Displaying publications 81 - 100 of 1079 in total

Abstract:
Sort:
  1. Wahidin S, Idris A, Shaleh SR
    Bioresour Technol, 2013 Feb;129:7-11.
    PMID: 23232218 DOI: 10.1016/j.biortech.2012.11.032
    Illumination factors such as length of photoperiod and intensity can affect growth of microalgae and lipid content. In order to optimize microalgal growth in mass culture system and lipid content, the effects of light intensity and photoperiod cycle on the growth of the marine microalgae, Nannochloropsis sp. were studied in batch culture. Nannochloropsis sp. was grown aseptically for 9 days at three different light intensities (50, 100 and 200 μmol m(-2) s(-1)) and three different photoperiod cycles (24:0, 18:06 and 12:12 h light:dark) at 23 °C cultivation temperature. Under the light intensity of 100 μmol m(-2) s(-1) and photoperiod of 18 h light: 6 h dark cycle, Nannochloropsis sp. was found to grow favorably with a maximum cell concentration of 6.5×10(7) cells mL(-1), which corresponds to the growth rate of 0.339 d(-1) after 8 day cultivation and the lipid content was found to be 31.3%.
    Matched MeSH terms: Cell Proliferation/radiation effects
  2. Safwani WK, Makpol S, Sathapan S, Chua KH
    Appl Biochem Biotechnol, 2012 Apr;166(8):2101-13.
    PMID: 22391697 DOI: 10.1007/s12010-012-9637-4
    Human adipose-derived stem cells (ASCs) have generated a great deal of excitement in regenerative medicine. However, their safety and efficacy issue remain a major concern especially after long-term in vitro expansion. The aim of this study was to investigate the fundamental changes of ASCs in long-term culture by studying the morphological feature, growth kinetic, surface marker expressions, expression level of the senescence-associated genes, cell cycle distribution and ß-galactosidase activity. Human ASCs were harvested from lipoaspirate obtained from 6 patients. All the parameters mentioned above were measured at P5, P10, P15 and P20. Data were subjected to one-way analysis of variance with a Tukey post hoc test to determine significance difference (P < 0.05). The data showed that growth of ASCs reduced in long-term culture and the ß-galactosidase activity was significantly increased at later passage (P20). The morphology of ASCs in long-term culture showed the manifestation of senescent feature at P15 and P20. Significant alteration in the senescence-associated genes expression levels was observed in MMP1, p21, Rb and Cyclin D1 at P15 and P20. Significant increase in CD45 and HLA DR DQ DP surface marker was observed at P20. While cell cycle analysis showed significant decrease in percentage of ASCs at S and G2/M phase at later passage (P15). Our data showed ASCs cultured beyond P10 favours the senescence pathway and its clinical usage in cell-based therapy may be limited.
    Matched MeSH terms: Cell Proliferation
  3. Syam S, Abdul AB, Sukari MA, Mohan S, Abdelwahab SI, Wah TS
    Molecules, 2011 Aug 23;16(8):7155-70.
    PMID: 21862957 DOI: 10.3390/molecules16087155
    Murraya koenigii is an edible herb widely used in folk medicine. Here we report that girinimbine, a carbazole alkaloid isolated from this plant, inhibited the growth and induced apoptosis in human hepatocellular carcinoma, HepG2 cells. The MTT and LDH assay results showed that girinimbine decreased cell viability and increased cytotoxicity in a dose-and time-dependent manner selectively. Girinimbine-treated HepG2 cells showed typical morphological features of apoptosis, as observed from normal inverted microscopy and Hoechst 33342 assay. Furthermore, girinimbine treatment resulted in DNA fragmentation and elevated levels of caspase-3 in HepG2 cells. Girinimbine treatment also displayed a time-dependent accumulation of the Sub-G(0)/G(1) peak (hypodiploid) and caused G(0)/G(1)-phase arrest. Together, these results demonstrated for the first time that girinimbine could effectively induce programmed cell death in HepG2 cells and suggests the importance of conducting further investigations in preclinical human hepatocellular carcinoma models, especially on in vivo efficacy, to promote girinimbine for use as an anticancer agent against hepatocellular carcinoma.
