Displaying publications 81 - 100 of 664 in total

  1. Tang DYY, Khoo KS, Chew KW, Tao Y, Ho SH, Show PL
    Bioresour Technol, 2020 May;304:122997.
    PMID: 32094007 DOI: 10.1016/j.biortech.2020.122997
    Microalgae are autotroph organisms that utilise light energy to synthesize various high-value bioactive compounds such as polysaccharides, proteins and lipids. Due to its fast growth rate and capability to survive in harsh environment, microalgae nowadays are applied in various industrial areas. The process of obtaining microalgae-based biomolecules starts with the selection of suitable microalgae strain, cultivation, followed by downstream processing of the biomass (i.e., pre-treatment, harvesting, extraction and purification). The end products of the processes are biofuels and other valuable bioproducts. Nevertheless, low production yield and high-cost downstream processes are the emerging bottlenecks which need to be addressed in the upscaling of extracted compounds from microalgae biomass. To conclude, tremendous efforts are required to overcome these challenges to revolutionize microalgae into a novel and green factory of different bioactive compounds for industrial necessities to satisfy and fulfil global demands.
    Matched MeSH terms: Biomass
  2. Thangavelu SK, Rajkumar T, Pandi DK, Ahmed AS, Ani FN
    Waste Manag, 2019 Mar 01;86:80-86.
    PMID: 30902242 DOI: 10.1016/j.wasman.2019.01.035
    Microwave assisted acid hydrolysis (H2SO4 and HCl with >0.5 mol/L) to produce bioethanol from sago pith waste (SPW) was studied. The energy consumption for microwave hydrolysis at different energy inputs and acid concentration were calculated. The overall energy consumption for bioethanol fuel production from SPW was assessed. A maximum of 88% glucose yield and 80% ethanol yield (3.1 g ethanol per 10 g SPW) were obtained using 1.0 mol/L H2SO4. Microwave hydrolysis using 1.0 mol/L H2SO4 consumed the minimum energy of 8.1 kJ to produce 1 g glucose from SPW when energy input was fixed at 54 kJ (900 W for 1 min). In general, 1 g glucose can produce 16 kJ. The overall energy consumption for fuel grade bioethanol production from SPW was 31.77 kJ per g ethanol, which was slightly higher than the lower heating values of ethanol (26.74 kJ/g ethanol).
    Matched MeSH terms: Biomass
  3. Kang K, Nanda S, Lam SS, Zhang T, Huo L, Zhao L
    Environ Res, 2020 07;186:109480.
    PMID: 32302869 DOI: 10.1016/j.envres.2020.109480
    Microwave assisted hydrothermal treatment (MHTC) was compared with torrefaction in terms of carbonization efficiency and physicochemical characteristics of char products. The utilization of produced char was optimized for composite solid biofuel production. The results show that MHTC significantly improved the binding capability of the microwave hydrochar (MHC) particles during co-densification with unprocessed biomass and coal. One possible contributor to the improved binding is the pseudo lignin formed during the MHTC, which led to a better interlocking of the feedstock particles and promoted the solid bridge formation. Composite pellet prepared with 80 wt% of torrefaction char (TC-120), 10 wt% of microwave hydrochar (MHC-30), and 10 wt% of Coal-04 showed a higher heating value of 24.54 MJ/kg and energy density of 26.43 GJ/m3, which is significantly higher than that of the raw cotton stalk pellet (16.77 MJ/kg and 18.76 GJ/m3, respectively), showing great promise as a solid biofuel. The moisture resistance and oxidation reactivity are also significantly improved. The results demonstrate that MHCs provides dual functionalities in acting as binder and fuel promoter in the production of composite biofuel. This study can provide new insight into the unique functions of MHC during fuel application, which demonstrates the great potential of applying MHTC in energy recovery from lignocellulosic biomass.
