Displaying publications 81 - 100 of 8266 in total

Abstract:
Sort:
  1. Anbu P, Gopinath SC, Chaulagain BP, Tang TH, Citartan M
    Biomed Res Int, 2015;2015:816419.
    PMID: 26161416 DOI: 10.1155/2015/816419
    Matched MeSH terms: Bacteria/genetics
  2. How VJ
    Malays J Pathol, 1990 Jun;12(1):59-60.
    PMID: 2090890
    Matched MeSH terms: HIV/genetics
  3. Tan SG, Teng YS, Ganesan J, Lau KY, Lie-Injo LE
    Hum Genet, 1979 Jul 18;49(3):349-53.
    PMID: 289626
    Kadazans, the largest indigenous group in Sabah, northern Borneo, were surveyed for glyoxalase I, phosphoglucomutase I, red cell acid phosphatase, esterase D, adenosine deaminase, soluble glutamate pyruvate transaminase, soluble glutamate oxaloacetate transaminase, 6-phosphogluconate dehydrogenase, uridine monophosphate kinase, adenylate kinase, peptidase B and D, superoxide dismutase, C5, group specific component, haptoglobin and transferrin. Kadazans were found to be polymorphic for GLO I, PGM I, RCAP, esterase D, ADA, s-Gpt, 6PGD, UMPK, Gc, C5, haptoglobin and peptidase B. Rare variants were found for transferrin and peptidase D. No variant was found for s-Got, SOD and AK.
    Matched MeSH terms: Acid Phosphatase/genetics; Esterases/genetics; Haptoglobins/genetics; Lactoylglutathione Lyase/genetics; Peptide Hydrolases/genetics; Phosphoglucomutase/genetics; Transferrin/genetics
  4. Yew CW, Lu D, Deng L, Wong LP, Ong RT, Lu Y, et al.
    Hum Genet, 2018 Feb;137(2):161-173.
    PMID: 29383489 DOI: 10.1007/s00439-018-1869-0
    Southeast Asia (SEA) is enriched with a complex history of peopling. Malaysia, which is located at the crossroads of SEA, has been recognized as one of the hubs for early human migration. To unravel the genomic complexity of the native inhabitants of Malaysia, we sequenced 12 samples from 3 indigenous populations from Peninsular Malaysia and 4 native populations from North Borneo to a high coverage of 28-37×. We showed that the Negritos from Peninsular Malaysia shared a common ancestor with the East Asians, but exhibited some level of gene flow from South Asia, while the North Borneo populations exhibited closer genetic affinity towards East Asians than the Malays. The analysis of time of divergence suggested that ancestors of Negrito were the earliest settlers in the Malay Peninsula, whom first separated from the Papuans ~ 50-33 thousand years ago (kya), followed by East Asian (~ 40-15 kya), while the divergence time frame between North Borneo and East Asia populations predates the Austronesian expansion period implies a possible pre-Neolithic colonization. Substantial Neanderthal ancestry was confirmed in our genomes, as was observed in other East Asians. However, no significant difference was observed, in terms of the proportion of Denisovan gene flow into these native inhabitants from Malaysia. Judging from the similar amount of introgression in the Southeast Asians and East Asians, our findings suggest that the Denisovan gene flow may have occurred before the divergence of these populations and that the shared similarities are likely an ancestral component.
    Matched MeSH terms: DNA, Mitochondrial/genetics*; Genetics, Population*; Genetic Variation/genetics*; Genome, Human/genetics*; Polymorphism, Single Nucleotide/genetics; Gene Flow/genetics
  5. Goh HH, Baharin A, Mohd Salleh F', Ravee R, Wan Zakaria WNA, Mohd Noor N
    Sci Rep, 2020 04 20;10(1):6575.
    PMID: 32313042 DOI: 10.1038/s41598-020-63696-z
    Carnivorous pitcher plants produce specialised pitcher organs containing secretory glands, which secrete acidic fluids with hydrolytic enzymes for prey digestion and nutrient absorption. The content of pitcher fluids has been the focus of many fluid protein profiling studies. These studies suggest an evolutionary convergence of a conserved group of similar enzymes in diverse families of pitcher plants. A recent study showed that endogenous proteins were replenished in the pitcher fluid, which indicates a feedback mechanism in protein secretion. This poses an interesting question on the physiological effect of plant protein loss. However, there is no study to date that describes the pitcher response to endogenous protein depletion. To address this gap of knowledge, we previously performed a comparative RNA-sequencing experiment of newly opened pitchers (D0) against pitchers after 3 days of opening (D3C) and pitchers with filtered endogenous proteins (>10 kDa) upon pitcher opening (D3L). Nepenthes ampullaria was chosen as a model study species due to their abundance and unique feeding behaviour on leaf litters. The analysis of unigenes with top 1% abundance found protein translation and stress response to be overrepresented in D0, compared to cell wall related, transport, and signalling for D3L. Differentially expressed gene (DEG) analysis identified DEGs with functional enrichment in protein regulation, secondary metabolism, intracellular trafficking, secretion, and vesicular transport. The transcriptomic landscape of the pitcher dramatically shifted towards intracellular transport and defence response at the expense of energy metabolism and photosynthesis upon endogenous protein depletion. This is supported by secretome, transportome, and transcription factor analysis with RT-qPCR validation based on independent samples. This study provides the first glimpse into the molecular responses of pitchers to protein loss with implications to future cost/benefit analysis of carnivorous pitcher plant energetics and resource allocation for adaptation in stochastic environments.
    Matched MeSH terms: Amino Acid Sequence/genetics; Energy Metabolism/genetics*; Photosynthesis/genetics; Plant Proteins/genetics*; Plant Leaves/genetics; Sarraceniaceae/genetics*; Transcriptome/genetics*
  6. Sathasivam HP, Nayar D, Sloan P, Thomson PJ, Odell EW, Robinson M
    J Oral Pathol Med, 2021 Feb;50(2):200-209.
    PMID: 33151583 DOI: 10.1111/jop.13121
    BACKGROUND: Oral potentially malignant disorders are a clinical conundrum as there are no reliable methods to predict their behaviour. We combine conventional oral epithelial dysplasia grading with DNA ploidy analysis to examine the validity of this approach to risk assessment in a cohort of patients with known clinical outcomes.