    Matched MeSH terms: Cell Proliferation/drug effects
  4. Yap HM, Lee YZ, Harith HH, Tham CL, Cheema MS, Shaari K, et al.
    Sci Rep, 2018 11 09;8(1):16640.
    PMID: 30413753 DOI: 10.1038/s41598-018-34847-0
    Increased airway smooth muscle (ASM) mass is a prominent hallmark of airway remodeling in asthma. Inhaled corticosteroids and long-acting beta2-agonists remain the mainstay of asthma therapy, however are not curative and ineffective in attenuating airway remodeling. The geranyl acetophenone 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA), an in-house synthetic non-steroidal compound, attenuates airway hyperresponsiveness and remodeling in murine models of asthma. The effect of tHGA upon human ASM proliferation, migration and survival in response to growth factors was assessed and its molecular target was determined. Following serum starvation and induction with growth factors, proliferation and migration of human bronchial smooth muscle cells (hBSMCs) treated with tHGA were significantly inhibited without any significant effects upon cell survival. tHGA caused arrest of hBSMC proliferation at the G1 phase of the cell cycle with downregulation of cell cycle proteins, cyclin D1 and diminished degradation of cyclin-dependent kinase inhibitor (CKI), p27Kip1. The inhibitory effect of tHGA was demonstrated to be related to its direct inhibition of AKT phosphorylation, as well as inhibition of JNK and STAT3 signal transduction. Our findings highlight the anti-remodeling potential of this drug lead in chronic airway disease.
    Matched MeSH terms: Cell Proliferation/drug effects*
  5. Rengarajan T, Yaacob NS
    Eur J Pharmacol, 2016 Oct 15;789:8-16.
    PMID: 27377217 DOI: 10.1016/j.ejphar.2016.07.001
    Epidemiological studies show that consumption of diets rich in fruits and vegetables is associated with lower risks of cancer. This evidence has kindled interest into research on bioactive food components and has till date resulted in the identification of many compounds with cancer preventive and therapeutic potential. Among such compounds is fisetin (3,7,3,4-tetrahydroxyflavone), a flavonol that is commonly found in many fruits and vegetables such as apples, persimmons, grapes, kiwis, strawberries, onions and cucumbers. Fisetin has been shown to inhibit or retard the growth of various cancer cells in culture and implanted tumors in vivo. Fisetin targets many components of intracellular signaling pathways including regulators of cell survival and apoptosis, tumor angiogenic and metastatic switches by modulating a distinct set of upstream kinases, transcription factors and their regulators. Current evidence supports the idea that fisetin is a promising agent for cancer treatment. This review summarizes reported anticancer effects of fisetin, and re-emphasizes its potential therapeutic role in the treatment of cancer.
    Matched MeSH terms: Cell Proliferation/drug effects
  6. Masir N, Jones M, Lee AM, Goff LK, Clear AJ, Lister A, et al.
    Histopathology, 2010 Apr;56(5):617-26.
    PMID: 20459572 DOI: 10.1111/j.1365-2559.2010.03524.x
    To investigate the relationship between Bcl-2 protein expression and cell proliferation at single-cell level in B-cell lymphomas using double-labelling techniques.
    Matched MeSH terms: Cell Proliferation
  7. Aroosa M, Malik JA, Ahmed S, Bender O, Ahemad N, Anwar S
    Mol Biol Rep, 2023 Sep;50(9):7667-7680.
