Displaying publications 81 - 100 of 375 in total

Abstract:
Sort:
  1. Sosroseno W, Bird PS, Seymour GJ
    J Microbiol Immunol Infect, 2003 Dec;36(4):229-35.
    PMID: 14723250
    The aim of this study was to determine the role of intracellular proteins in phagocytosis of opsonized Porphyromonas gingivalis by RAW264.7 cells, a murine macrophage-like cell line. This periodontopathogen was grown anaerobically and opsonized with an IgG2a murine monoclonal anti-P. gingivalis lipopolysaccharide antibody. RAW264.7 cells were preincubated with protein tyrosine kinase inhibitors (staurosporine and genistein), protein kinase C inhibitors (phorbol myristic acetate and bisindolylmaleimide), a serine/threonine phosphatase inhibitor (okadaic acid), a phosphatidylinositol 3-kinase inhibitor (worthmannin), phospholipase A2 inhibitors (bromophenacyl bromide and nordihydroguaiaretic acid), phospholipase C inhibitors (p-chloromercuriphenyl sulfonate and neomycin sulfate), an actin-filament depolymerizer (cytochalasin D), and a microtubule disrupting agent (colchicine). Inhibitor-treated macrophages were then incubated with the opsonized P. gingivalis and the phagocytosed cells determined microscopically. The results showed the percentage of the phagocytosed organisms decreased when the cells were preincubated with protein tyrosine kinase, protein kinase C, protein phosphatase and phosphatidylinositol 3-kinase inhibitors. Of interest, preincubation with phorbol myristic acetate for 30 min increased the ability of RAW264.7 cells to phagocytose the opsonized organisms. Phospholipase A2 and phospholipase C inhibitors only slightly reduced the number of phagocytosed organisms. The results indicated that opsonophagocytosis of P. gingivalis by RAW264.7 cells might be determined by the activation of protein tyrosine kinase, protein kinase C, protein phosphatases, and phosphatidylinositol 3-kinase inhibitor. Both phospholipase A2 and phospholipase C would appear to be involved to a lesser extent. The opsonophagocytosis of this periodontopathogen would also appear to be dependent upon actin and microtubule polymerization.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology
  2. Sosroseno W, Musa M, Ravichandran M, Ibrahim MF, Bird PS, Seymour GJ
    Eur J Oral Sci, 2008 Feb;116(1):31-6.
    PMID: 18186729 DOI: 10.1111/j.1600-0722.2007.00501.x
    Animal studies suggest that inducible nitric oxide synthase (iNOS) may be associated with destructive periodontal disease. l-N(6)-(1-Iminoethyl)-lysine (L-NIL) has been shown to inhibit iNOS in a selective manner, and hence the aim of the present study was to test the hypothesis that treatment with l-NIL may induce a T-cell helper 1 (Th1)-like immune response by Aggregatibacter (Actinobacillus) actinomycetemcomitans lipopolysaccharide (LPS)-stimulated murine spleen cells in vitro. BALB/c mice were either sham-immunized or immunized with A. actinomycetemcomitans LPS. Spleen cells were stimulated with A. actinomycetemcomitans LPS in the presence or absence of L-NIL. Nitric oxide (NO), iNOS activity, specific IgG subclass antibodies, interferon-gamma (IFN-gamma), and interleukin-4 (IL-4) levels and cell proliferation were determined. The results showed that treatment with L-NIL suppressed both NO production and iNOS activity but enhanced specific IgG2a, IFN-gamma levels, and increased cell proliferation following stimulation with A. actinomycetemcomitans LPS-stimulated cells. The results of the present study suggest that inhibition of iNOS activity by L-NIL may skew the A. actinomycetemcomitans LPS-stimulated murine splenic immune response towards the Th1-like immune profile in vitro.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology*
  3. Sosroseno W, Bird PS, Seymour GJ
    J Periodontal Res, 2009 Aug;44(4):529-36.
