Displaying publications 81 - 100 of 929 in total

Abstract:
Sort:
  1. Veraldi S, Faraci AG, Valentini D, Bottini S
    Eur J Dermatol, 2021 Feb 01;31(1):75-80.
    PMID: 33648916 DOI: 10.1684/ejd.2021.3968
    BACKGROUND: A tropical ulcer is a bacterial necrotizing disease of the skin, with an acute or chronic clinical course, caused by anaerobic bacteria, notably Fusobacteria spp.

    OBJECTIVES: We present six Italian tourists who acquired tropical ulcers in tropical and subtropical countries.

    MATERIALS & METHODS: Four males and two females acquired a skin ulcer during trips to Brazil, Malaysia, Fiji Islands, Zambia, Tanzania and India. In all patients, medical history, physical and dermatological examination, laboratory tests, bacteriological examinations and biopsy were carried out.

    RESULTS: All patients were in good general health. All patients stated that the ulcer was caused by a trauma. No fever was reported. Neither lymphangitis nor lymphadenopathy were detected. The ulcer was located on a forearm in one patient, on a leg in two and on an ankle in three patients. All ulcers were malodorous and painful. Laboratory tests revealed mild leucocytosis and a mild increase in erythrocyte sedimentation rate and C-reactive protein. Results of bacteriological examinations revealed the presence of Fusobacterium spp. in five patients. Other bacteria were identified in all patients. Histopathological examination showed: necrosis of the epidermis and dermis; vascular dilatation; oedema in the dermis; massive infiltration with neutrophils, lymphocytes and histiocytes; and fragmented collagen bundles. No signs of vasculitis were observed. All patients were successfully treated with oral metronidazole (1 g/day for two weeks) and, according to antibiograms, with different systemic antibiotics.

    CONCLUSION: To our knowledge, these are the first cases of tropical ulcers reported in Western tourists.

    Matched MeSH terms: Bacteria, Anaerobic*
  2. Velusamy P, Su CH, Kannan K, Kumar GV, Anbu P, Gopinath SCB
    PMID: 33751641 DOI: 10.1002/bab.2146
    Overuse of antibiotics has led to the development of multi drug resistant strains. Antibiotic resistance is a major drawback in the biomedical field since medical implants are prone to infection by biofilms of antibiotic resistant strains of bacteria. With increasing prevalence of antibiotic resistant pathogenic bacteria, the search for alternative method is utmost importance. In this regard, magnetic nanoparticles are commonly used as a substitute for antibiotics that can circumvent the problem of biofilms growth on the surface of biomedical implants. Iron oxide nanoparticles (IONPs) have unique magnetic properties that can be exploited in various ways in the biomedical applications. IONPs are engineered employing different methods to induce surface functionalization that include the use of polyethyleneimine and oleic acid. IONPs have a mechanical effect on biofilms when in presence of an external magnet. In this review, a detailed description of surface engineered magnetic nanoparticles as ideal antibacterial agents is provided, accompanied by various methods of literature review. This article is protected by copyright. All rights reserved.
    Matched MeSH terms: Anti-Bacterial Agents; Bacteria
  3. Velu, S., Abu Bakar, F., Mahyudin, N.A., Saari, N., Zaman, M.Z.
    MyJurnal
    Modified atmosphere packaging (MAP) has become a popular method for packaging foods as it can extend the shelf life of food with minimal quality defect. Oxygen, nitrogen and carbon dioxide are the common gases used in MAP, Oxygen and carbon dioxide inclusive as only these two gaseous have the preservative effects on the packed food product. Their effect on microbial changes of any food product throughout storage period is highly depend on type of the product and packaging materials, appropriate gas composition, storage temperature, the ratio between gas and product volume, and hygienic manner during processing and packaging. MAP with highest percentage of carbon dioxide is proven to be more effective than vacuum packaging in inhibiting the growth of spoilage and pathogenic bacteria in many fishery products. This article reviews the consequences of MAP towards microbial changes in fishery products.