    PMID: 37418080 DOI: 10.1007/s11033-023-08568-1
    Antiepileptic drugs are versatile drugs with the potential to be used in functional drug formulations with drug repurposing approaches. In the present review, we investigated the anticancer properties of antiepileptic drugs and interlinked cancer and epileptic pathways. Our focus was primarily on those drugs that have entered clinical trials with positive results and those that provided good results in preclinical studies. Many contributing factors make cancer therapy fail, like drug resistance, tumor heterogeneity, and cost; exploring all alternatives for efficient treatment is important. It is crucial to find new drug targets to find out new antitumor molecules from the already clinically validated and approved drugs utilizing drug repurposing methods. The advancements in genomics, proteomics, and other computational approaches speed up drug repurposing. This review summarizes the potential of antiepileptic drugs in different cancers and tumor progression in the brain. Valproic acid, oxcarbazepine, lacosamide, lamotrigine, and levetiracetam are the drugs that showed potential beneficial outcomes against different cancers. Antiepileptic drugs might be a good option for adjuvant cancer therapy, but there is a need to investigate further their efficacy in cancer therapy clinical trials.
    Matched MeSH terms: Cell Proliferation/drug effects
  8. Ude CC, Chen HC, Norhamdan MY, Azizi BM, Aminuddin BS, Ruszymah BHI
    Cell Tissue Bank, 2017 Sep;18(3):355-367.
    PMID: 28667462 DOI: 10.1007/s10561-017-9638-1
    In our quest to standardize our formula for a clinical trial, transforming growth factor-beta3 (TGF-β3) alone and in combination with bone morphogenetic protein-6 (BMP-6) were evaluated for their effectiveness in cartilage differentiation. Bone Marrow Stem Cells (BMSCs) and Adipose Derived Stem Cells (ADSCs) were induced to chondrogenic lineage using two different media. Native chondrocytes served as positive control. ADSCs and BMSCs proved multipotency by tri-lineage differentiations. ADSC has significantly higher growth kinetics compare to Chondrocyte only p ≤ 0.05. Using TGF-β3 alone, BMSC revealed higher expressions for hyaline cartilage genes compare to ADSCs. Chondrocyte has significantly higher early chondrogenic markers expression to ADSCs and BMSCs, while BMSCs was only higher to ADSC at chondroadherin, p ≤ 0.0001. On mature chondrogenic markers, chondrocytes were significantly higher to ADSCs and BMSCs for aggrecan, collagen IX, sry (sex determining region y)-box9, collagen II and fibromodullin; and only to ADSC for collagen XI. BMSC was higher to ADSC for aggrecan and collagen IX, p ≤ 0.0001. The combination of TGF-β3 + BMP-6 revealed increased gene expressions on both BMSCs and ADSCs for early and mature chondrogenic markers, but no significance difference. For dedifferentiation markers, ADSC was significantly higher to chondrocyte for collagen I. Glycosaminoglycan evaluations with both formulas revealed that chondrocytes were significantly higher to ADSCs and BMSCs, but none was significant to each other, p ≤ 0.0001. Combination of 10 ng TGF-β3 with 10 ng of BMP-6 enhanced chondrogenic potentials of BMSCs and ADSCs compare to TGF-β3 alone. This could be the ideal cocktail for either cell's chondrogenic induction.
    Matched MeSH terms: Cell Proliferation
  9. Vazifehmand R, Ali DS, Othman Z, Chau DM, Stanslas J, Shafa M, et al.
    J Neurovirol, 2022 Dec;28(4-6):566-582.
    PMID: 35951174 DOI: 10.1007/s13365-022-01089-w
    Glioblastoma multiforme is the most aggressive astrocytes brain tumor. Glioblastoma cancer stem cells and hypoxia conditions are well-known major obstacles in treatment. Studies have revealed that non-coding RNAs serve a critical role in glioblastoma progression, invasion, and resistance to chemo-radiotherapy. The present study examined the expression levels of microRNAs (in normoxic condition) and long non-coding RNAs (in normoxic and hypoxic conditions) in glioblastoma stem cells treated with the HSV-G47∆. The expression levels of 43 miRNAs and 8 lncRNAs isolated from U251-GBM-CSCs were analyzed using a miRCURY LNA custom PCR array and a quantitative PCR assay, respectively. The data revealed that out of 43 miRNAs that only were checked in normoxic condition, the only 8 miRNAs, including miR-7-1, miR-let-7b, miR-130a, miR-137, miR-200b, miR-221, miR-222, and miR-874, were markedly upregulated. The expression levels of lncRNAs, including LEF1 antisense RNA 1 (LEF1-AS1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), long intergenic non-protein coding RNA 470 (LINC00470), tumor suppressor candidate 7 (TUSC7), HOX transcript antisense RNA (HOTAIR), nuclear paraspeckle assembly transcript 1 (NEAT1), and X inactive specific transcript (XIST), were markedly downregulated in the hypoxic microenvironment, and H19-imprinted maternally expressed transcript (H19) was not observed to be dysregulated in this environment. Under normoxic conditions, LEF1-AS1, MALAT1, LINC00470, H19, HOTAIR, NEAT1, and XIST were downregulated and TUSC7 was not targeted by HSV-G47∆. Overall, the present data shows HSVG47Δ treatment deregulates non-coding RNA expression in GBM-CSC tumor microenvironments.