    PMID: 18973550 DOI: 10.1111/j.1600-0765.2008.01157.x
    Elevated nitric oxide (NO) has been associated with destructive periodontal disease. The aim of the present study was to test the hypothesis that exogenous NO may inhibit a protective immune response to Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS) in a murine model.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology
  4. Sosroseno W, Musa M, Ravichandran M, Fikri Ibrahim M, Bird PS, Seymour GJ
    J Periodontal Res, 2007 Apr;42(2):124-30.
    PMID: 17305870
    Inducible nitric oxide synthase (iNOS) activity is known to regulate the immune response. The present study was carried out to determine the effect of L-N6-(1-iminoethyl)-lysine (L-NIL), an iNOS inhibitor, on the induction of immune response to Actinobacillus actinomycetemcomitans lipopolysaccharide in mice.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology*
  5. Abbasi MA, Nazir M, Ur-Rehman A, Siddiqui SZ, Hassan M, Raza H, et al.
    Arch Pharm (Weinheim), 2019 Mar;352(3):e1800278.
    PMID: 30624805 DOI: 10.1002/ardp.201800278
    Novel bi-heterocyclic benzamides were synthesized by sequentially converting 4-(1H-indol-3-yl)butanoic acid (1) into ethyl 4-(1H-indol-3-yl)butanoate (2), 4-(1H-indol-3-yl)butanohydrazide (3), and a nucleophilic 5-[3-(1H-indol-3-yl)propyl]-1,3,4-oxadiazole-2-thiol (4). In a parallel series of reactions, various electrophiles were synthesized by reacting substituted anilines (5a-k) with 4-(chloromethyl)benzoylchloride (6) to afford 4-(chloromethyl)-N-(substituted-phenyl)benzamides (7a-k). Finally, the nucleophilic substitution reaction of 4 was carried out with newly synthesized electrophiles, 7a-k, to acquire the targeted bi-heterocyclic benzamides, 8a-k. The structural confirmation of all the synthesized compounds was done by IR, 1 H NMR, 13 C NMR, EI-MS, and CHN analysis data. The inhibitory effects of these bi-heterocyclic benzamides (8a-k) were evaluated against alkaline phosphatase, and all these molecules were identified as potent inhibitors relative to the standard used. The kinetics mechanism was ascribed by evaluating the Lineweaver-Burk plots, which revealed that compound 8b inhibited alkaline phosphatase non-competitively to form an enzyme-inhibitor complex. The inhibition constant Ki calculated from Dixon plots for this compound was 1.15 μM. The computational study was in full agreement with the experimental records and these ligands exhibited good binding energy values. These molecules also exhibited mild cytotoxicity toward red blood cell membranes when analyzed through hemolysis. So, these molecules might be deliberated as nontoxic medicinal scaffolds to render normal calcification of bones and teeth.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis*; Enzyme Inhibitors/pharmacology; Enzyme Inhibitors/toxicity; Enzyme Inhibitors/chemistry
  6. Dige NC, Mahajan PG, Raza H, Hassan M, Vanjare BD, Hong H, et al.
    Bioorg Chem, 2019 11;92:103201.
    PMID: 31445195 DOI: 10.1016/j.bioorg.2019.103201
    We have carried out the synthesis of new 4-oxoquinazolin-3(4H)-yl)furan-2-carboxamide derivatives by the reaction between isatoic anhydride, 2-furoic hydrazide and substituted salicylaldehydes in ethanol: water (5:5 v/v) solvent system using p-TSA as a catalyst under ultrasound irradiation at room temperature. The structures of newly synthesized compounds were confirmed through spectral techniques such as IR, 1H NMR, 13C NMR, and LCMS. The important features of this protocol include simple and easy workup procedure, reaction carried out at ambient temperature, use of ultrasound and high yield of oxoquinazolin-3(4H)-yl)furan-2-carboxamides in short reaction time. The synthesized compounds 4a-4j were screened against tyrosinase enzyme and all these compounds found to be potent inhibitors with much lower IC50 value of 0.028 ± 0.016 to 1.775 ± 0.947 µM than the standard kojic acid (16.832 ± 1.162 µM). The kinetics mechanism for compound 4e was analyzed by Lineweaver-Burk plots which revealed that compound inhibited tyrosinase non-competitively by forming an enzyme-inhibitor complex. Along with this all the synthesized compounds (4a-4j) were scanned for their DPPH free radical scavenging ability. The outputs received through in vitro and in silico analysis are coherent to the each other with good binding energy values (kcal/mol) posed by synthesized ligands.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis*; Enzyme Inhibitors/metabolism