    Matched MeSH terms: Bacteria
  4. Vazquez-Mendoza P, Elghandour MMM, Alaba PA, Sánchez-Aparicio P, Alonso-Fresán MU, Barbabosa-Pliego A, et al.
    Microb Pathog, 2018 Jan;114:458-463.
    PMID: 29180295 DOI: 10.1016/j.micpath.2017.11.040
    Two experiments were carried out to evaluate the bactericidal impacts of Bacillus amyloliquefaciens CECT 5940 on the shedding of faecal pathogenic bacteria in dairy calves (Experiment 1) and in adults dogs (experiment 2). In the calves experiment, a completely randomized design was used to investigate the faecal bacteria profile of Holstein dairy calves fed with either pasteurized waste milk (PWM; n = 9) or a formulated non-medicated milk replacer (NMR; n = 9) for 60 d. The NMR containing sodium-butyrate and the active probiotic B. amyloliquefaciens CECT 5940. In the dogs experiment, addition of same probiotic (i.e., B. amyloliquefaciens CECT 5940) was carried out in two stages. The first stage started from day 7-37, and the second from day 44-71. The assessment of faecal score measured on day 22, 37, 42, 57, 71 and 77 to determine the texture of the stools. Calves received PWM consumed (P bacteria for dairy calves and adult dogs.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Bacteria/drug effects*
  5. Vasudevan U, Gantayat RR, Chidambaram S, Prasanna MV, Venkatramanan S, Devaraj N, et al.
    Environ Geochem Health, 2021 Feb;43(2):1069-1088.
    PMID: 32940833 DOI: 10.1007/s10653-020-00712-1
    Microbes in groundwater play a key role in determining the drinking water quality of the water. The study aims to interpret the sources of microbes in groundwater and its relationship to geochemistry. The study was carried out by collecting groundwater samples and analyzed to obtain various cations and anions, where HCO3-, Cl- and NO3- found to be higher than permissible limits in few samples. Microbial analysis, like total coliform (TC), total viable counts (TVC), fecal coliforms (FC), Vibrio cholera (V. cholerae) and total Streptococci (T. streptococci) were analyzed, and the observations reveal that most of the samples were found to be above the permissible limits adopted by EU, BIS, WHO and USEPA standards. Correlation analysis shows good correlation between Mg2+-HCO3-, K+-NO3-, TVC- V. cholerae and T. streptococci-FC. Major ions like Mg+, K+, NO3, Ca2+ and PO4 along with TS and FC were identified to control the geochemical and microbial activities in the region. The magnesium hardness in the groundwater is inferred to influence the TVC and V. cholerae. The mixing of effluents from different sources reflected the association of Cl with TC. Population of microbes T. streptococci and FC was mainly associated with Ca and Cl content in groundwater, depicting the role of electron acceptors and donors. The sources of the microbial population were observed with respect to the land use pattern and the spatial distribution of hydrogeochemical factors in the region. The study inferred that highest microbial activity in the observed in the residential areas, cultivated regions and around the landfill sites due to the leaching of sewage water and fertilizers runoff into groundwater. The concentrations of ions and microbes were found to be above the permissible limits of drinking water quality standards. This may lead to the deterioration in the health of particular coastal region.
    Matched MeSH terms: Bacteria/classification; Bacteria/growth & development
  6. Vairappan CS, Kawamoto T, Miwa H, Suzuki M
    Planta Med, 2004 Nov;70(11):1087-90.
    PMID: 15549668
    Common Gram-positive clinical pathogens are showing an increasing trend for resistance to conventional antimicrobial agents. New drugs with potent antibacterial activities are urgently needed to remediate this problem. Halogenated compounds isolated from several species of the red algae genus Laurencia were examined for their antibacterial activity against 22 strains of human pathogenic bacteria, 7 strains of which were antibiotic-resistant bacteria. Four phenolic sesquiterpenes and a polybrominated indole showed wide spectra of antibacterial activity against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), penicillin-resistant Streptococcus pneumoniae, and vancomycin-resistant Enterococcus faecalis and E. faecium (VRE). In addition, laurinterol and allolaurinterol displayed potent bactericidal activity against three strains of MRSA at 3.13 microg mL(-1), and three strains of vancomycin-susceptible Enterococcus, at 3.13 microg mL(-1) and 6.25 microg mL(-1), respectively.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects*
  7. Vairappan CS
    Indian J Exp Biol, 2003 Aug;41(8):837-45.