    Matched MeSH terms: Cell Proliferation
  10. Yunus MH, Siang KC, Hashim NI, Zhi NP, Zamani NF, Sabri PP, et al.
    Tissue Cell, 2014 Aug;46(4):233-40.
    PMID: 24973262 DOI: 10.1016/j.tice.2014.05.003
    The culture of human airway epithelial cells has played an important role in advancing our understanding of the metabolic and molecular mechanisms underlying normal function and disease pathology of airway epithelial cells. The present study focused on investigating the effects of human serum (HS) on the qualitative and quantitative properties of the human respiratory epithelium compared to the fetal bovine serum (FBS), as a supplement in culture. Respiratory epithelial (RE) cells derived from human nasal turbinate were co-cultured with fibroblasts, subsequently separated at 80-90% confluency by differential trypsinization. RE cells were then sub-cultured into 2 different plates containing 5% allogenic HS and FBS supplemented media respectively up to passage 1 (P1). Cell morphology, growth rate, cell viability and population doubling time were assessed under light microscope, and levels of gene expression were measured via real time reverse transcriptase-polymerase chain reaction (qRT-PCR). RE cells appeared as polygonal shape and expanded when cultured in HS whereas RE cells in FBS were observed to be easily matured thus limit the RE cells expansion. Proliferation rate of RE cells in HS supplemented media (7673.18 ± 1207.15) was 3 times higher compared to RE in FBS supplemented media (2357.68 ± 186.85). Furthermore, RE cells cultured in HS-supplemented media required fewer days (9.15 ± 1.10) to double in numbers compared to cells cultured in FBS-supplemented media (13.66 ± 0.81). Both the differences were significant (p<0.05). However, there were no significant differences in the viability of RE cells in both groups (p=0.105). qRT-PCR showed comparable expressions of gene Cytokeratin-14 (CK-14), Cytokeratin-18 (CK-18) and Mucin-5 subtype B (MUC5B) in RE cells cultured in both groups (p>0.05). In conclusion, HS is a comparatively better choice of media supplement in accelerating growth kinetics of RE cells in vitro thus producing a better quality of respiratory epithelium for future tracheal reconstruction.
    Matched MeSH terms: Cell Proliferation*
  11. Sarmadi VH, Heng FS, Ramasamy R
    Med J Malaysia, 2008 Jul;63 Suppl A:63-4.
    PMID: 19024985
    The therapeutic effect of mesenchymal stem cells (MSC) has been extensively investigated in recent decades, however this therapeutic effect has not been fully characterised. The aim of this study is to elucidate the inhibitory effect of MSC on haematopoietic tumour cells proliferation such as BV173 cell line. To this end, MSC generated from bone marrow, after immunophenotyping, they were co-cultured with tumour cell. The result shows that MSC profoundly inhibit the tumour cell proliferation via arresting the tumour cells at G0 and G1 phase of cell cycle.
    Matched MeSH terms: Cell Proliferation/drug effects*
  12. Al-Jadi AM, Kanyan Enchang F, Mohd Yusoff K
    Turk J Med Sci, 2014;44(5):733-40.
