Displaying publications 81 - 100 of 365 in total

Abstract:
Sort:
  1. Abdullah J, Ahmad M, Heng LY, Karuppiah N, Sidek H
    Anal Bioanal Chem, 2006 Nov;386(5):1285-92.
    PMID: 17031625
    The stacked-film immobilization of 3-methyl-2-benzothiazolinone hydrazone (MBTH) in hybrid nafion/sol-gel silicate film and horseradish peroxidase (HRP) in chitosan, performed in order to allow the determination of phenolic compounds, was investigated via an optical method. The stacked films were deposited onto a microscope glass slide by a spin-coating technique. The quinone or free radical product formed by the enzymatic reactions of phenolic compounds interacts with MBTH to form azo-dye products, which can be measured spectrophotometrically at a wavelength of 500 nm. The color intensity of the product was found to increase in proportion to the phenolic concentration after 5 min of exposure. The response of the biosensor was linear over concentration ranges of 0.025-0.500, 0.010-0.070 and 0.050-0.300 mM for guaiacol, resorcinol and o-cresol, respectively, and gave detection limits of 0.010, 0.005 and 0.012 mM. The sensor exhibited good sensitivity and stability for at least two months.
    Matched MeSH terms: Biosensing Techniques/methods
  2. Sabullah, M. K., Khalidi, S. A. M., Abdullah, R., Sani, S. A., Gansau, J. A., Ahmad, S. A., et al.
    MyJurnal
    Heavy metals with high chemical activity from sludge and waste release, agriculture, and
    mining activity are a major concern. They should be carefully managed before reaching the
    main water bodies. Excessive exposure to heavy metal may cause toxic effect to any types of
    organism from the biomolecular to the physiological level, and ultimately cause death. Monitoring is the best technique to ensure the safety of our environment before a rehabilitation is
    needed. Nowadays, enzyme-based biosensors are utilised in biomonitoring programmes as
    this technique allows for a real-time detection and rapid result. It is also inexpensive and easy
    to handle. Enzyme-based biosensors are an alternative for the preliminary screening of
    contamination before a secondary screening is performed using high-performance technology.
    This review highlights the current knowledge on enzyme-based biosensors, focusing on
    cholinesterase for toxic metal detection in the environment.
    Matched MeSH terms: Biosensing Techniques
  3. Parkash O, Shueb RH
    Viruses, 2015 Oct 19;7(10):5410-27.
    PMID: 26492265 DOI: 10.3390/v7102877
    Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed.
    Matched MeSH terms: Biosensing Techniques/methods*
  4. Theint HT, Walsh JE, Wong ST, Voon K, Shitan M
    Spectrochim Acta A Mol Biomol Spectrosc, 2019 Jul 05;218:348-358.
    PMID: 31026712 DOI: 10.1016/j.saa.2019.04.008
    A laboratory prototype system that correlates murine blood absorbance with degree of infection for Plasmodium berghei and Trypanosoma avensi has been designed, constructed and tested. A population (n = 6) of control uninfected, Plasmodium infected and Trypanosoma infected BALB/c mice were developed and spectral absorption measurements pre and post infection were made every 3 days. A fibre optic spectrometer set-up was used as the basis of a laboratory prototype biosensor that uses the Beer Lambert Law to relate Ultraviolet-Visible-Near-infrared absorbance data to changes in murine blood chemistry post infection. Spectral absorption results indicate a statistically relevant correlation at a 650 nm with infection for Plasmodium from between 4 and 7 sampling days' post infection, in spite of significant standard deviations among the sample populations for control and infected mice. No significant spectral absorption change for Trypanosoma infection was been detected from the current data. Corresponding stained slides of control and infected blood at each sampling date were taken with related infected cell counts determined and these correlate well for Plasmodium absorbance at 650 nm.
    Matched MeSH terms: Biosensing Techniques/instrumentation*
  5. Cheng Y, Lai OM, Tan CP, Panpipat W, Cheong LZ, Shen C
    ACS Appl Mater Interfaces, 2021 Jan 27;13(3):4146-4155.