    METHODS: Sections from diagnostic biopsies were assessed for oral epithelial dysplasia using the WHO grading system, and DNA ploidy analysis was performed using established methods. Patients reviewed for a minimum of 5 years who did not develop oral squamous cell carcinoma were classified as "non-transforming" cases. Patients that developed oral squamous cell carcinoma ≥ 6 months after the initial diagnostic biopsy were classified as having "malignant transformation."

    RESULTS: Ninety cases were included in the study. Seventy cases yielded informative DNA ploidy results. Of these 70 cases, 31 progressed to cancer. Oral epithelial dysplasia grading and DNA ploidy status were both significantly associated with clinical outcome (P 

    Matched MeSH terms: Leukoplakia, Oral/genetics
  7. Pak Dek MS, Padmanabhan P, Tiwari K, Todd JF, Paliyath G
    Plant Physiol Biochem, 2020 Mar;148:180-192.
    PMID: 31972387 DOI: 10.1016/j.plaphy.2020.01.014
    Phosphatidylinositol 3-kinases (PI3Ks) are characterized by the presence of a C2 domain at the N-terminal end (class I, III); or at both the N-terminal and C-terminal ends (class II), sometimes including a Plextrin homology domain and/or a Ras domain. Plant PI3Ks are analogous to the class III mammalian PI3K. An N-terminal fragment (~170 aa) of the tomato PI3K regulatory domain including the C2 domain, was cloned and expressed in a bacterial system. This protein was purified to homogeneity and its physicochemical properties analyzed. The purified protein showed strong binding with monophosphorylated phosphatidylinositols, and the binding was dependent on calcium ion concentration and pH. In the overall tertiary structure of PI3K, C2 domain showed unique characteristics, having three antiparallel beta-sheets, hydrophobic regions, acidic as well as alkaline motifs, that can enable its membrane binding upon activation. To elucidate the functional significance of C2 domain, transgenic tobacco plants expressing the C2 domain of PI3K were generated. Transgenic plants showed defective pollen development and disrupted seed set. Flowers from the PI3K-C2 transgenic plants showed delayed wilting, and a decrease in ethylene production. It is likely that introduction of the PI3K-C2 segment may have interfered with the normal binding of PI3K to the membrane, delaying the onset of membrane lipid catabolism that lead to senescence.
    Matched MeSH terms: Tobacco/genetics
  8. Fu Z, Piumsomboon A, Punnarak P, Uttayarnmanee P, Leaw CP, Lim PT, et al.
    Harmful Algae, 2021 06;106:102063.
    PMID: 34154784 DOI: 10.1016/j.hal.2021.102063
    Information on the diversity and distribution of harmful microalgae in the Gulf of Thailand is very limited and mainly based on microscopic observations. Here, we collected 44 water samples from the Gulf of Thailand and its adjacent water (Perhentian Island, Malaysia) for comparison in 2018. DNA metabarcoding was performed targeting the partial large subunit ribosomal RNA gene (LSU rDNA D1-D3) and the internal transcribed spacers (ITS1 and ITS2). A total of 50 dinoflagellate genera (made up of 72 species) were identified based on the LSU rDNA dataset, while the results of ITS1 and ITS2 datasets revealed 33 and 32 dinoflagellate genera comprising 69 and 64 species, respectively. Five potentially toxic Pseudo-nitzschia (Bacillariophyceae) species were detected, with four as newly recorded species in the water (Pseudo-nitzschia americana/brasilliana, Pseudo-nitzschia simulans/delicatissima, P. galaxiae and P. multistriata). The highest relative abundances of P. galaxiae and P. multistriata were found in