    PMID: 25539538
    BACKGROUND/AIM: To examine, for the first time, the effect of a selected Malaysian honey and its major components on the proliferation of cultured fibroblasts.

    MATERIALS AND METHODS: Honey and some of its components, which include the sugars, the proteins, the hydrogen peroxide produced, and the phenolics, were exposed to cultured fibroblasts. The MTT colorimetric assay was used to assess cell viability and proliferation.

    RESULTS: The stimulatory effect of honey on fibroblast proliferation was observed to be time- and dose-dependent. The continuous production of hydrogen peroxide by the honey-glucose oxidase system also acts to stimulate cell proliferation in a time- and dose-dependent manner. The presence of phenolics with antioxidant properties, on the other hand, renders protection to the cells against the toxic effect of hydrogen peroxide. However, the presence of a growth factor-like substance in honey could not be ascertained.

    CONCLUSION: For the first time, honey and its major components were shown to exert stimulatory effects on cultured fibroblasts. Honey is therefore potentially useful in medicinal practices.

    Matched MeSH terms: Cell Proliferation
  13. Aishah Mohammed Izham, Min, Jasmine Chia Siew, Vidyadaran, Sharmili, Mohd Roslan Sulaiman, Hemabarathy, Bharatham B., Perimal, Enoch Kumar
    MyJurnal
    The human neuroblastoma cell line, SH-SY5Y cells, derived from the parental SK-N-SH cell line, is commonly used as an in vitro model for neuroscience and neurobiology research. Since SH-SY5Y cells are widely cultured for research, several different culture media have been used to optimize the growth of the cells, including Eagle's Minimum Essential Medium (EMEM), Dulbecco’s modified Eagle’s medium (DMEM) and other recently developed culture media. SH-SY5Y cells has the ability to reach confluency in culture flasks ranges from 5 days to 15 days, depending on the culture media used. Hence, the optimization of the culture media is crucial to achieve the fastest growth rate for the cells. The objective of the study is to evaluate the culture media for the proliferation of SH-SY5Y cells. We compared the growth rate of SH-SY5Y cells cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 15% heat-inactivated fetal bovine serum (hiFBS), Dulbecco’s modified Eagle’s medium: Nutrient mixture F-12 (DMEM:F12) + supplemented with 15% hiFBS and DMEM:F12 supplemented with 10% hiFBS. In DMEM:F12 supplemented with 15% hiFBS, cells grew up to 6.67E+05 cells. In DMEM:F12 supplemented with 10% hiFBS, cells grew up to 5.28E+05 cells. In DMEM supplemented with 15% hiFBS, the cells grew up to 4.76E+05 cells. There was a significant difference between culture media DMEM:F12 supplemented with 15% hiFBS as compared to DMEM:F12 supplemented with 10%hiFBS and DMEM supplemented with 15% hiFBS (p0.05). We found that DMEM:F12 supplemented with 15% hiFBS could serve as an optimized culture media for high proliferation rate of SH-SY5Y cells.
    Matched MeSH terms: Cell Proliferation
  14. Zorofchian Moghadamtousi S, Rouhollahi E, Karimian H, Fadaeinasab M, Firoozinia M, Ameen Abdulla M, et al.
    PLoS One, 2015;10(4):e0122288.