  7. Dige NC, Mahajan PG, Raza H, Hassan M, Vanjare BD, Hong H, et al.
    Bioorg Chem, 2020 07;100:103906.
    PMID: 32422387 DOI: 10.1016/j.bioorg.2020.103906
    A new series of 4H-chromene-3-carboxylate derivatives were synthesized using multicomponent reaction of salicylaldehyde, ethyl acetoacetate and dimedone in ethanol with K3PO4 as a catalyst at 80 °C. The structures of all newly synthesized compounds were confirmed by spectral techniques viz. IR, 1H NMR, 13C NMR, and LCMS analysis. The newly synthesized compounds 4a to 4j were screened against elastase enzyme. Interestingly, all these compounds found to be potent elastase inhibitors with much lower IC50 value. The compound 4b was found to be most potent elastase inhibitor (IC50 = 0.41 ± 0.01 µM) amongst the synthesized series against standard Oleanolic Acid (IC50 value = 13.45 ± 0.0 µM). The Kinetics mechanism for compound 4b was analyzed by Lineweaver-Burk plots which revealed that compound inhibited elastase competitively by forming an enzyme-inhibitor complex. Along with this, all the synthesized compounds (4a - 4j) exhibits excellent DPPH free radical scavenging ability. The inhibition constant Ki for compound 4b was found to be 0.6 µM. The computational study was comprehensible with the experimental results with good docking energy values (Kcal/mol). Therefore, these molecules can be considered as promising medicinal scaffolds for the treatment of skin-related maladies.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis; Enzyme Inhibitors/pharmacology*; Enzyme Inhibitors/chemistry*
  8. Butt ARS, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Raza H, Hassan M, et al.
    Bioorg Chem, 2019 05;86:459-472.
    PMID: 30772647 DOI: 10.1016/j.bioorg.2019.01.036
    The present research was designed for the selective synthesis of novel bi-heterocyclic acetamides, 9a-n, and their tyrosinase inhibition to overwhelm the problem of melanogenesis. The structures of newly synthesized compounds were confirmed by spectral techniques such as 1H NMR, 13C NMR, and EI-MS along with elemental analysis. The inhibitory effects of these bi-heterocyclic acetamides (9a-n) were evaluated against tyrosinase and all these molecules were recognized as potent inhibitors relative to the standard used. The Kinetics mechanism was analyzed by Lineweaver-Burk plots which explored that compound, 9h, inhibited tyrosinase competitively by forming an enzyme-inhibitor complex. The inhibition constants Ki calculated from Dixon plots for this compound was 0.0027 µM. The computational study was coherent with the experimental records and these ligands exhibited good binding energy values (kcal/mol). The hemolytic analysis revealed their mild cytotoxicity towards red blood cell membranes and hence, these molecules can be pondered as nontoxic medicinal scaffolds for skin pigmentation and related disorders.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis; Enzyme Inhibitors/pharmacology*; Enzyme Inhibitors/chemistry
  9. Abbasi MA, Hassan M, Aziz-Ur-Rehman, Siddiqui SZ, Raza H, Shah SAA, et al.
    Bioorg Med Chem, 2018 07 30;26(13):3791-3804.