    Matched MeSH terms: Biomass
  4. Huang Y, Liu S, Zhang J, Syed-Hassan SSA, Hu X, Sun H, et al.
    Bioresour Technol, 2020 Jul;307:123192.
    PMID: 32220819 DOI: 10.1016/j.biortech.2020.123192
    This study investigated the interactions between volatile and char during biomass pyrolysis at 400 °C, employing a β-5 lignin dimer and amino-modified graphitized carbon nanotube (CNT-NH2) as their models, respectively. The results demonstrated that both -NH2 and its carrier (CNT) facilitated the conversion of the β-5 dimer, which significantly increased from 9.7% (blank run), to 61.6% (with CNT), and to 96.6% (with CNT-NH2). CNT mainly favored the breakage of C-O bond in the feedstock to produce dimers with a yield of 55.5%, while CNT-NH2 promoted the cleavage of both C-O and C-C bonds to yield monomers with a yield up to 63.4%. Such significant changes in the pyrolysis behaviors of the β-5 lignin dimer after the introduction of CNT-NH2 were considered to be mainly caused by hydrogen-bond formations between -NH2 and the dimeric feedstock/products, in addition to the π-π stacking between CNT and aromatic rings.
    Matched MeSH terms: Biomass
  5. Rabeea Munawar, Ehsan Ullah Mughal, Muhammad Waseem Mumtaz, Muhammad Zubair, Jamshaid Ashraf, Zofishan Yousaf, et al.
    Sains Malaysiana, 2018;47:27-34.
    The prime objective of the present research work was to evaluate the efficiency of bio-machine for the removal of Cadmium (Cd) from aquatic systems. Aspergillus niger fungus was used as bio-machine to remove Cd from aquatic systems. Twenty three different strains (IIB-1 to IIB-23) were isolated from industrial effluents and the Langmuir and Freundlich models were applied to the best Cadmium removal strain IIB-23 in order to obtain the adsorption parameters. Different parameters such as pH, temperature, contact time, initial metal concentratio, and biomass dosage on the biosorption of Cd were studied. The percent removal of Cd initially increased with an increase in pH ranging from 5.5-6.5 and then decreased by increasing pH from 7.0-7.5. An optimized pH used for Cd removal from aquatic systems was found to be 6.5. Additionally, an optimum amount of biomass was 1.33 g for the maximum removal of Cd from the aqueous solutions with initial metal concentration of 75 mg/L. The results obtained thus indicated that Langmuir model is the best suited for the removal of Cd from aquatic systems.
    Matched MeSH terms: Biomass
  6. Chia SR, Chew KW, Show PL, Xia A, Ho SH, Lim JW
    Bioresour Technol, 2019 Oct;289:121727.
    PMID: 31279318 DOI: 10.1016/j.biortech.2019.121727
    In this present study, microalgal phycobiliproteins were isolated and purified via potential biphasic processing technique for pharmaceutical as well as food applications. The algal pre-treatment techniques were studied to enhance the yield of microalgal phycobiliproteins from the biomass. The proposed methods were optimised to obtain the best recovery yield of phycobiliproteins that can be isolated from the biomass. The phycobiliproteins were further purified using liquid biphasic system. The results showed that microalgal phycobiliproteins of high purity and yield was achieved using sonication treatment (20% power, 50% duty cycle and 7 min of irradiation time) with the biphasic system, where the purification fold of 6.17 and recovery yield of 94.89% was achieved. This work will provide insights towards the effective downstream processing of biomolecules from microalgae.
    Matched MeSH terms: Biomass
  7. Chong YY, Thangalazhy-Gopakumar S, Ng HK, Lee LY, Gan S
    J Environ Manage, 2019 Oct 01;247:38-45.