    PMID: 25860620 DOI: 10.1371/journal.pone.0122288
    Annona muricata has been used in folk medicine for the treatment of cancer and tumors. This study evaluated the chemopreventive properties of an ethyl acetate extract of A. muricata leaves (EEAML) on azoxymethane-induced colonic aberrant crypt foci (ACF) in rats. Moreover, the cytotoxic compound of EEAML (Annomuricin E) was isolated, and its apoptosis-inducing effect was investigated against HT-29 colon cancer cell line using a bioassay-guided approach. This experiment was performed on five groups of rats: negative control, cancer control, EEAML (250 mg/kg), EEAML (500 mg/kg) and positive control (5-fluorouracil). Methylene blue staining of colorectal specimens showed that application of EEAML at both doses significantly reduced the colonic ACF formation compared with the cancer control group. Immunohistochemistry analysis showed the down-regulation of PCNA and Bcl-2 proteins and the up-regulation of Bax protein after administration of EEAML compared with the cancer control group. In addition, an increase in the levels of enzymatic antioxidants and a decrease in the malondialdehyde level of the colon tissue homogenates were observed, suggesting the suppression of lipid peroxidation. Annomuricin E inhibited the growth of HT-29 cells with an IC50 value of 1.62 ± 0.24 μg/ml after 48 h. The cytotoxic effect of annomuricin E was further substantiated by G1 cell cycle arrest and early apoptosis induction in HT-29 cells. Annomuricin E triggered mitochondria-initiated events, including the dissipation of the mitochondrial membrane potential and the leakage of cytochrome c from the mitochondria. Prior to these events, annomuricin E activated caspase 3/7 and caspase 9. Upstream, annomuricin E induced a time-dependent upregulation of Bax and downregulation of Bcl-2 at the mRNA and protein levels. In conclusion, these findings substantiate the usage of A. muricata leaves in ethnomedicine against cancer and highlight annomuricin E as one of the contributing compounds in the anticancer activity of A. muricata leaves.
    Matched MeSH terms: Cell Proliferation/drug effects
  15. Wan Safwani WK, Makpol S, Sathapan S, Chua KH
    Biotechnol Appl Biochem, 2011 Jul-Aug;58(4):261-70.
    PMID: 21838801 DOI: 10.1002/bab.38
    One of the advantages of human adipose-derived stem cells (ASCs) in regenerative medicine is that they can be harvested in abundance. However, the stemness biomarkers, which marked the safety and efficacy of ASCs in accordance with the good manufacturing practice guidelines, is not yet well established. This study was designed to investigate the effect of long-term culture on the stemness properties of ASCs using quantitative real-time polymerase chain reaction and flow cytometry. Results showed the growth rate of ASCs was at its peak when they reached P10 (population doubling; PD = 26) but started to decrease when they were expanded to P15 (PD = 36) and P20 (PD = 46). The ASCs can be culture expanded with minimal alteration in the stemness genes and cluster of differentiation (CD) markers expression up to P10. Expression level of Sox2, Nestin, and Nanog3 was significantly decreased at later passage. CD31, CD45, CD117, and human leukocyte antigen DR, DQ, and DP were lowly expressed at P5 and P10 but their expressions increased significantly at P15 or P20. The differentiation ability of ASCs (adipogenesis, osteogenesis, and neurogenesis) also decreased in long-term culture. Our findings suggested that P10 (PD = 26) should be the "cutoff point" for clinical usage because ASCs at passage 15 onward showed significant changes in the stemness genes, CD markers expression, and differentiation capability.
    Matched MeSH terms: Cell Proliferation
  16. Bagheri E, Hajiaghaalipour F, Nyamathulla S, Salehen N
    Drug Des Devel Ther, 2018;12:657-671.
    PMID: 29636600 DOI: 10.2147/DDDT.S155115
    Background: Brucea javanica (L.) Merr. is a plant from the genus Brucea, which is used in local traditional medicine to treat various diseases. Recent studies revealed an impressive anticancer efficiency of B. javanica extract in different types of cancer cells.

    Purpose: In this study, we have investigated the cytotoxic effects of the B. javanica hexane, ethanolic extracts against colon cancer cells. HT29 colon cells were selected as an in vitro cancer model to evaluate the anticancer activity of B. javanica ethanolic extract (BJEE) and the possible mechanisms of action that induced apoptosis.

    Methods: 3-(4,5-dimethylthiazol-2-yl)-2, 5,-diphenyltetrazolium bromide (MTT), lactate dehydrogenase, acridine orange/propidium iodide, and annexin-V-fluorescein isothiocyanate assays were performed to determine the antiproliferative and apoptosis validation of BJEE on cancer cells. Measurement of reactive oxygen species (ROS) production, caspase activities, nucleus factor-κB activity, and gene expression experiments was done to investigate the potential mechanisms of action in the apoptotic process.