    PMID: 15248481
    Brown algae of genus Sargassum are known to produce relatively higher amount of alginic acid. Optimal extraction of this algalcolloid for local consumption requires in-depth studies on post-harvest treatment of the algal fronds. Present investigation endeavors to establish the dynamics and inter-relationship of moisture content and bacteria found on the surface of the alga and alginic acid content during post-harvest desiccation of Sargassum stolonifolium Phang et Yoshida. Harvested fronds were subjected to desiccation for 31 days and bacterial dynamics were monitored with relation to moisture content and water activity index (a(w)). There was 85% decrease in moisture content, however, a(w) showed a more gradual decrease. Total bacterial count increased during the first week and attained maximal value on day 7. Thereafter, a drastic decrease was seen until day 14, followed by a gradual decline. Six species of bacteria were isolated and identified, i.e. Azomonas punctata, Azomonas sp., Escherichia coli, Micrococcus sp., Proteus vulgaris and Vibrio alginolyticus. Calculated ratios for increase in alginic acid content and decrease in moisture content were almost the same throughout the desiccation process, implying that extracellular alginase-producing bacteria did not use the alginic acid produced by the algae as its carbon source. It became apparent that drastic decrease in bacterial count after day 7 could not be attributed to salinity, moisture content, a(w) or lack of carbon source for the bacteria. The possible exposure of these bacteria to algal cell sap which is formed due to the rupture of algal cells was seen as the most likely reason for the drop in bacterial population. Scanning electron microscope (SEM) micrograph taken on day 10 of desiccation showed the presence of cracks and localities where bacteria were exposed to algal cell sap. In vitro antibacterial tests were carried out to verify the effect of algal extracts. Separation and purification of crude algal extracts via bioassay guided separation methodology revealed the identity of active compounds (i.e. gylcolipids and free fatty acids) involved in this inherently available antibacterial defense mechanism during algal desiccation.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Negative Bacteria/growth & development; Gram-Positive Bacteria/drug effects; Gram-Positive Bacteria/growth & development
  8. Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA
    Int J Nanomedicine, 2013;8:4467-79.
    PMID: 24293998 DOI: 10.2147/IJN.S50837
    Copper nanoparticle synthesis has been gaining attention due to its availability. However, factors such as agglomeration and rapid oxidation have made it a difficult research area. In the present work, pure copper nanoparticles were prepared in the presence of a chitosan stabilizer through chemical means. The purity of the nanoparticles was authenticated using different characterization techniques, including ultraviolet visible spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The antibacterial as well as antifungal activity of the nanoparticles were investigated using several microorganisms of interest, including methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella choleraesuis, and Candida albicans. The effect of a chitosan medium on growth of the microorganism was studied, and this was found to influence growth rate. The size of the copper nanoparticles obtained was in the range of 2-350 nm, depending on the concentration of the chitosan stabilizer.
    Matched MeSH terms: Bacteria/drug effects*
  9. Usha, M.R., Fauziah, M., Tunung, R., Chai, L.C., Cheah, Y.K., Farinazleen, M.G., et al.
    MyJurnal
    Broiler part samples (80 fresh and 80 chilled) were examined for the prevalence and numbers of C. jejuni and C. coli by employing most-probable-number (MPN) and polymerase chain reaction (PCR) techniques. The prevalence of the bacteria was high where C. jejuni was detected in 92.5% fresh and 53.8% chilled samples while C. coli in 80.0% fresh and 56.3% chilled. The number of these bacteria in the positive fresh and chilled samples was from 3 to more than 2400 MPN/g and from 3 to 290 MPN/g, respectively. Antibiotic resistance test (using Kirby-Bauer disc diffusion method) on 10 C. jejuni and 13 C. coli isolates toward ampicillin, tobramycin, enrofloxacin, ciprofloxacin, tetracycline, cephalothin, gentamicin and norfloxacin revealed high resistance toward all antibiotics (20.0% - 100.0%). All isolates were resistant to at least two antibiotics. This study highlights the potential of multidrug-resistant C. jejuni and C. coli transmission to humans through fresh and chilled broiler parts. Consecutive studies with bigger sample sizes and covering all over Malaysia are warranted in future.