    PMID: 33440928 DOI: 10.1021/acsami.0c17134
    Immobilization can be used to improve the stability of lipases and enhances lipase recovery and reusability, which increases its commercial value and industrial applications. Nevertheless, immobilization frequently causes conformational changes of the lipases, which decrease lipase catalytic activity. in the present work, we synthesized UIO-66 and grafted UIO-66 crystals with proline for immobilization of Candida rugosa lipase (CRL). As indicated by steady-state fluorescence microscopy, grafting of proline onto UIO-66 crystals induced beneficial conformational change in CRL. CRL immobilized on UIO-66/Pro (CRL@UIO-66/Pro) demonstrated higher enzyme activity and better recyclability than that immobilized on UIO-66 (CRL@UIO-66) in both hydrolysis (CRL@UIO-66/Pro: 0.34 U; CRL@UIO-66: 0.15 U) and transesterification (CRL@UIO-66/Pro: 0.93 U; CRL@UIO-66: 0.25 U) reactions. The higher values of kcat and kcat/Km of CRL@UIO-66/Pro also showed that it had better catalytic efficiency as compared to CRL@UIO-66. It is also worth noting that CRL@UIO-66/Pro (0.93 U) demonstrated a much higher transesterification activity as compared to free CRL (0.11 U), indicating that UIO-66/Pro has increased the solvent stability of CRL. Both CRL@UIO-66 and CRL@UIO-66/Pro were also used for the fabrication of biosensors for nitrofen with a wide linear range (0-100 μM), lower limit of detection, and good recovery rate.
    Matched MeSH terms: Biosensing Techniques/methods
  6. Hajian R, Mehrayin Z, Mohagheghian M, Zafari M, Hosseini P, Shams N
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:769-775.
    PMID: 25687007 DOI: 10.1016/j.msec.2015.01.072
    In this study, an electrochemical sensor was fabricated based on gold nanoparticles/ ethylenediamine/ multi-wall carbon-nanotubes modified gold electrode (AuNPs/en/MWCNTs/AuE) for determination of valrubicin in biological samples. Valrubicin was effectively accumulated on the surface of AuNPs/en/MWCNTs/AuE and produced a pair of redox peaks at around 0.662 and 0.578V (vs. Ag/AgCl) in citrate buffer (pH4.0). The electrochemical parameters including pH, buffer, ionic strength, scan rate and size of AuNPs have been optimized. There was a good linear correlation between cathodic peak current and concentration of valrubicin in the range of 0.5 to 80.0μmolL(-1) with the detection limit of 0.018μmolL(-1) in citrate buffer (pH4.0) and 0.1molL(-1) KCl. Finally, the constructed sensor was successfully applied for determination of valrubicin in human urine and blood serum. In further studies, the different sequences of single stranded DNA probes have been immobilized on the surface of AuNPs decorated on MWCNTs to study the interaction of oligonucleotides with valrubicin.
    Matched MeSH terms: Biosensing Techniques/methods
  7. Kashif M, Bakar AA, Arsad N, Shaari S
    Sensors (Basel), 2014 Aug 28;14(9):15914-38.
    PMID: 25171117 DOI: 10.3390/s140915914
    Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.
    Matched MeSH terms: Biosensing Techniques/instrumentation*
  8. Alahnomi RA, Zakaria Z, Ruslan E, Ab Rashid SR, Mohd Bahar AA, Shaaban A
    PLoS One, 2017;12(9):e0185122.