Trat Bay and Chumphon (accounting for 0.20% and 0.06% of total ASVs abundance, respectively). Three paralytic shellfish toxin producing dinoflagellate species were detected: Alexandrium tamiyavanichii, Alexandrium fragae, and Gymnodinium catenatum. The highest abundance of A. tamiyavanichii was found in the surface sample of Chumphon (CHO7 station), accounting for 1.95% of total ASVs abundance. Two azaspiracid producing dinoflagellate species, Azadinium poporum ribotype B, Azadinium spinosum ribotype A, and a pinnatoxin producing dinoflagellate species Vulcanodinium rugosum, with two ribotypes B and C, were revealed from the datasets although with very low abundances. Six fish killing dinoflagellate species, including Margalefidinium polykrikoides group IV, Margalefidinium fulvescens, Karenia mikimotoi, Karenia selliformis ribotype B, Karlodinium australe, and Karlodinium digitatum were detected and all representing new records in this area. The findings of numerous harmful microalgal species in the Gulf of Thailand highlight the potential risk of human intoxication and fish killing events.
    Matched MeSH terms: DNA, Ribosomal/genetics
  9. Murulitharan K, Yusoff K, Omar AR, Peeters BPH, Molouki A
    Curr Microbiol, 2021 Apr;78(4):1458-1465.
    PMID: 33660046 DOI: 10.1007/s00284-021-02421-z
    Rescue of (-)ssRNA viruses involves the sequential assembly and cloning of the full-length cDNA, which is often a challenging and time-consuming process. The objective of this study was to develop a novel method to rapidly clone the full-length cDNA of a very virulent NDV by only one assembly step. A completely synthetic 15 kb cDNA of a Malaysian genotype VIII NDV known as strain AF2240-I with additional flanking BsmBI sites was synthesised. However, to completely follow the rule-of-six, the additional G residues that are traditionally added after the T7 promoter transcription initiation site were not synthesised. The synthetic fragment was then cloned into low-copy number transcription vector pOLTV5-phiX between the T7 promoter and HDV Rz sequences through digestion with BbsI. The construct was co-transfected with helper plasmids into BSRT7/5 cells. A recombinant NDV called rAF was successfully rescued using transfection supernatant harvested as early as 16 h post-transfection. Virus from each passage showed an intracerebral pathogenicity index (ICPI) and a mean death time (MDT) similar to the parent strain AF2240-I. Moreover, rAF possessed an introduced mutation which was maintained for several passages. The entire rescue using the one-step assembly procedure was completed within a few weeks, which is extremely fast compared to previously used methods.
    Matched MeSH terms: DNA, Complementary/genetics
  10. Tanaka Y, Yeoh AEJ, Moriyama T, Li CK, Kudo K, Arakawa Y, et al.
    Haematologica, 2021 07 01;106(7):2026-2029.
    PMID: 33504140 DOI: 10.3324/haematol.2020.266320
    Matched MeSH terms: Pyrophosphatases/genetics
  11. Lim LWK, Chung HH, Lau MML, Aziz F, Gan HM
    Gene, 2021 Jul 30;791:145708.
    PMID: 33984441 DOI: 10.1016/j.gene.2021.145708
    The true mahseer (Tor spp.) is one of the highest valued fish in the world due to its high nutritional value and great unique taste. Nevertheless, its morphological characterization and single mitochondrial gene phylogeny in the past had yet to resolve the ambiguity in its taxonomical classification. In this study, we sequenced and assembled 11 complete mahseer mitogenomes collected from Java of Indonesia, Pahang and Terengganu of Peninsular Malaysia as well as Sarawak of East Malaysia. The mitogenome evolutionary relationships among closely related Tor spp. samples were investigated based on maximum likelihood phylogenetic tree construction. Compared to the commonly used COX1 gene fragment, the complete COX1, Cytb, ND2, ND4 and ND5 genes appear to be better phylogenetic markers for genetic differentiation at the population level. In addition, a total of six population-specific mitolineage haplotypes were identified among the mahseer samples analyzed, which this offers hints towards its taxonomical landscape.