    PMID: 31229784 DOI: 10.1016/j.jenvman.2019.06.049
    Fast pyrolysis is a potential technology for converting lignocellulosic biomass into bio-oil. Nevertheless, the high amounts of acid, oxygenated compounds, and water content diminish the energy density of the bio-oil and cause it to be unsuitable for direct usage. Catalytic fast pyrolysis (CFP) is able to improve bio-oil properties so that downstream upgrading processes can be economically feasible. Here, calcium oxide (CaO), magnesium oxide (MgO), and zinc oxide (ZnO) were employed due to their potential in enhancing bio-oil properties. The results showed that overall, all three catalysts positively impacted the empty fruit bunch fibre-derived bio-oil properties. Among the catalysts, CaO showed the most favorable effects in terms of reducing the acidity of the bio-oil and anhydrosugar. Thermal stability of bio-oils produced in the presence of CaO was studied as well.
    Matched MeSH terms: Biomass
  8. Koyande AK, Chew KW, Lim JW, Lam MK, Ho YC, Show PL
    Bioresour Technol, 2020 May;303:122931.
    PMID: 32044648 DOI: 10.1016/j.biortech.2020.122931
    The aim of this work was to study the ultrasonication-assisted Liquid Tri-phasic Flotation (LTF) System to obtain lipid and protein from microalgae Chlorella sorokiniana in a single step as a novel process. In the current study, biorefinery of Chlorella sorokiniana was performed using LTF system in a single step. The highest protein recovery of 97.43 ± 1.67% and lipid recovery of 69.50 ± 0.54% were obtained. The corresponding parameters were microalgae biomass loading of 0.5 w/v%, ammonium sulphate concentration of 40 w/v%, volume ratio of 1:1.5 (salt:alcohol), ultrasonication pulse mode of 20 s ON/20 s OFF at 20% amplitude for 5 mins, flotation air flowrate of 100 mL/min. Additionally, recycling of alcohol phase to study the circular nature of proposed biorefinery was investigated. The proposed LTF system for extraction of proteins and lipid reduces the number of operation units required in this biorefinery approach.
    Matched MeSH terms: Biomass
  9. Ahmed A, Abu Bakar MS, Hamdani R, Park YK, Lam SS, Sukri RS, et al.
    Environ Res, 2020 07;186:109596.
    PMID: 32361527 DOI: 10.1016/j.envres.2020.109596
    Biochar production from invasive species biomass discarded as waste was studied in a fixed bed reactor pyrolysis system under different temperature conditions for value-added applications. Prior to pyrolysis, the biomass feedstock was characterized by proximate, ultimate, and heating value analyses, while the biomass decomposition behavior was examined by thermogravimetric analysis. The heating values of the feedstock biomass ranged from 18.65 to 20.65 MJ/kg, whereas the volatile matter, fixed carbon, and ash content were 61.54-72.04 wt %, 19.27-26.61 wt % and 1.51-1.86 wt %, respectively. The elemental composition of carbon, hydrogen, and oxygen in the samples was reported to be in the range of 47.41-48.47 wt %, 5.50-5.88 wt % and 46.10-45.18 wt %, respectively, while the nitrogen and sulphur content in the biomass samples were at very low concentrations, making it more useful for valorization from environmental aspects. The biochar yields were reported in the range of 45.36-58.35 wt %, 28.63-44.38 wt % and 22.68-29.42 wt % at a pyrolysis temperature of 400 °C, 500 °C, and 600 °C, respectively. The biochars were characterized from ultimate analysis, heating value, energy densification ratio, energy yield, pH, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy and energy dispersive X-ray spectrometry (SEM and EDX), to evaluate their potential for value-added applications. The carbon content, heating value, energy densification ratio, and the porosity of the biochars improved with the increase in pyrolysis temperature, while the energy yield, hydrogen, oxygen, and nitrogen content of the biochars decreased. This study revealed the potential of the valorization of underutilized discarded biomass of invasive species via a pyrolysis process to produce biochar for value-added applications.
    Matched MeSH terms: Biomass
  10. Shehzad M, Asghar A, Ramzan N, Aslam U, Bello MM
    Waste Manag Res, 2020 Nov;38(11):1284-1294.