    Results: The results obtained from this study illustrated the significant antiproliferative effect of BJEE on colorectal cancer cells, with a concentration value that inhibits 50% of the cell growth of 25±3.1 µg/mL after 72 h of treatment. MTT assay demonstrated that the BJEE is selectively toxic to cancer cells, and BJEE induced cell apoptosis via activation of caspase-8 along with modulation of apoptosis-related proteins such as Fas, CD40, tumor necrosis factor-related apoptosis-inducing ligands, and tumor necrosis factor receptors, which confirmed the contribution of extrinsic pathway. Meanwhile, increased ROS production in treated cells subsequently activated caspase-9 production, which triggered the intrinsic pathways. In addition, overexpression of cytochrome-c, Bax, and Bad proteins along with suppression of Bcl-2 illustrated that mitochondrial-dependent pathway also contributed to BJEE-induced cell death. Consistent with the findings from this study, BJEE-induced cancer cell death proceeds via extrinsic and intrinsic mitochondrial-dependent and -independent events.

    Conclusion: From the evidence obtained from this study, it is concluded that the BJEE is a promising natural extract to combat colorectal cancer cells (HT29 cells) via induction of apoptosis through activation of extrinsic and intrinsic pathways.

    Matched MeSH terms: Cell Proliferation/drug effects
  17. Farghadani R, Naidu R
    Biomed Pharmacother, 2023 Sep;165:115170.
    PMID: 37481930 DOI: 10.1016/j.biopha.2023.115170
    Breast cancer is a leadingcause of cancer-related deaths in women globally, with triple-negative breast cancer (TNBC) being an aggressive subtype that lacks targeted therapies and is associated with a poor prognosis. Polyphenols, naturally occurring compounds in plants, have been investigated as a potential therapeutic strategy for TNBC. This review provides an overview of the anticancer effects of polyphenols in TNBC and their mechanisms of action. Several polyphenols, including resveratrol, quercetin, kaempferol, genistein, epigallocatechin-3-gallate, apigenin, fisetin, hesperetin and luteolin, have been shown to inhibit TNBC cell proliferation, induce cell cycle arrest, promote apoptosis, and suppress migration/invasion in preclinical models. The molecular mechanisms underlying their anticancer effects involve the modulation of several signalling pathways, such as PI3K/Akt, MAPK, STATT, and NF-κB pathways. Polyphenols also exhibit synergistic effects with chemotherapy drugs, making them promising candidates for combination therapy. The review also highlights clinical trials investigating the potential use of polyphenols, individually or in combination therapy, against breast cancer. This review deepens the under-standing of the mechanism of action of respective polyphenols and provides valuable insights into the potential use of polyphenols as a therapeutic strategy for TNBC, and lays the groundwork for future research in this area.
    Matched MeSH terms: Cell Proliferation
  18. Komarasamy TV, Sekaran SD
    J Oleo Sci, 2012;61(4):227-39.
    PMID: 22450124
    Melanoma incidence and mortality have risen dramatically in recent years. No effective treatment for metastatic melanoma exists; hence currently, an intense effort for new drug evaluation is being carried out. In this study, we investigated the effects of a palm oil-derived nanopolymer called Bio-12 against human malignant melanoma. The nanopolymers of Bio-12 are lipid esters derived from a range of fatty acids of palm oil. Our study aims to identify the anti-proliferative properties of Bio-12 against human malignant melanoma cell line (MeWo) and to elucidate the mode of actions whereby Bio-12 brings about cell death. Bio-12 significantly inhibited the growth of MeWo cells in a concentration- and time- dependent manner with a median inhibitory concentration (IC₅₀) value of 1/25 dilution after 72 h but was ineffective on human normal skin fibroblasts (CCD-1059sk). We further investigated the mode of actions of Bio-12 on MeWo cells. Cell cycle flow cytometry demonstrated that MeWo cells treated with increasing concentrations of Bio-12 resulted in S-phase arrest, accompanied by the detection of sub-G1 content, indicative of apoptotic cell death. Induction of apoptosis was further confirmed via caspase (substrate) cleavage assay which showed induction of early apoptosis in MeWo cells. In addition, DNA strand breaks which are terminal event in apoptosis were evident through increase of TUNEL positive cells and formation of a characteristic DNA ladder on agarose gel electrophoresis. Moreover, treatment of MeWo cells with Bio-12 induced significant increase in lactate dehydrogenase (LDH) activity. These results show that Bio-12 possesses the ability to suppress proliferation of human malignant melanoma MeWo cells and this suppression is at least partly attributed to the initiation of the S-phase arrest, apoptosis and necrosis, suggesting that it is indeed worth for further investigations.