    Matched MeSH terms: Base Sequence/genetics; Cyprinidae/genetics*; DNA, Mitochondrial/genetics; Haplotypes/genetics; Mitochondria/genetics; Genes, Mitochondrial/genetics; Genome, Mitochondrial/genetics*
  12. Ikram NKK, Kashkooli AB, Peramuna A, Krol ARV, Bouwmeester H, Simonsen HT
    Molecules, 2019 Oct 23;24(21).
    PMID: 31652784 DOI: 10.3390/molecules24213822
    : Metabolic engineering is an integrated bioengineering approach, which has made considerable progress in producing terpenoids in plants and fermentable hosts. Here, the full biosynthetic pathway of artemisinin, originating from Artemisia annua, was integrated into the moss Physcomitrella patens. Different combinations of the five artemisinin biosynthesis genes were ectopically expressed in P. patens to study biosynthesis pathway activity, but also to ensure survival of successful transformants. Transformation of the first pathway gene, ADS, into P. patens resulted in the accumulation of the expected metabolite, amorpha-4,11-diene, and also accumulation of a second product, arteannuin B. This demonstrates the presence of endogenous promiscuous enzyme activity, possibly cytochrome P450s, in P. patens. Introduction of three pathway genes, ADS-CYP71AV1-ADH1 or ADS-DBR2-ALDH1 both led to the accumulation of artemisinin, hinting at the presence of one or more endogenous enzymes in P. patens that can complement the partial pathways to full pathway activity. Transgenic P. patens lines containing the different gene combinations produce artemisinin in varying amounts. The pathway gene expression in the transgenic moss lines correlates well with the chemical profile of pathway products. Moreover, expression of the pathway genes resulted in lipid body formation in all transgenic moss lines, suggesting that these may have a function in sequestration of heterologous metabolites. This work thus provides novel insights into the metabolic response of P. patens and its complementation potential for A. annua artemisinin pathway genes. Identification of the related endogenous P. patens genes could contribute to a further successful metabolic engineering of artemisinin biosynthesis, as well as bioengineering of other high-value terpenoids in P. patens.
    Matched MeSH terms: Artemisia annua/genetics
  13. Zhang W, Liang Y, Zheng K, Gu C, Liu Y, Wang Z, et al.
    BMC Genomics, 2021 Sep 20;22(1):675.
    PMID: 34544379 DOI: 10.1186/s12864-021-07978-4
    BACKGROUND: Marine bacteriophages play key roles in the community structure of microorganisms, biogeochemical cycles, and the mediation of genetic diversity through horizontal gene transfer. Recently, traditional isolation methods, complemented by high-throughput sequencing metagenomics technology, have greatly increased our understanding of the diversity of bacteriophages. Oceanospirillum, within the order Oceanospirillales, are important symbiotic marine bacteria associated with hydrocarbon degradation and algal blooms, especially in polar regions. However, until now there has been no isolate of an Oceanospirillum bacteriophage, and so details of their metagenome has remained unknown.