    Matched MeSH terms: Anti-Bacterial Agents; Bacteria
  10. Umar MF, Ahmad F, Saeed H, Usmani SA, Owais M, Rafatullah M
    Nanomaterials (Basel), 2020 Jun 01;10(6).
    PMID: 32492878 DOI: 10.3390/nano10061096
    A novel method of preparing reduced graphene oxide (RGOX) from graphene oxide (GOX) was developed employing vegetable extract, Chenopodium album, as a reducing and stabilizing agent. Chenopodium album is a green leafy vegetable with a low shelf life, fresh leaves of this vegetable are encouraged to be used due to high water content. The previously modified 'Hummers method' has been in practice for the preparation of GOX by using precursor graphite powder. In this study, green synthesis of RGOX was functionally verified by employing FTIR and UV-visible spectroscopy, along with SEM and TEM. Our results demonstrated typical morphology of RGOX stacked in layers that appeared as silky, transparent, and rippled. The antibacterial activity was shown by analyzing minimal inhibitory concentration values, agar diffusion assay, fluorescence techniques. It showed enhanced antibacterial activity against Gram-positive and Gram-negative bacteria in comparison to GOX. It has also been shown that the synthesized compound exhibited enhanced antibiofilm activity as compared to its parent compound. The efficacy of RGOX and GOX has been demonstrated on a human breast cancer cell line, which suggested RGOX as a potential anticancer agent.
    Matched MeSH terms: Gram-Negative Bacteria; Gram-Positive Bacteria
  11. Trottet A, Wilson B, Sew Wei Xin G, George C, Casten L, Schmoker C, et al.
    Environ Manage, 2018 02;61(2):275-290.
    PMID: 29204675 DOI: 10.1007/s00267-017-0966-5
    Resting strategies of planktonic organisms are important for the ecological processes of coastal waters and their impacts should be taken into consideration in management of water bodies used by multiple industries. We combined different approaches to evaluate the importance of resting stages in Singapore coastal waters. We used molecular approaches to improve the knowledge on Singapore biodiversity, we sampled and extracted cysts from sediments to evaluate the density of resting stages in Johor Strait, and we compared systematically information on Singapore planktonic biodiversity to existing published information on resting stages from these reported organisms. This is the first study evaluating the importance of resting stages in Singapore waters. Above 120 species reported in Singapore are known to produce resting stages though no previous work has ever been done to evaluate the importance of these strategies in these waters. The results from the resting stage survey confirmed 0.66 to 5.34 cyst g-1 dry weight sediment were present in the Johor Strait suggesting that cysts may be flushed by tidal currents into and out of the strait regularly. This also suggest that the blooms occurring in Singapore are likely due to secondary growth of Harmful Algae Bloom species in the water rather than from direct germination of cysts from sediment. Finally, we discuss the importance of these resting eggs for three main national industries in Singapore (shipping, marine aquaculture and provision of drinking water through seawater desalination). We argue that this study will serve as a baseline for some of the future management of Singapore waters.
    Matched MeSH terms: Bacteria/isolation & purification*; DNA, Bacterial/analysis
  12. Tripathi BM, Edwards DP, Mendes LW, Kim M, Dong K, Kim H, et al.
    Mol Ecol, 2016 May;25(10):2244-57.
    PMID: 26994316 DOI: 10.1111/mec.13620
    Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once-logged and twice-logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell-cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land-use changes on the interaction of soil microbes.
    Matched MeSH terms: Bacteria/classification
  13. Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, et al.
    Microb Ecol, 2012 Aug;64(2):474-84.