    PMID: 28934301 DOI: 10.1371/journal.pone.0185122
    A novel symmetrical split ring resonator (SSRR) based microwave sensor with spurline filters for detecting and characterizing the properties of solid materials has been developed. Due to the weak perturbation in the interaction of material under test (MUT) and planar microwave sensor, spurline filters were embedded to the SSRR microwave sensor which effectively enhanced Q-factor with suppressing the undesired harmonic frequency. The spurline filter structures force the presented sensor to resonate at a fundamental frequency of 2.2 GHz with the capabilities of suppressing rejected harmonic frequency and miniaturization in circuit size. A wide bandwidth rejection is achieved by using double spurlines filters with high Q-factor achievement (up to 652.94) compared to single spurline filter. The new SSRR sensor with spurline filters displayed desired properties such as high sensitivity, accuracy, and performance with a 1.3% typical percentage error in the measurement results. Furthermore, the sensor has been successfully applied for detecting and characterizing solid materials (such as Roger 5880, Roger 4350, and FR4) and evidently demonstrated that it can suppress the harmonic frequency effectively. This novel design with harmonic suppression is useful for various applications such as food industry (meat, fruit, vegetables), biological medicine (derived from proteins and other substances produced by the body), and Therapeutic goods (antiseptics, vitamins, anti-psychotics, and other medicines).
    Matched MeSH terms: Biosensing Techniques/instrumentation*
  9. Khalil I, Yehye WA, Muhd Julkapli N, Sina AA, Rahmati S, Basirun WJ, et al.
    Analyst, 2020 Feb 17;145(4):1414-1426.
    PMID: 31845928 DOI: 10.1039/c9an02106j
    Surface enhanced Raman scattering (SERS) DNA biosensing is an ultrasensitive, selective, and rapid detection technique with the ability to produce molecule-specific distinct fingerprint spectra. It supersedes the long amplicon based PCR assays, the fluorescence and spectroscopic techniques with their quenching and narrow spectral bandwidth, and the electrochemical detection techniques using multiplexing. However, the performance of the SERS DNA biosensor relies on the DNA probe length, platform composition, both the presence and position of Raman tags and the chosen sensing strategy. In this context, we herein report a SERS biosensor based on dual nanoplatforms with a uniquely designed Raman tag (ATTO Rho6G) intercalated short-length DNA probe for the sensitive detection of the pig species Sus scrofa. In the design of the signal probe (SP), a Raman tag was incorporated adjacent to the spacer arm, followed by a terminal thiol modifier, which consequently had a strong influence on the SERS signal enhancement. The detection strategy involves the probe-target DNA hybridization mediated coupling of the two platforms, i.e., the graphene oxide-gold nanorod (GO-AuNR) functionalized capture probe (CP) and SP-conjugated gold nanoparticles (AuNPs), consequently enhancing the SERS intensity by both the electromagnetic hot spots generated at the junctions or interstices of the two platforms and the chemical enhancement between the AuNPs and the adsorbed intercalated Raman tag. This dual platform based SERS DNA biosensor exhibited outstanding sensitivity in detecting pork DNA with a limit of detection (LOD) of 100 aM validated with DNA extracted from a pork sample (LOD 1 fM). Moreover, the fabricated SERS biosensor showed outstanding selectivity and specificity for differentiating the DNA sequences of six closely related non-target species from the target DNA sequences with single and three nucleotide base-mismatches. Therefore, the developed short-length DNA linked dual platform based SERS biosensor could replace the less sensitive traditional methods of pork DNA detection and be adopted as a universal detection approach for the qualitative and quantitative detection of DNA from any source.
    Matched MeSH terms: Biosensing Techniques/methods*
  10. Anbazhagan D, Mansor M, Yan GO, Md Yusof MY, Hassan H, Sekaran SD
    PLoS One, 2012;7(7):e36696.
    PMID: 22815678 DOI: 10.1371/journal.pone.0036696
    Quorum sensing is a term that describes an environmental sensing system that allows bacteria to monitor their own population density which contributes significantly to the size and development of the biofilm. Many gram negative bacteria use N-acyl-homoserine lactones as quorum sensing signal molecules. In this study, we sought to find out if the biofilm formation among clinical isolates of Acinetobacter spp. is under the control of autoinducing quorum sensing molecules.
    Matched MeSH terms: Biosensing Techniques
  11. Chong ZL, Soe HJ, Ismail AA, Mahboob T, Chandramathi S, Sekaran SD
    Biosensors (Basel), 2021 Apr 22;11(5).