    PMID: 32347191 DOI: 10.1177/0734242X20916843
    Biomass is considered as the largest renewable energy source in the world. However, some of its inherent properties such as hygroscopicity, lower energy content, low mass density and bio-degradation on storage hinder its extensive application in energy generation processes. Torrefaction, a thermochemical process carried out at 200-300°C in a non-oxidative environment, can address these inherent problems of the biomass. In this work, torrefaction of bagasse was performed in a bench-scale tubular reactor at 250°C and 275°C with residence times of 30, 60 and 90 mins. The effects of torrefaction conditions on the elemental composition, mass yield, energy yield, oxygen/carbon (O/C) and hydrogen/carbon (H/C) ratios, higher heating values and structural composition were investigated and compared with the commercially available 'Thar 6' and 'Tunnel C' coal. Based on the targeted mass and energy yields of 80% and 90% respectively, the optimal process conditions turned out to be 250°C and 30 mins. Torrefaction of the bagasse conducted at 275°C and 90 min raised the carbon content in bagasse to 58.14% and resulted in a high heating value of 23.84 MJ/kg. The structural and thermal analysis of the torrefied bagasse indicates that the moisture, non-structural carbohydrates and hemicellulose were reduced, which induced the hydrophobicity in the bagasse and enhanced its energy value. These findings showed that torrefaction can be a sustainable pre-treatment process to improve the fuel and structural properties of biomass as a feedstock for energy generation processes.
    Matched MeSH terms: Biomass
  11. Parichehreh R, Gheshlaghi R, Mahdavi MA, Kamyab H
    J Biotechnol, 2021 Nov 10;340:64-74.
    PMID: 34454961 DOI: 10.1016/j.jbiotec.2021.08.010
    Biodiesel, as a renewable and eco-friendly energy source that can be produced through algae oil esterification, has recently received much attention. Maximization of algal biomass and lipid content is crucial for commercial biodiesel production. In this study, Chlorella sp. PG96, a microalgal strain isolated from urban wastewater, was identified considering its morphological and molecular characteristics. Fractional factorial design (211-7) was employed to screen medium and environmental factors for achieving high lipid productivity. The effects of eleven factors including light intensity, light spectrum, aeration rate, temperature, salinity, NaHCO3, CO2, NaNO3, NH4Cl, MgSO4.7H2O, and K2HPO4 and their interactions on growth characteristics of Chlorella sp. PG96 (biomass and lipid production) were statistically assessed. Based on the experimental results, lipid productivity was at its maximum (54.19 ± 8.40 mglipid L-1 day-1) under a combination of high levels of all factors. The analysis also showed that physical parameters of light intensity and temperature were more effective on algal growth compared to nutritional parameters. Furthermore, nitrogen source of ammonium and carbon source of bicarbonate played more significant roles in biomass and lipid production, compared with nitrate and CO2, respectively. Although the effect of sulfur limitation on cellular growth was similar to phosphorus deficiency, S-limitation had a greater impact on lipid accumulation. The interaction between NaHCO3 and NH4Cl was the most prominent interaction affecting all responses. It is concluded that Chlorella sp. PG96 at a high level of light intensity and temperature (22500 Lux and 32 °C, respectively) can be a prospective candidate for biodiesel production.
    Matched MeSH terms: Biomass
  12. Wan Afifudeen CL, Aziz A, Wong LL, Takahashi K, Toda T, Abd Wahid ME, et al.
    Phytochemistry, 2021 Dec;192:112936.