    PMID: 29903414 DOI: 10.1016/j.bmc.2018.06.005
    The present article describes the synthesis, in vitro urease inhibition and in silico molecular docking studies of a novel series of bi-heterocyclic bi-amides. The synthesis of title compounds was initiated by benzoylation, with benzoyl chloride (1), of the key starter ethyl 2-(2-amino-1,3-thiazol-4-yl)acetate (2) in weak basic aqueous medium followed by hydrazide formation, 4, and cyclization with CS2 to reach the parent bi-heterocyclic nucleophile, N-{4-[(5-sulfanyl-1,3,4-oxadiazol-2-yl)methyl]-1,3-thiazol-2-yl}benzamide (5). Various electrophiles, 8a-l, were synthesized by a two-step process and these were finally coupled with 5 to yield the targeted bi-heterocyclic bi-amide molecules, 9a-l. The structures of the newly synthesized products were corroborated by IR, 1H NMR, 13C NMR, EI-MS and elemental analysis. The in vitro screening of these molecules against urease explored that most of the compounds exhibit potent inhibitory potential against this enzyme. The compound 9j, with IC50 value of 2.58 ± 0.02 µM, exhibited most promising inhibitory activity among the series, relative to standard thiourea having IC50 value of 21.11 ± 0.12 µM. In silico studies fully augmented the experimental enzyme inhibition results. Chemo-informatics analysis showed that synthesized compounds (9a-l) mostly obeyed the Lipinski's rule. Molecular docking study suggested that ligand 9j exhibited good binding energy value (-7.10 kcal/mol) and binds within the active region of target protein. So, on the basis of present investigation, it was inferred that 9j may serve as a novel scaffold for designing more potent urease inhibitors.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis*; Enzyme Inhibitors/metabolism
  10. Butt ARS, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Hassan M, Raza H, et al.
    Bioorg Chem, 2019 05;86:197-209.
    PMID: 30711702 DOI: 10.1016/j.bioorg.2019.01.040
    Keeping in mind the pharmacological importance of 2-aminothiazole and 1,2,4-triazole heterocyclic moieties, a series of novel ethylated bi-heterocyclic acetamide hybrids, 9a-p, was synthesized in a multi-step protocol. The structures of newly synthesized compounds were characterized by 1H NMR, 13C NMR, IR and EI-MS spectral studies. The inhibitory effects of these bi-heterocyclic acetamides (9a-n) were evaluated against elastase and all these molecules were identified as potent inhibitors relative to the standard used. The Kinetics mechanism was analyzed by Lineweaver-Burk plots which revealed that, 9h, inhibited elastase competitively by forming an enzyme-inhibitor complex. The inhibition constants Ki calculated from Dixon plots for this compound was 0.9 µM. The computational study was articulate with the experimental results and these ligands unveiled good binding energy values (kcal/mol). So, these molecules can be considered as promising medicinal scaffolds for the treatment of skin melanoma, wrinkle formation, uneven pigmentation, and solar elastosis.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis; Enzyme Inhibitors/pharmacology*; Enzyme Inhibitors/chemistry
  11. Tang YQ, Jaganath IB, Manikam R, Sekaran SD
    Nutr Cancer, 2015;67(5):783-95.
    PMID: 25996262 DOI: 10.1080/01635581.2015.1040518
    Tumor angiogenesis and metastasis are the major causes for high morbidity and mortality rates in cancer patient. Modulation on tumor angiogenesis and metastasis provides opportunities to halt progression of cancer. From our previous findings, Phyllanthus plant possesses antiproliferative effects on melanoma and prostate cancer cell lines and induction of apoptosis. The main aims of the present work were further investigated on the antimetastatic and antiangiogenic effects on cancer cells (MeWo and PC-3) and human umbilical vein endothelial cells (HUVECs) of 4 Phyllanthus species (P.amarus, P.niruri, P.urinaria and P.watsonii). Phyllanthus extracts significantly inhibited cell adhesion, migration, invasion, and transendothelial migration activities of cancer (MeWo and PC-3) cells in a dose-dependent manner (P < 0.05) by cell-matrix adhesion, Transwell migration, invasion, and transendothelial migration assays. Phyllanthus extracts were exhibited low cytotoxicity on HUVECs up to a concentration of 500.0 μg/ml by MTS reduction assay. Phyllanthus extracts also exhibited antiangiogenic effects through inhibition of migration, invasion, and microcapillary like-tube structure formation in HUVECs. These observations were due to alteration in activities of matrix metalloproteinase (MMP) -2, -7, -9, and -26 in treated-endothelial and cancer cells by zymographies. These findings suggest that Phyllanthus plant has the potential to inhibit tumour metastasis and angiogenesis through the suppression of MMP enzymes.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology
  12. Tan SY, Kan E, Lim WY, Chay G, Law JH, Soo GW, et al.
    J Pharm Pharmacol, 2011 Jul;63(7):918-25.