    RESULTS: Here, we reported the first Oceanospirillum phage, vB_OliS_GJ44, which was assembled into a 33,786 bp linear dsDNA genome, which includes abundant tail-related and recombinant proteins. The recombinant module was highly adapted to the host, according to the tetranucleotides correlations. Genomic and morphological analyses identified vB_OliS_GJ44 as a siphovirus, however, due to the distant evolutionary relationship with any other known siphovirus, it is proposed that this virus could be classified as the type phage of a new Oceanospirivirus genus within the Siphoviridae family. vB_OliS_GJ44 showed synteny with six uncultured phages, which supports its representation in uncultured environmental viral contigs from metagenomics. Homologs of several vB_OliS_GJ44 genes have mostly been found in marine metagenomes, suggesting the prevalence of this phage genus in the oceans.

    CONCLUSIONS: These results describe the first Oceanospirillum phage, vB_OliS_GJ44, that represents a novel viral cluster and exhibits interesting genetic features related to phage-host interactions and evolution. Thus, we propose a new viral genus Oceanospirivirus within the Siphoviridae family to reconcile this cluster, with vB_OliS_GJ44 as a representative member.

    Matched MeSH terms: DNA, Viral/genetics
  14. Hajissa K, Mussa A
    Hum Vaccin Immunother, 2021 Aug 03;17(8):2445-2447.
    PMID: 33830862 DOI: 10.1080/21645515.2021.1900713
    The unprecedented need to acquire a safe and effective vaccine for the long-term control of coronavirus disease 2019 (COVID-19) is a global imperative. Researchers have been working urgently and collaboratively to develop vaccines against the causative agent of COVID-19. The use of messenger RNA (mRNA) vaccine platform offers new opportunities for the development of effective vaccines. The first use of COVID-19 mRNA vaccines for individuals outside the clinical trials raised concerns over their safety and future efficacy. In social media, particularly in developing countries, widely shared false claims allege that the current mRNA-based COVID-19 vaccines potentially integrate into the host genome and thus may genetically modify humans. These vaccines are also assumed to lack efficacy due to the emergence of new strains. Such misinformation cause people to hesitate about receiving vaccination against COVID-19. This commentary aimed to outline the structure, mechanism of action and the major motive for the use of COVID-19 mRNA vaccine, with a focus on scientifically addressing challenges associated with conspiracy theories and dispelling misinformation around vaccination.
    Matched MeSH terms: RNA, Messenger/genetics
  15. Cheng A
    Plant Sci, 2018 Apr;269:136-142.
    PMID: 29606211 DOI: 10.1016/j.plantsci.2018.01.018
    Genetic erosion of crops has been determined way back in the 1940s and accelerated some twenty years later by the inception of the Green Revolution. Claims that the revolution was a complete triumph remain specious, especially since the massive production boost in the global big three grain crops; wheat, maize, and rice that happened back then is unlikely to recur under current climate irregularities. Presently, one of the leading strategies for sustainable agriculture is by unlocking the genetic potential of underutilized crops. The primary focus has been on a suite of ancient cereals and pseudo-cereals which are riding on the gluten-free trend, including, among others, grain amaranth, buckwheat, quinoa, teff, and millets. Each of these crops has demonstrated tolerance to various stress factors such as drought and heat. Apart from being the centuries-old staple in their native homes, these crops have also been traditionally used as forage for livestock. This review summarizes what lies in the past and present for these underutilized cereals, particularly concerning their potential role and significance in a rapidly changing world, and provides compelling insights into how they could one day be on par with the current big three in feeding a booming population.
    Matched MeSH terms: Millets/genetics; Edible Grain/genetics*; Crops, Agricultural/genetics; Fagopyrum/genetics; Chenopodium quinoa/genetics; Amaranthus/genetics; Eragrostis/genetics
  16. Muhammad Shazwan S, Muhammad Aliff M, Asral Wirda AA, Hayati AR, Maizatul Azma M, Nur Syahrina AR, et al.
    Malays J Pathol, 2016 Dec;38(3):273-283.
    PMID: 28028298 MyJurnal
    INTRODUCTION: Antiphospholipid antibodies (aPL) are autoantibodies that attack phospholipid through anti-beta 2-glycoprotein 1. The actions of aPL are associated with events leading to thrombosis and morbidity in pregnancy. Antiphospholipid syndrome (APS) is diagnosed when a patient is persistently positive for aPL and also has recognised clinical manifestations such as recurrent pregnancy losses, arterial or venous thrombosis and in a catastrophic case, can result in death. Unfortunately, the pathogenesis of APS is still not well established. Recently, microRNA expressed in many types of diseased tissues were claimed to be involved in the pathological progression of diseases and has become a useful biomarker to indicate diseases, including APS.