    PMID: 34509143 DOI: 10.1016/j.phytochem.2021.112936
    The non-model microalga Messastrum gracile SE-MC4 is a potential species for biodiesel production. However, low biomass productivity hinders it from passing the life cycle assessment for biodiesel production. Therefore, the current study was aimed at uncovering the differences in the transcriptome profiles of the microalgae at early exponential and early stationary growth phases and dissecting the roles of specific differential expressed genes (DEGs) involved in cell division during M. gracile cultivation. The transcriptome analysis revealed that the photosynthetic integral membrane protein genes such as photosynthetic antenna protein were severely down-regulated during the stationary growth phase. In addition, the signaling pathways involving transcription, glyoxylate metabolism and carbon metabolism were also down-regulated during stationary growth phase. Current findings suggested that the coordination between photosynthetic integral membrane protein genes, signaling through transcription and carbon metabolism classified as prominent strategies during exponential growth stage. These findings can be applied in genetic improvement of M. gracile for biodiesel application.
    Matched MeSH terms: Biomass
  13. Lim YA, Khong NMH, Priyawardana SD, Ooi KR, Ilankoon IMSK, Chong MN, et al.
    Bioresour Technol, 2022 Mar;347:126733.
    PMID: 35074462 DOI: 10.1016/j.biortech.2022.126733
    Carbon capture and storage (CCS) via microalgae cultivations is getting renewed interest as climate change mitigation effort, owing to its excellent photosynthetic and CO2 fixation capability. Microalgae growth is monitored based on their biomass, cell concentrations and cell sizes. The key parametric relationships on microalgae growth under CO2 are absent in previous studies and this inadequacy hampers the design and scale-up of microalgae-based CCS. In this study, three representative microalgae species, Chlorella, Nostoc and Chlamydomonas, were investigated for establishing key correlations of cell concentrations and sizes towards their biomass fluctuations under CO2 influences of 0% to 20% volume ratios (v/v). This revealed that Chlorella and Chlamydomonas cell concentrations significantly contributed towards increasing biomass concentration under CO2 elevations. Chlorella and Nostoc cell sizes were enhanced at 20% (v/v). These findings provided new perspectives on growth responses under increasing CO2 treatment, opening new avenues on CCS schemes engineering designs and biochemical production.
    Matched MeSH terms: Biomass
  14. Alazaiza MYD, Albahnasawi A, Ahmad Z, Bashir MJK, Al-Wahaibi T, Abujazar MSS, et al.
    J Environ Manage, 2022 Dec 15;324:116415.
    PMID: 36206653 DOI: 10.1016/j.jenvman.2022.116415
    Remediation by algae is a very effective strategy for avoiding the use of costly, environmentally harmful chemicals in wastewater treatment. Recently, industries based on biomass, especially the bioenergy sector, are getting increasing attention due to their environmental acceptability. However, their practical application is still limited due to the growing cost of raw materials such as algal biomass, harvesting and processing limitations. Potential use of algal biomass includes nutrients recovery, heavy metals removal, COD, BOD, coliforms, and other disease-causing pathogens reduction and production of bioenergy and valuable products. However, the production of algal biomass using the variable composition of different wastewater streams as a source of growing medium and the application of treated water for subsequent use in agriculture for irrigation has remained a challenging task. The present review highlights and discusses the potential role of algae in removing beneficial nutrients from different wastewater streams with complex chemical compositions as a biorefinery concept and subsequent use of produced algal biomass for bioenergy and bioactive compounds. Moreover, challenges in producing algal biomass using various wastewater streams and ways to alleviate the stress caused by the toxic and high concentrations of nutrients in the wastewater stream have been discussed in detail. The technology will be economically feasible and publicly accepted by reducing the cost of algal biomass production and reducing the loaded or attached concentration of micropollutants and pathogenic microorganisms. Algal strain improvement, consortium development, biofilm formation, building an advanced cultivation reactor system, biorefinery concept development, and life-cycle assessment are all possible options for attaining a sustainable solution for sustainable biofuel production. Furthermore, producing valuable compounds, including pharmaceutical, nutraceutical and pigment contents generated from algal biomass during biofuel production, could also help reduce the cost of wastewater management by microalgae.
    Matched MeSH terms: Biomass
  15. Rambabu K, Avornyo A, Gomathi T, Thanigaivelan A, Show PL, Banat F
    Bioresour Technol, 2023 Jan;367:128257.