    PMID: 22395784 DOI: 10.1007/s00248-012-0028-8
    The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types--primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1-V3 region was pyrosequenced using the 454 Roche machine. We found that land use in itself has a weak but significant effect on the bacterial community composition. However, bacterial community composition and diversity was strongly correlated with soil properties, especially soil pH, total carbon, and C/N ratio. Soil pH was the best predictor of bacterial community composition and diversity across the various land use types, with the highest diversity close to neutral pH values. In addition, variation in phylogenetic structure of dominant lineages (Alphaproteobacteria, Beta/Gammaproteobacteria, Acidobacteria, and Actinobacteria) is also significantly correlated with soil pH. Together, these results confirm the importance of soil pH in structuring soil bacterial communities in Southeast Asia. Our results also suggest that unlike the general diversity pattern found for larger organisms, primary tropical forest is no richer in operational taxonomic units of soil bacteria than logged forest, and agricultural land (crop and pasture) is actually richer than primary forest, partly due to selection of more fertile soils that have higher pH for agriculture and the effects of soil liming raising pH.
    Matched MeSH terms: Gram-Negative Bacteria/classification; Gram-Negative Bacteria/genetics*; Gram-Negative Bacteria/isolation & purification
  14. Tripathi BM, Lee-Cruz L, Kim M, Singh D, Go R, Shukor NA, et al.
    Microb Ecol, 2014 Aug;68(2):247-58.
    PMID: 24658414
    Spatial scaling to some extent determines biodiversity patterns in larger organisms, but its role in microbial diversity patterns is much less understood. Some studies have shown that bacterial community similarity decreases with distance, whereas others do not support this. Here, we studied soil bacterial communities of tropical rainforest in Malaysia at two spatial scales: a local scale with samples spaced every 5 mover a 150-m transect, and a regional scale with samples 1 to 1,800 km apart. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1–V3 region was pyrosequenced using Roche/454 GS FLX Titanium platform. A ranked partial Mantel test showed a weak correlation between spatial distance and whole bacterial community dissimilarity, but only at the local scale. In contrast, environmental distance was highly correlated with community dissimilarity at both spatial scales,stressing the greater role of environmental variables rather than spatial distance in determining bacterial community variation at different spatial scales. Soil pH was the only environmental parameter that significantly explained the variance in bacterial community at the local scale, whereas total nitrogen and elevation were additional important factors at the regional scale.We obtained similar results at both scales when only the most abundant OTUs were analyzed. A variance partitioning analysis showed that environmental variables contributed more to bacterial community variation than spatial distance at both scales. In total, our results support a strong influence of the environment in determining bacterial community composition in the rainforests of Malaysia. However, it is possible that the remaining spatial distance effect is due to some of the myriad of other environmental factors which were not considered here, rather than dispersal limitation.
    Matched MeSH terms: Bacteria/classification; Bacteria/growth & development*; DNA, Bacterial/genetics
  15. Triassi AJ, Wheatley MS, Savka MA, Gan HM, Dobson RC, Hudson AO
    Front Microbiol, 2014;5:509.
    PMID: 25309529 DOI: 10.3389/fmicb.2014.00509
    Despite the urgent need for sustained development of novel antibacterial compounds to combat the drastic rise in antibiotic resistant and emerging bacterial infections, only a few clinically relevant antibacterial drugs have been recently developed. One of the bottlenecks impeding the development of novel antibacterial compounds is the identification of new enzymatic targets. The nutritionally essential amino acid anabolic pathways, for example lysine biosynthesis, provide an opportunity to explore the development of antibacterial compounds, since human genomes do not possess the genes necessary to synthesize these amino acids de novo. The diaminopimelate (DAP)/lysine (lys) anabolic pathways are attractive targets for antibacterial development since the penultimate lys precursor meso-DAP (m-DAP) is a cross-linking amino acid in the peptidoglycan (PG) cell wall of most Gram-negative bacteria and lys plays a similar role in the PG of most Gram-positive bacteria, in addition to its role as one of the 20 proteogenic amino acids. The L,L-diaminopimelate aminotransferase (DapL) pathway was recently identified as a novel variant of the DAP/lys anabolic pathways. The DapL pathway has been identified in the pathogenic bacteria belonging to the genus; Chlamydia, Leptospira, and Treponema. The dapL gene has been identified in the genomes of 381 or approximately 13% of the 2771 bacteria that have been sequenced, annotated and reposited in the NCBI database, as of May 23, 2014. The narrow distribution of the DapL pathway in the bacterial domain provides an opportunity for the development and or discovery of narrow spectrum antibacterial compounds.