    PMID: 33921935 DOI: 10.3390/bios11050129
    Dengue is a major threat to public health globally. While point-of-care diagnosis of acute/recent dengue is available to reduce its mortality, a lack of rapid and accurate testing for the detection of previous dengue remains a hurdle in expanding dengue seroepidemiological surveys to inform its prevention, especially vaccination, to reduce dengue morbidity. This study evaluated ViroTrack Dengue Serostate, a biosensors-based semi-quantitative anti-dengue IgG (immunoglobulin G) immuno-magnetic agglutination assay for the diagnosis of previous and recent dengue in a single test. Blood samples were obtained from 484 healthy participants recruited randomly from two communities in Petaling district, Selangor, Malaysia. The reference tests were Panbio Dengue IgG indirect and capture enzyme-linked immunosorbent assays, in-house hemagglutination inhibition assay, and focus reduction neutralization test. Dengue Serostate had a sensitivity and specificity of 91.1% (95%CI 87.8-93.8) and 91.1% (95%CI 83.8-95.8) for the diagnosis of previous dengue, and 90.2% (95%CI 76.9-97.3) and 93.2% (95%CI 90.5-95.4) for the diagnosis of recent dengue, respectively. Its positive predictive value of 97.5% (95%CI 95.3-98.8) would prevent most dengue-naïve individuals from being vaccinated. ViroTrack Dengue Serostate's good point-of-care diagnostic accuracy can ease the conduct of dengue serosurveys to inform dengue vaccination strategy and facilitate pre-vaccination screening to ensure safety.
    Matched MeSH terms: Biosensing Techniques*
  12. Azila AA, Barbari T, Searson P
    Med J Malaysia, 2004 May;59 Suppl B:51-2.
    PMID: 15468814
    Considerable effort has been focused on the method of immobilizing glucose oxidase (GOD) for amperometric glucose biosensors since the technique employed may influence the available activity of the enzyme and thus affect the performance of the sensor. Narrow measuring range and low current response are still considered problems in this area. In this work, poly(vinyl alcohol)(PVA) was investigated as a potential matrix for GOD immobilization. GOD was entrapped in cross-linked PVA. The use of a PVA-GOD membrane as the enzymatic component of a glucose biosensor was found to be promising in both the magnitude of its signal and its relative stability over time. The optimum PVA-GOD membrane (cross-linking density of 0.06) was obtained through careful selection of the cross-linking density of the PVA matrix.
    Matched MeSH terms: Biosensing Techniques*
  13. Makhsin SR, Goddard NJ, Gupta R, Gardner P, Scully PJ
    Anal Chem, 2020 11 17;92(22):14907-14914.
    PMID: 32378876 DOI: 10.1021/acs.analchem.0c00586
    The metal-clad leaky waveguide (MCLW) is an optical biosensor consisting of a metal layer and a low index waveguide layer on a glass substrate. This label-free sensor measures refractive index (RI) changes within the waveguide layer. This work shows the development and optimization of acrylate based-hydrogel as the waveguide layer formed from PEG diacrylate (PEGDA, Mn 700), PEG methyl ether acrylate (PEGMEA, Mn 480), and acrylate-PEG2000-NHS fabricated on a substrate coated with 9.5 nm of titanium. The acrylate-based hydrogel is a synthetic polymer, so properties such as optical transparency, porosity, and hydrogel functionalization by a well-controlled reactive group can be tailored for immobilization of the bioreceptor within the hydrogel matrix. The waveguide sensor demonstrated an equal response to solutions of identical RI containing small (glycerol) and large (bovine serum albumin; BSA) analyte molecules, indicating that the hydrogel waveguide film is highly porous to both sizes of molecule, thus potentially allowing penetration of a range of analytes within the porous matrix. The final optimized MCLW chip was formed from a total hydrogel concentration of 40% v/v of PEGMEA-PEGDA (Mn 700), functionalized with 2.5% v/v of acrylate-PEG2000-NHS. The sensor generated a single-moded waveguide signal with a RI sensitivity of 128.61 ± 0.15° RIU-1 and limit of detection obtained at 2.2 × 10-6 RIU with excellent signal-to-noise ratio for the glycerol detection. The sensor demonstrated RI detection by monitoring changes in the out-coupled angle resulting from successful binding of d-biotin to streptavidin immobilized on functionalized acrylate hydrogel, generating a binding signal of (12.379 ± 0.452) × 10-3°.