    Matched MeSH terms: Cell Proliferation
  19. Hew CS, Khoo BY, Gam LH
    PLoS One, 2013;8(7):e68524.
    PMID: 23874655 DOI: 10.1371/journal.pone.0068524
    Gynura procumbens (Lour.) Merr. belongs to the Asteraceae Family. The plant is a well-known traditional herb in South East Asia and it is widely used to treat inflammation, kidney discomfort, high cholesterol level, diabetic, cancer and high blood pressure. Our earlier study showed the presence of valuable plant defense proteins, such as peroxidase, thaumatin-like proteins and miraculin in the leaf of G. procumbens. However, the effects of these defense proteins on cancers have never been determined previously. In the present study, we investigated the bioactivity of gel filtration fractionated proteins of G. procumbens leaf extract. The active protein fraction, SN-F11/12, was found to inhibit the growth of a breast cancer cell line, MDA-MB-231, at an EC50 value of 3.8 µg/mL. The mRNA expressions of proliferation markers, Ki67 and PCNA, were reduced significantly in the MDA-MB-23 cells treated with SN-F11/12. The expression of invasion marker, CCL2, was also found reduced in the treated MDA-MB-231 cells. All these findings highlight the anti-cancer property of SN-F11/12, therefore, the proteins in this fraction can be a potential chemotherapeutic agent for breast cancer treatment.
    Matched MeSH terms: Cell Proliferation/drug effects
  20. Khor SC, Razak AM, Wan Ngah WZ, Mohd Yusof YA, Abdul Karim N, Makpol S
    PLoS One, 2016;11(2):e0149265.
    PMID: 26885980 DOI: 10.1371/journal.pone.0149265
    Aging results in a loss of muscle mass and strength. Myoblasts play an important role in maintaining muscle mass through regenerative processes, which are impaired during aging. Vitamin E potentially ameliorates age-related phenotypes. Hence, this study aimed to determine the effects of the tocotrienol-rich fraction (TRF) and α-tocopherol (ATF) in protecting myoblasts from replicative senescence and promoting myogenic differentiation. Primary human myoblasts were cultured into young and senescent stages and were then treated with TRF or ATF for 24 h, followed by an analysis of cell proliferation, senescence biomarkers, cellular morphology and differentiation. Our data showed that replicative senescence impaired the normal regenerative processes of myoblasts, resulting in changes in cellular morphology, cell proliferation, senescence-associated β-galactosidase (SA-β-gal) expression, myogenic differentiation and myogenic regulatory factors (MRFs) expression. Treatment with both TRF and ATF was beneficial to senescent myoblasts in reclaiming the morphology of young cells, improved cell viability and decreased SA-β-gal expression. However, only TRF treatment increased BrdU incorporation in senescent myoblasts, as well as promoted myogenic differentiation through the modulation of MRFs at the mRNA and protein levels. MYOD1 and MYOG gene expression and myogenin protein expression were modulated in the early phases of myogenic differentiation. In conclusion, the tocotrienol-rich fraction is superior to α-tocopherol in ameliorating replicative senescence-related aberration and promoting differentiation via modulation of MRFs expression, indicating vitamin E potential in modulating replicative senescence of myoblasts.
    Matched MeSH terms: Cell Proliferation/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links