    Herein, tropical fruit biomass wastes including durian seeds (DS) and rambutan peels (RP) were used as sustainable precursors for preparing activated carbon (DSRPAC) using microwave-induced H3PO4 activation. The textural and physicochemical characteristics of DSRPAC were investigated by N2 adsorption-desorption isotherms, X-ray diffraction, Fourier transform infrared, point of zero charge, and scanning electron microscope analyses. These findings reveal that the DSRPAC has a mean pore diameter of 3.79 nm and a specific surface area of 104.2 m2/g. DSRPAC was applied as a green adsorbent to extensively investigate the removal of an organic dye (methylene blue, MB) from aqueous solutions. The response surface methodology Box-Behnken design (RSM-BBD) was used to evaluate the vital adsorption characteristics, which included (A) DSRPAC dosage (0.02-0.12 g/L), (B) pH (4-10), and (C) time (10-70 min). The BBD model specified that the DSRPAC dosage (0.12 g/L), pH (10), and time (40 min) parameters caused the largest removal of MB (82.1%). The adsorption isotherm findings reveal that MB adsorption pursues the Freundlich model, whereas the kinetic data can be well described by the pseudo-first-order and pseudo-second-order models. DSRPAC exhibited good MB adsorption capability (118.5 mg/g). Several mechanisms control MB adsorption by the DSRPAC, including electrostatic forces, π-π stacking, and H-bonding. This work shows that DSRPAC derived from DS and RP could serve as a viable adsorbent for the treatment of industrial effluents containing organic dye.
    Matched MeSH terms: Adsorption
  16. Yousef TA, Sahu UK, Jawad AH, Abd Malek NN, Al Duaij OK, ALOthman ZA
    Int J Phytoremediation, 2023;25(9):1142-1154.
    PMID: 36305491 DOI: 10.1080/15226514.2022.2137102
    A low-cost fruit waste namely watermelon peel (WMP) was utilized as a promising precursor for the preparation of mesoporous activated carbon (WMP-AC) via microwave assisted-K2CO3 activation. The WMP-AC was applied as an adsorbent for methylene blue dye (MB) removal. Several types of characterizations, such as specific surface area (BET), Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX), Elemental Analysis (CHNS/O), and Fourier Transform Infrared Spectroscopy (FTIR) were used to identify the physicochemical properties of WMP-AC. Furthermore, Box-Behnken design (BBD) was applied to optimize the influence of the adsorption operational variables (contact time, adsorbent dose, working temperature, and solution pH) on MB dye adsorption. Thus, based on significant interactions, the optimum BBD output shows the best removal of 50 mg·L-1 MB (92%) was recorded at an adsorbent dose of 0.056 g, contact time of 4.4 min, working temperature of 39 °C, and solution pH 8.4. The Langmuir uptake capacity of WMP-AC was found to be 312.8 mg·g-1, with the best fitness to the pseudo-second-order kinetics model and an endothermic adsorption process. The adsorption mechanisms of MB by WMP-AC can be assigned to the hydrogen bonding, electrostatic attraction, and π-π stacking. The findings of this study indicate that WMP is a promising precursor for producing porous activated carbon for MB dye removal.
    Matched MeSH terms: Adsorption
  17. Hussain NB, Akgül ET, Yılmaz M, Parlayıcı Ş, Hadibarata T
    Int J Phytoremediation, 2023;25(9):1199-1214.
    PMID: 36437736 DOI: 10.1080/15226514.2022.2144796
    The use of agricultural by-products such as Moringa oleifera plants is one effort to support the reduction of environmental pollution. Activated carbon produces from agricultural wastes is relatively less expensive and can replace traditional methods such as renewable as well as nonrenewable materials such as petroleum residue and coal. In this study, the removal of bisphenol A from aqueous media was studied using activated carbon produced from M. oleifera pods and peels. A batch adsorption study was carried out by varying the parameters of the adsorption process. A maximum removal percentage of 95.46% was achieved at optimum conditions of 2.5 g L-1 adsorbent dose, pH 7, 60 min contact time and 20 mg L-1 initial concentration of BPA. The BET surface areas of MOP, MOP-AC and MOP-ACZ were found to be 12.60, 4.10 and 45.96 m2/g, respectively. The experimental data were analyzed by Langmuir, Freundlich and Temkin adsorption isotherm models. Equilibrium data fitted well with the Langmuir isotherm with a maximum monolayer adsorption capacity of 20.14 mg g-1. The rates of adsorption were found to conform to the pseudo-second-order kinetics with a good correlation. The results indicate that the M. oleifera activated carbon could be employed as a low-cost alternative to commercial activated carbon in the removal of BPA from water.