    Matched MeSH terms: Biosensing Techniques/instrumentation*
  14. Ramdzan NSM, Fen YW, Anas NAA, Omar NAS, Saleviter S
    Molecules, 2020 May 30;25(11).
    PMID: 32486124 DOI: 10.3390/molecules25112548
    Great efforts have been devoted to the invention of environmental sensors as the amount of water pollution has increased in recent decades. Chitosan, cellulose and nanocrystalline cellulose are examples of biopolymers that have been intensively studied due to their potential applications, particularly as sensors. Furthermore, the rapid use of conducting polymer materials as a sensing layer in environmental monitoring has also been developed. Thus, the incorporation of biopolymer and conducting polymer materials with various methods has shown promising potential with sensitively and selectively toward heavy metal ions. In this feature paper, selected recent and updated investigations are reviewed on biopolymer and conducting polymer-based materials in sensors aimed at the detection of heavy metal ions by optical methods. This review intends to provide sufficient evidence of the potential of polymer-based materials as sensing layers, and future outlooks are considered in developing surface plasmon resonance as an excellent and valid sensor for heavy metal ion detection.
    Matched MeSH terms: Biosensing Techniques/methods
  15. Ong CC, Siva Sangu S, Illias NM, Chandra Bose Gopinath S, Saheed MSM
    Biosens Bioelectron, 2020 Apr 15;154:112088.
    PMID: 32056954 DOI: 10.1016/j.bios.2020.112088
    Deoxynivalenol (DON), a cosmopolitan mycotoxin found in agricultural commodities causes serious health maladies to human and animals when accidently consumed even at a low quantity. It necessitates selective and sensitive devices to analyse DON as the conventional methods are complex and time-consuming. This study is focused on developing a selective biosensing system using iron nanoflorets graphene nickel (INFGN) as the transducer and a specific aptamer as the biorecognition element. 3D-graphene is incorporated using a low-pressure chemical vapour deposition followed by the decoration of iron nanoflorets using electrochemical deposition. INFGN enables a feasible bio-capturing due to its large surface area. The X-ray photoelectron spectroscopy analysis confirms the presence of the hydroxyl groups on the INFGN surface, which acts as the linker. Clear Fourier-transform infrared peak shifts affirm the changes with surface chemical modification and biomolecular assembly. The limit of detection attained is 2.11 pg mL-1 and displays high stability whereby it retains 30.65% of activity after 48 h. The designed INFGN demonstrates remarkable discrimination of DON against similar mycotoxins (zearalenone and ochratoxin A). Overall, the high-performance biosensor shown here is an excellent, simple and cost-effective alternative for detecting DON in food and feed samples.
    Matched MeSH terms: Biosensing Techniques*
  16. Moi IM, Roslan NN, Leow ATC, Ali MSM, Rahman RNZRA, Rahimpour A, et al.
    Appl Microbiol Biotechnol, 2017 Jun;101(11):4371-4385.
    PMID: 28497204 DOI: 10.1007/s00253-017-8300-y
    Photobacterium species are Gram-negative coccobacilli which are distributed in marine habitats worldwide. Some species are unique because of their capability to produce luminescence. Taxonomically, about 23 species and 2 subspecies are validated to date. Genomes from a few Photobacterium spp. have been sequenced and studied. They are considered a special group of bacteria because some species are capable of producing essential polyunsaturated fatty acids, antibacterial compounds, lipases, esterases and asparaginases. They are also used as biosensors in food and environmental monitoring and detectors of drown victim, as well as an important symbiont.