    PMID: 21635257 DOI: 10.1111/j.2042-7158.2011.01296.x
    The pharmacokinetic interaction between metronidazole, an antibiotic-antiparasitic drug used to treat anaerobic bacterial and protozoal infections, and imatinib, a CYP3A4, P-glycoprotein substrate kinase inhibitor anticancer drug, was evaluated.
    Matched MeSH terms: Enzyme Inhibitors/adverse effects; Enzyme Inhibitors/blood; Enzyme Inhibitors/metabolism; Enzyme Inhibitors/pharmacokinetics
  13. Rahman MA, Rahman MS, Bashir NMB, Mia R, Hossain A, Saha SK, et al.
    Int J Med Mushrooms, 2021;23(5):1-11.
    PMID: 34347990 DOI: 10.1615/IntJMedMushrooms.2021038285
    Since December 2019, a de novo pattern of pneumonia, later named coronavirus disease 2019 (COVID-19), has caused grave upset throughout the global population. COVID-19 is associated with several comorbidities; thus, preventive and therapeutic strategies targeting those comorbidities along with the causative agent, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), seem imperative. In this state-of-the-art review, edible and medicinal mushrooms are featured in the treatment of SARS-CoV-2, COVID-19 pathomanifestations, and comorbid issues. Because this is not an original research article, we admit our shortcomings in inferences. Yet we are hopeful that mushroom-based therapeutic approaches can be used to achieve a COVID-free world. Among various mushroom species, reishi or lingzhi (Ganoderma lucidum) seem most suitable as anti-COVID agents for the global population.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/administration & dosage; Angiotensin-Converting Enzyme Inhibitors/therapeutic use
  14. Ishak, N.H., Sarbon, N.M.
    MyJurnal
    This study aims to optimize enzymatic hydrolysis process for producing angiotensin I-converting enzyme (ACE) inhibitory peptides from protein hydrolysate of shortfin scad (Decapterus Macrosoma) waste (SWH). The enzymatic hydrolysis conditions, namely the temperature (40, 50, 60°C), time (B: 60, 120, 180 min), pH (C: 7, 8, 9) and enzyme substrate concentrations (D: 1, 2, 3%) on yield, degree of hydrolysis (DH) and ACE-inhibitory activity were analysed. Responses were optimized using the response surface methodology (RSM) by employing four factors, 3-levels and the Central Composite Design (CCD). The optimized conditions were further validated to indicate the validity of the prediction model. The optimal conditions obtained for the hydrolysis conditions were at temperature of 50°C, time of 60 min, pH of 9 and enzyme to substrate concentration of 2.92%. The experimental result for yield was lower than the predicted value, as generated by RSM. However, the degree of hydrolysis of SWH was higher than the predicted value. The ACE inhibitory activity of SWH was 79.34%, and showed lower than the predicted value. Therefore, the optimized conditions of SWH served as good conditions for the production of bioactive peptide with high ACE inhibitory activity.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors
  15. Cheah HL, Lim V, Sandai D
    PLoS One, 2014;9(4):e95951.