    Matched MeSH terms: Gram-Negative Bacteria; Gram-Positive Bacteria
  16. Tran PN, Tan NE, Lee YP, Gan HM, Polter SJ, Dailey LK, et al.
    Genome Announc, 2015;3(6).
    PMID: 26586879 DOI: 10.1128/genomeA.01319-15
    Here, we report the whole-genome sequences and annotation of 11 endophytic bacteria from poison ivy (Toxicodendron radicans) vine tissue. Five bacteria belong to the genus Pseudomonas, and six single members from other genera were found present in interior vine tissue of poison ivy.
    Matched MeSH terms: Bacteria
  17. Too WC, Liew YC, Few LL
    J Basic Microbiol, 2008 Oct;48(5):430-5.
    PMID: 18759222 DOI: 10.1002/jobm.200800008
    Psychrophiles are organisms that thrive in cold environments. One of the strategies for their cold adaptation is the ability to synthesize cold-adapted enzymes. These enzymes usually display higher catalytic efficiency and thermolability at lower temperatures compared to their mesophilic and thermophilic counterparts. In this work, a psychrophilic bacterium codenamed pi9 was selected for the cloning of the gene encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an enzyme in the glycolytic pathway. Here, the cloning of an 1,113 bp fragment of GAPDH gene which covers the 1,002 bp open reading frame by using multiple PCR steps is described. The partial sequence of this gene was PCR amplified by using degenerate primers followed by the cloning of the flanking sequences by inverse and splinkerette PCR techniques. The success in cloning the GAPDH gene by PCR has bypassed the more time consuming genomic library construction and screening method. The full length GAPDH protein was subsequently expressed in E. coli, purified as His-tag protein and confirmed to be catalytically active. This work demonstrated the use of multiple PCR techniques to clone a gene based solely on sequence comparison. It also laid the foundation for further biochemical and structural characterizations of GAPDH from a psychrophilic bacterium by providing a highly purified recombinant protein sample.
    Matched MeSH terms: Bacteria/enzymology*; Bacteria/genetics; Bacterial Proteins/genetics*; Bacterial Proteins/metabolism; DNA, Bacterial/genetics; Genes, Bacterial
  18. Too CC, Keller A, Sickel W, Lee SM, Yule CM
    Front Microbiol, 2018;9:2859.
    PMID: 30564202 DOI: 10.3389/fmicb.2018.02859
    Tropical peat swamp forests sequester globally significant stores of carbon in deep layers of waterlogged, anoxic, acidic and nutrient-depleted peat. The roles of microbes in supporting these forests through the formation of peat, carbon sequestration and nutrient cycling are virtually unknown. This study investigated physicochemical peat properties and microbial diversity between three dominant tree species: Shorea uliginosa (Dipterocarpaceae), Koompassia malaccensis (legumes associated with nitrogen-fixing bacteria), Eleiodoxa conferta (palm) and depths (surface, 45 and 90 cm) using microbial 16S rRNA gene amplicon sequencing. Water pH, oxygen, nitrogen, phosphorus, total phenolic contents and C/N ratio differed significantly between depths, but not tree species. Depth also strongly influenced microbial diversity and composition, while both depth and tree species exhibited significant impact on the archaeal communities. Microbial diversity was highest at the surface, where fresh leaf litter accumulates, and nutrient supply is guaranteed. Nitrogen was the core parameter correlating to microbial communities, but the interactive effects from various environmental variables displayed significant correlation to relative abundance of major microbial groups. Proteobacteria was the dominant phylum and the most abundant genus, Rhodoplanes, might be involved in nitrogen fixation. The most abundant methanogens and methanotrophs affiliated, respectively, to families Methanomassiliicoccaceae and Methylocystaceae. Our results demonstrated diverse microbial communities and provide valuable insights on microbial ecology in these extreme ecosystems.