    Matched MeSH terms: Biosensing Techniques
  17. Balakrishnan SR, Hashim U, Gopinath SC, Poopalan P, Ramayya HR, Veeradasan P, et al.
    Biosens Bioelectron, 2016 Oct 15;84:44-52.
    PMID: 26560969 DOI: 10.1016/j.bios.2015.10.075
    Rationally designed biosensing system supports multiplex analyses is warranted for medical diagnosis to determine the level of analyte interaction. The chemically functionalized novel multi-electrode polysilicon nanogap (PSNG) lab-on-chip is designed in this study, facilitates multiplex analyses for a single analyte. On the fabricated 69nm PSNG, biocompatibility and structural characteristics were verified for the efficient binding of Human Chorionic Gonadotropin (hCG). With the assistance of microfluidics, hCG sample was delivered via single-injection to 3-Aminopropyl(triethoxy)silane (APTES) and Glycidoxypropyl(trimethoxy)silane (GPMS) modified PSNG electrodes and the transduced signal was used to investigate the dielectric mechanisms for multiplex analyses. The results from amperometric response and impedance measurement delivered the scale of interaction between anti-hCG antibody and hCG that exhibited 6.5 times higher sensitivity for the chemical linker, APTES than GPMS. Under optimized experimental conditions, APTES and GPMS modified immunosensor has a limit of detection as 0.56mIU/ml and 2.93mIU/ml (at S/N=3), with dissociation constants (Kd) of 5.65±2.5mIU/ml and 7.28±2.6mIU/ml, respectively. These results suggest that multiplex analysis of single target could enhance the accuracy of detection and reliable for real-time comparative analyses. The designed PSNG is simple, feasible, requires low sample consumption and could be applied for any given multiplex analyses.
    Matched MeSH terms: Biosensing Techniques/instrumentation*
  18. Saeedfar K, Heng LY, Ling TL, Rezayi M
    Sensors (Basel), 2013;13(12):16851-66.
    PMID: 24322561 DOI: 10.3390/s131216851
    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10-3 M to 8.28 × 10-5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.
    Matched MeSH terms: Biosensing Techniques/instrumentation*; Biosensing Techniques/methods*
  19. Logroño W, Guambo A, Pérez M, Kadier A, Recalde C
    Sensors (Basel), 2015;16(1).
    PMID: 26784197 DOI: 10.3390/s16010101
    Microbial fuel cells represent an innovative technology which allow simultaneous waste treatment, electricity production, and environmental monitoring. This study provides a preliminary investigation of the use of terrestrial Single chamber Microbial Fuel Cells (SMFCs) as biosensors. Three cells were created using Andean soil, each one for monitoring a BOD concentration of synthetic washed rice wastewater (SRWW) of 10, 100, and 200 mg/L for SMFC1, SMFC2 and SMFC3, respectively. The results showed transient, exponential, and steady stages in the SMFCs. The maximum open circuit voltage (OCV) peaks were reached during the elapsed time of the transient stages, according to the tested BOD concentrations. A good linearity between OCV and time was observed in the increasing stage. The average OCV in this stage increased independently of the tested concentrations. SMFC1 required less time than SMFC2 to reach the steady stage, suggesting the BOD concentration is an influencing factor in SMFCs, and SMFC3 did not reach it. The OCV ratios were between 40.6-58.8 mV and 18.2-32.9 mV for SMFC1 and SMFC2. The reproducibility of the SMFCs was observed in four and three cycles for SMFC1 and SMFC2, respectively. The presented SMFCs had a good response and reproducibility as biosensor devices, and could be an alternative for environmental monitoring.
    Matched MeSH terms: Biosensing Techniques
  20. Ng CL, Reaz MB
    Sensors (Basel), 2017 Mar 12;17(3).
    PMID: 28287493 DOI: 10.3390/s17030574
    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test.
    Matched MeSH terms: Biosensing Techniques
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links