    PMID: 36343781 DOI: 10.1016/j.biortech.2022.128257
    Phycoremediation is gaining attention not only as a pollutant mitigation approach but also as one of the most cost-effective paths to achieve carbon neutrality. When compared to conventional treatment methods, phycoremediation is highly effective in removing noxious substances from wastewater and is inexpensive, eco-friendly, abundantly available, and has many other advantages. The process results in valuable bioproducts and bioenergy sources combined with pollutants capture, sequestration, and utilization. In this review, microalgae-based phycoremediation of various wastewaters for carbon neutrality and circular economy is analyzed scientometrically. Different mechanisms for pollutants removal and resource recovery from wastewaters are explained. Further, critical parameters that influence the engineering design and phycoremediation performance are described. A comprehensive knowledge map highlighting the microalgae potential to treat a variety of industrial effluents is also presented. Finally, challenges and future prospects for industrial implementation of phycoremediation towards carbon neutrality coupled with circular economy are discussed.
    Matched MeSH terms: Biomass
  16. Chia SR, Nomanbhay SBHM, Chew KW, Munawaroh HSH, Shamsuddin AH, Show PL
    Chemosphere, 2022 Jan;287(Pt 1):131944.
    PMID: 34438210 DOI: 10.1016/j.chemosphere.2021.131944
    Depletion of non-renewable feedstock and severe wastewater pollution due to human activities have created negative impact to living organisms. The potential solution is to implement wastewater treatment and bioelectricity production through algae-based microbial fuel cell. The algae biomass produced from microbial fuel cell could be further processed to generate biofuels through their unique compositions. The consumption of nutrients in wastewater through algae cultivation and biomass produced to be utilized for energy supply have showed the potential of algae to solve the issues faced nowadays. This review introduces the background of algae and mitigation of wastewater using algae as well as the bioenergy status in Malaysia. The mechanisms of nutrient assimilation such as nitrogen, phosphorus, carbon, and heavy metals are included, followed by the application of algae in microbial fuel cell's chambers. Lastly, the status of algae for bioenergy production are covered.
    Matched MeSH terms: Biomass
  17. Bahadar A, Kanthasamy R, Sait HH, Zwawi M, Algarni M, Ayodele BV, et al.
    Chemosphere, 2022 Jan;287(Pt 1):132052.
    PMID: 34478965 DOI: 10.1016/j.chemosphere.2021.132052
    The thermochemical processes such as gasification and co-gasification of biomass and coal are promising route for producing hydrogen-rich syngas. However, the process is characterized with complex reactions that pose a tremendous challenge in terms of controlling the process variables. This challenge can be overcome using appropriate machine learning algorithm to model the nonlinear complex relationship between the predictors and the targeted response. Hence, this study aimed to employ various machine learning algorithms such as regression models, support vector machine regression (SVM), gaussian processing regression (GPR), and artificial neural networks (ANN) for modeling hydrogen-rich syngas production by gasification and co-gasification of biomass and coal. A total of 12 machine learning algorithms which comprises the regression models, SVM, GPR, and ANN were configured, trained using 124 datasets. The performances of the algorithms were evaluated using the coefficient of determination (R2), root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE). In all cases, the ANN algorithms offer superior performances and displayed robust predictions of the hydrogen-rich syngas from the co-gasification processes. The R2 of both the Levenberg-Marquardt- and Bayesian Regularization-trained ANN obtained from the prediction of the hydrogen-rich syngas was found to be within 0.857-0.998 with low prediction errors. The sensitivity analysis to determine the effect of the process parameters on the model output revealed that all the parameters showed a varying level of influence. In most of the processes, the gasification temperature was found to have the most significant influence on the model output.
    Matched MeSH terms: Biomass
  18. Nawaz S, Ahmad M, Asif S, Klemeš JJ, Mubashir M, Munir M, et al.
    Bioresour Technol, 2022 Jan;343:126068.