    Matched MeSH terms: Nitrogen-Fixing Bacteria
  19. Tong CY, Kee CY, Honda K, Derek CJC
    Environ Res, 2023 Dec 15;239(Pt 2):117403.
    PMID: 37848079 DOI: 10.1016/j.envres.2023.117403
    Bio-coating, a recent and promising approach in attached microalgal cultivation systems, has garnered attention due to its efficiency in enhancing immobilized algal growth, particularly in submerged cultivation systems. However, when the cells are cultured on thin solid microporous substrates that physically separate them from the nutrient medium, it remains unclear whether the applied bio-coatings still have a significant impact on algal growth or the subsequent rates of algal organic matter (AOM) release. Therefore, this current work investigated the role of bio-coatings on the microalgal monoculture growth of one freshwater species, Chlorella vulgaris ESP 31, and one marine species, Cylindrotheca fusiformis on a hydrophilic substrate, polyvinylidene fluoride membrane in a permeated cultivation system. Wide range of bio-coating sources were adapted, with the result demonstrating that bacteria-derived coating promoted algal growth by as high as 140% when compared with the control group for both species. Interestingly, two distinct adaptation mechanisms were observed between the species, with only C. fusiformis demonstrating a positive correlation between cell growth and AOM productivity, particularly in its extracellularly bound fractions. It is worth noting that despite this specific fraction exhibiting the lowest content among all; it displayed significant relevance in terms of AOM productivity. High extracellular protein-to-polysaccharide ratio (>5.7 fold) quantified on bacterial intracellular exudate-coated membranes indirectly revealed an underlying symbiotic microalgal-bacterial interaction. This is the first study showing how bio-coating influenced AOM yield without any physical interaction between microalgae and bacteria. It further confirms the practical benefits of bio-coating in attached cultivation systems.
    Matched MeSH terms: Bacteria
  20. Tong CY, Honda K, Derek CJC
    Sci Total Environ, 2024 Jan 01;906:167576.
    PMID: 37804964 DOI: 10.1016/j.scitotenv.2023.167576
    Research on renewable energy from microalgae has led to a growing interest in porous substrate photobioreactors, but their widespread adoption is currently limited to pure microalgal biofilm cultures. The behavior of microalgal-bacterial biofilms immobilized on microporous substrates remains as a research challenge, particularly in uncovering their mutualistic interactions in environment enriched with dissolved organic matter. Therefore, this study established a novel culture platform by introducing microalgal-derived bio-coating that preconditioned hydrophilic polyvinylidene fluoride membranes for the microalgal-bacterial biofilm growth of freshwater microalgae, Chlorella vulgaris ESP 31 and marine microalgae, Cylindrotheca fusiformis with bacteria, Escherichia coli. In the attached co-culture mode, the bio-coating we proposed demonstrated the ability to enhance microalgal growth for both studied species by a range of 2.5 % to 19 % starting from day 10 onwards. Additionally, when compared to co-culture on uncoated membranes, the bio-coating exhibited a significant bacterial growth promotion effect, increasing bacterial growth by at least 2.35 times for the C. vulgaris-E. coli co-culture after an initial adaptation phase. A significant increase of at least 72 % in intracellular biochemical compounds (including chlorophyll, polysaccharides, proteins, and lipids) was observed within just five days, primarily due to the high concentration of pre-coated organic matter, mainly sourced from the internal organic matter (IOM) of C. fusiformis. Higher accumulation of organic compounds in the bio-coating indirectly triggers a competition between microalgae and bacteria which potentially stimulate the production of additional intra-/extra-organic substances as a defensive response. In short, insight gained from this study may represent a paradigm shift in the ways that symbiotic interactions are promoted to increase the yield of specific bio-compounds with the presence of bio-coating.
    Matched MeSH terms: Bacteria
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links