    PMID: 24781056 DOI: 10.1371/journal.pone.0095951
    Candida albicans is an opportunistic pathogen that causes candidiasis in humans. In recent years, metabolic pathways in C. albicans have been explored as potential antifungal targets to treat candidiasis. The glyoxylate cycle, which enables C. albicans to survive in nutrient-limited host niches and its. Key enzymes (e.g., isocitrate lyase (ICL1), are particularly attractive antifungal targets for C. albicans. In this study, we used a new screening approach that better reflects the physiological environment that C. albicans cells experience during infection to identify potential inhibitors of ICL. Three compounds (caffeic acid (CAFF), rosmarinic acid (ROS), and apigenin (API)) were found to have antifungal activity against C. albicans when tested under glucose-depleted conditions. We further confirmed the inhibitory potential of these compounds against ICL using the ICL enzyme assay. Lastly, we assessed the bioavailability and toxicity of these compounds using Lipinski's rule-of-five and ADMET analysis.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology*
  16. Chandran G, Sirajudeen KN, Yusoff NS, Swamy M, Samarendra MS
    Oxid Med Cell Longev, 2014;2014:608512.
    PMID: 25254079 DOI: 10.1155/2014/608512
    Oxidative stress has been suggested to play a role in hypertension and hypertension induced organ damage. This study examined the effect of enalapril, an antihypertensive drug, on oxidative stress markers and antioxidant enzymes in kidney of spontaneously hypertensive rat (SHR) and Nω -nitro-L-arginine methyl ester (L-NAME) administered SHR. Male rats were divided into four groups (SHR, SHR+enalapril, SHR+L-NAME, and SHR+enalapril+L-NAME). Enalapril (30 mg kg(-1) day(-1)) was administered from week 4 to week 28 and L-NAME (25 mg kg(-1) day(-1)) was administered from week 16 to week 28 in drinking water. Systolic blood pressure (SBP) was measured during the experimental period. At the end of experimental periods, rats were sacrificed; urine, blood, and kidneys were collected for the assessment of creatinine clearance, total protein, total antioxidant status (TAS), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), and catalase (CAT), as well as histopathological examination. Enalapril treatment significantly enhanced the renal TAS level (P < 0.001) and SOD activity (P < 0.001), reduced the TBARS levels (P < 0.001), and also prevented the renal dysfunction and histopathological changes. The results indicate that, besides its hypotensive and renoprotective effects, enalapril treatment also diminishes oxidative stress in the kidneys of both the SHR and SHR+L-NAME groups.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology
  17. Khadijah Ramli NS, Giribabu N, Muniandy S, Salleh N
    Theriogenology, 2018 Mar 01;108:354-361.
    PMID: 29294437 DOI: 10.1016/j.theriogenology.2017.12.035
    Precise regulation of vas deferens fluid pH is essential for sperm. However, the mechanisms underlying effect of testosterone on vas deferens fluid pH have never been identified, which could involve changes in expression and functional activity of vacoular (V)-ATPase.

    METHODS: Orchidectomized, adult male Sprague-Dawley rats were treated subcutaneously with 125 μg/kg/day and 250 μg/kg/day testosterone with or without flutamide (androgen receptor blocker) and finasteride (5α-reductase inhibitor) for seven (7) days. Following treatment completion, in vivo perfusion of vas deferens lumen was performed and changes in fluid secretion rate, pH and HCO3- content were measured with and without bafilomycin, a V-ATPase inhibitor. Rats were then sacrificed and vas deferens were harvested and subjected for V-ATPase A1 and B1/2 protein expression and distribution analysis by western blotting and immunohistochemistry, respectively.

    RESULTS: In sham-operated and testosterone-treated orchidectomized rats, higher fluid secretion rate, which was not antagonized by bafilomycin but lower HCO3- content and pH which were antagonized by bafilomycin were observed when compared to orchidectomized-only and orchidectomized, testosterone-treated rats receiving flutamide or finasteride, respectively. Bafilomycin had no effect on fluid secretion rate, HCO3- content and pH in orchidectomized and testosterone-treated orchidectomized rats receiving flutamide and finasteride. V-ATPase A1 and B1/2 proteins were expressed at high levels in vas deferens and were highly distributed at the apical membrane of luminal epithelium and in muscle layer of this organ, mainly in sham and testosterone-treated orchidectomized rats.

    CONCLUSIONS: V-ATPase is involved in acidification of vas deferens fluid under testosterone influence.