    PMID: 34626762 DOI: 10.1016/j.biortech.2021.126068
    The efforts have been made to review phyllosilicate derived (clay-based) heterogeneous catalysts for biodiesel production via lignocellulose derived feedstocks. These catalysts have many practical and potential applications in green catalysis. Phyllosilicate derived heterogeneous catalysts (modified via any of these approaches like acid activated clays, ion exchanged clays and layered double hydroxides) exhibits excellent catalytic activity for producing cost effective and high yield biodiesel. The combination of different protocols (intercalated catalysts, ion exchanged catalysts, acidic activated clay catalysts, clay-supported catalysts, composites and hybrids, pillared interlayer clay catalysts, and hierarchically structured catalysts) was implemented so as to achieve the synergetic effects (acidic-basic) in resultant material (catalyst) for efficient conversion of lignocellulose derived feedstock (non-edible oils) to biodiesel. Utilisation of these Phyllosilicate derived catalysts will pave path for future researchers to investigate the cost-effective, accessible and improved approaches in synthesising novel catalysts that could be used for converting lignocellulosic biomass to eco-friendly biodiesel.
    Matched MeSH terms: Biomass
  19. Chen K, Ng KH, Cheng CK, Cheng YW, Chong CC, Vo DN, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132222.
    PMID: 34826917 DOI: 10.1016/j.chemosphere.2021.132222
    Biomass, which defined as plant- or animal-based materials, is intriguing tremendous scientific attentions due to its renewable attribute in serving energy security. Amongst, the plant-based biomasses, particularly those that co-generated in the agriculture activities, are commonly regarded as fuel for burning, which overlooked their hidden potentials for high-end applications. Organically, the plant-based biomass constitutes of lignocellulose components, which can be served as promising precursors for functionalized carbon materials. Meanwhile, its inorganic counterpart made up of various minerals, with Si being the most concerned one. With the advancement of biomass technologies and material synthesis in recent years, numerous attempts were endeavoured to obtain valorised products from biomass. Particularly, syntheses of catalytic and adsorptive materials are actively researched in the field of biomass reutilization. Herein, our work systematically summarized the advancements of biomass-materials for these applications in recent 10 years (2010-2020), with a special focus on the carbon-based and Si-based catalytic/adsorptive materials. Significantly, the deriving steps, inclusive of both pre-treatment and post-treatment of such materials, are incorporated in the discussion, alongside with their significances revealed too. The performance of the as-obtained materials in the respective application is systematically correlated to their physicochemical properties, hence providing valuable insights to the readers. Challenges and promising directions to be explored are raised too at the end of the review, aiming to advocate better-usage of biomass while offering great opportunities to sustain catalysis and adsorption in the industrial scale.
    Matched MeSH terms: Biomass
  20. Safian MT, Sekeri SH, Yaqoob AA, Serrà A, Jamudin MD, Mohamad Ibrahim MN
    Talanta, 2022 Mar 01;239:123109.
    PMID: 34864531 DOI: 10.1016/j.talanta.2021.123109
    With each passing year, the agriculture and wood processing industries generate increasingly high tonnages of biomass waste, which instead of being burned or left to accumulate should be utilized more sustainably. In parallel, advances in green technology have encouraged large companies and nations to begin using eco-friendly materials, including eco-friendly emulsifiers, which are used in various industries and in bio-based materials. The emulsion-conducive properties of lignocellulosic materials such as cellulose, hemicellulose, and lignin, the building blocks of plant and wood structures, have demonstrated a particular ability to alter the landscape of emulsion technology. Beyond that, the further modification of their structure may improve emulsion stability, which often determines the performance of emulsions. Considering those trends, this review examines the performance of lignocellulosic materials after modification according to their stability, droplet size, and distribution by size, all of which suggest their outstanding potential as materials for emulsifying agents.
    Matched MeSH terms: Biomass
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links