    Matched MeSH terms: Adsorption
  18. Francis AO, Kevin OS, Ahmad Zaini MA
    Int J Phytoremediation, 2023;25(12):1625-1635.
    PMID: 36823750 DOI: 10.1080/15226514.2023.2179013
    This study evaluated the characteristics of zinc chloride modified vitex doniana seed activated carbon (VDZnCl2) for the removal of methylene blue. VDZnCl2 was characterized for textural properties, surface morphology and surface chemistry. Batch adsorption of methylene blue by VDZnCl2 was evaluated for the effects of concentration, contact time, adsorbent dosage, and solution pH. The surface area increased from 14 to 933 m2/g with porous texture to facilitate adsorption. The SEM micrograph showed varieties of pores with widened cavities. The FTIR spectra showed the characteristics of O-H and C=C groups commonly found in carbonaceous materials. The maximum methylene blue adsorption was recorded as 238 mg/g at concentration range of 1-800 mg/L and VDZnCl2 dosage of 50 mg. Sips isotherm fitted well with the equilibrium data, suggesting that the adsorption by VDZnCl2 was a physical process onto its heterogeneous surface, while the applicability of pseudo-first-order kinetics implies that external diffusion was the rate controlling mechanism. The performance put up by VDZnCl2 suggested that it is a potential adsorbent substitute for dye wastewater treatment.
    Matched MeSH terms: Adsorption
  19. Reghioua A, Jawad AH, Selvasembian R, ALOthman ZA, Wilson LD
    Int J Phytoremediation, 2023;25(14):1988-2000.
    PMID: 37291893 DOI: 10.1080/15226514.2023.2216304
    This research aims to convert pomegranate peel (PP) into microporous activated carbon (PPAC) using a microwave assisted K2CO3 activation method. The optimum activation conditions were carried out with a 1:2 PP/K2CO3 impregnation ratio, radiation power 800 W, and 15 min irradiation time. The statistical Box-Behnken design (BBD) was employed as an effective tool for optimizing the factors that influence the adsorption performance and removal of methylene blue (MB) dye. The output data of BBD with a desirability function indicate a 94.8% removal of 100 mg/L MB at the following experimental conditions: PPAC dose of 0.08 g, solution pH of 7.45, process temperature of 32.1 °C, and a time of 30 min. The pseudo-second order (PSO) kinetic model accounted for the contact time for the adsorption of MB. At equilibrium conditions, the Freundlich adsorption isotherm describes the adsorption results, where the maximum adsorption capacity of PPAC for MB dye was 291.5 mg g-1. This study supports the utilization of biomass waste from pomegranate peels and conversion into renewable and sustainable adsorbent materials. As well, this work contributes to the management of waste biomass and water pollutant sequestration.
    Matched MeSH terms: Adsorption
  20. Zulkefli NN, Noor Azam AMI, Masdar MS, Baharuddin NA, Wan Isahak WNR, Mohd Sofian N
    Molecules, 2022 Dec 17;27(24).
    PMID: 36558155 DOI: 10.3390/molecules27249024
    This study reports on the synthesis of bi-metal compound (BMC) adsorbents based on commercial coconut activated carbon (CAC), surface-modified with metal acetate (ZnAc2), metal oxide (ZnO), and the basic compounds potassium hydroxide (KOH) and sodium hydroxide (NaOH). The adsorbents were then characterized by scanning electron microscopy and elemental analysis, microporosity analysis through Brunauer-Emmett-Teller (BET) analysis, and thermal stability via thermogravimetric analysis. Adsorption-desorption test was conducted to determine the adsorption capacity of H2S via 1 L adsorber and 1000 ppm H2S balanced 49.95% for N2 and CO2. Characterization results revealed that the impregnated solution homogeneously covered the adsorbent surface, morphology, and properties. The adsorption test result reveals that the ZnAc2/ZnO/CAC_B had a higher H2S breakthrough adsorption capacity and performed at larger than 90% capability compared with a single modified adsorbent (ZnAc2/CAC). Therefore, the synthesized BMC adsorbents have a high H2S loading, and the abundance and low cost of CAC may lead to favorable adsorbents in H2S captured.
    Matched MeSH terms: Adsorption
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links