    Matched MeSH terms: Enzyme Inhibitors/pharmacology
  18. Ebrahimpour A, Rahman RN, Basri M, Salleh AB
    Bioresour Technol, 2011 Jul;102(13):6972-81.
    PMID: 21531550 DOI: 10.1016/j.biortech.2011.03.083
    The mature ARM lipase gene was cloned into the pTrcHis expression vector and over-expressed in Escherichia coli TOP10 host. The optimum lipase expression was obtained after 18 h post induction incubation with 1.0mM IPTG, where the lipase activity was approximately 1623-fold higher than wild type. A rapid, high efficient, one-step purification of the His-tagged recombinant lipase was achieved using immobilized metal affinity chromatography with 63.2% recovery and purification factor of 14.6. The purified lipase was characterized as a high active (7092 U mg(-1)), serine-hydrolase, thermostable, organic solvent tolerant, 1,3-specific lipase with a molecular weight of about 44 kDa. The enzyme was a monomer with disulfide bond(s) in its structure, but was not a metalloenzyme. ARM lipase was active in a broad range of temperature and pH with optimum lipolytic activity at pH 8.0 and 65°C. The enzyme retained 50% residual activity at pH 6.0-7.0, 50°C for more than 150 min.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology
  19. Ali MS, Yun CC, Chor AL, Rahman RN, Basri M, Salleh AB
    Protein J, 2012 Mar;31(3):229-37.
    PMID: 22350313 DOI: 10.1007/s10930-012-9395-8
    A mutant of the lipase from Geobacillus sp. strain T1 with a phenylalanine to leucine substitution at position 16 was overexpressed in Escherichia coli strain BL21(De3)pLysS. The crude enzyme was purified by two-step affinity chromatography with a final recovery and specific activity of 47.4 and 6,315.8 U/mg, respectively. The molecular weight of the purified F16L lipase was approximately 43 kDa by 12% SDS-PAGE analysis. The F16L lipase was demonstrated to be a thermophilic enzyme due its optimum temperature at 70 °C and showed stability over a temperature range of 40-60 °C. The enzyme exhibited an optimum pH 7 in phosphate buffer and was relatively stable at an alkaline pH 8-9. Metal ions such as Ca(2+), Mn(2+), Na(+), and K(+) enhanced the lipase activity, but Mg(2+), Zn(2+), and Fe(2+) inhibited the lipase. All surfactants tested, including Tween 20, 40, 60, 80, Triton X-100, and SDS, significantly inhibited the lipolytic action of the lipase. A high hydrolytic rate was observed on long-chain natural oils and triglycerides, with a notable preference for olive oil (C18:1; natural oil) and triolein (C18:1; triglyceride). The F16L lipase was deduced to be a metalloenzyme because it was strongly inhibited by 5 mM EDTA. Moderate inhibition was observed in the presence of PMSF at a similar concentration, indicating that serine residues are involved in its catalytic action. Further, the activity was not impaired by water-miscible solvents, including methanol, ethanol, and acetone.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology
  20. Rahman RN, Geok LP, Wong CF, Basri M, Salleh AB
    J Basic Microbiol, 2010 Apr;50(2):143-9.
    PMID: 20082370 DOI: 10.1002/jobm.200900133
    A gene encoding an organic solvent-stable protease was amplified from Pseudomonas aeruginosa strain K by polymerase chain reaction using consensus primers based on multiple sequence alignment of alkaline and metalloprotease genes from Pseudomonas species. The gene, which consisted of 1440 bp nucleotides and deduced 479 amino acid residues, was successfully expressed in pGEX-4T-1 expression system in the presence of 1.0 mM IPTG, after an incubation of 6 h at 37 degrees C. Under these conditions, the recombinant strain K protease was, subsequently, released into the periplasm of E. coli BL21 (DE3) with an optimum proteolytic activity detected at 1.0112 U/ml. To date, this is the first reported expression of alkaline protease (aprA) with such remarkable property in Escherichia coli.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links