    OBJECTIVE: This systematic review aims to search for research papers that are focussing on microRNA expression profiles in APS.

    METHOD: Three search engines (Ebcohost, ProQuest and Ovid) were used to identify papers related to expression of specific microRNA in antiphospholipid syndrome.

    RESULTS AND DISCUSSION: A total of 357 papers were found and screened, out of which only one study fulfilled the requirement. In this particular study blood samples from APS patients were tested. The microRNAs found to be related to APS were miR-19b and miR-20a. No data was found on specific microRNA being expressed in obstetric antiphospholipid syndrome. Analysis on the microRNA target genes revealed that most genes targeted by miR-19b and miR-20a involve in TGF-Beta Signalling and VEGF, hypoxia and angiogenesis pathways.

    CONCLUSION: In view of the limited data on the expressions of microRNA in APS we recommend further research into this field. Characterization of microRNA profile in blood as well as in placenta tissue of patients with APS could be useful in identifying microRNAs involved in obstetric APS.
    Matched MeSH terms: Antiphospholipid Syndrome/genetics*
  17. Goodwin W, Alimat S
    Electrophoresis, 2017 04;38(7):1007-1015.
    PMID: 28008628 DOI: 10.1002/elps.201600383
    The SNPforID consortium identified a panel of 52 SNPs for forensic analysis that has been used by several laboratories worldwide. The original analysis of the 52 SNPs was based on a single multiplex reaction followed by two single-base-extension (SBE) reactions each of which was analyzed using capillary electrophoresis. The SBE assays were designed for high throughput genetic analyzers and were difficult to use on the single capillary ABI PRISM 310 Genetic Analyzer and the latest generation 3500 Genetic Analyzer, as sensitivity on the 310 was low and separation of products on the 3500 with POP-7™ was poor. We have modified the original assay and split it into four multiplex reactions, each followed by an SBE assay. These multiplex assays were analyzed using polymer POP-4™ on ABI 310 PRISM® and polymers POP-4™, POP-6™ and POP-7™ on the 3500 Genetic Analyzer. The assays were sensitive and reproducible with input DNA as low as 60 pg using both the ABI 310 and 3500. In addition, we found that POP-6™ was most effective with the 3500, based on the parameters that we assessed, achieving better separation of the small SBE products; this conflicted with the recommended use of POP-7™ by the instrument manufacturer. To support the use of the SNP panel in casework in Malaysia we have created an allele frequency database from 325 individuals, representing the major population groups within Malaysia. Population and forensic parameters were estimated for all populations and its efficacy evaluated using 51 forensic samples from challenging casework.
    Matched MeSH terms: Ethnic Groups/genetics; Genetics, Population/methods; Polymorphism, Single Nucleotide/genetics*; Asian Continental Ancestry Group/genetics; Forensic Genetics/methods*
  18. Chan LL, Mak JW, Ambu S, Chong PY
    PLoS One, 2018;13(10):e0204732.
    PMID: 30356282 DOI: 10.1371/journal.pone.0204732
    The detection and identification of two endocytobiotic bacterial strains, one affiliated to the "Candidatus Caedibacter acanthamoebae"/"Ca. Paracaedimonas acanthamoeba", and another to the endosymbiont of Acanthamoeba UWC8 and "Ca. Jidaibacter acanthamoeba" are described. For endocytobiont screening, we developed a PCR method with a set of broad-range bacterial 16S rRNA primers to substitute the commonly used but technically demanding fluorescent in situ hybridization technique. Our PCR test alone without sequencing failed to discriminate the endocytobiont-containing and endocytobiont-free Acanthamoeba sp. due to the presence of mismatched primers to host mitochondrial DNA. We highlighted the need to perform bacterial primer checking against the Acanthamoeba genome to avoid false positive detection in PCR. Although the genetic aspect of "Ca. Caedibacter acanthamoebae"/"Ca. Paracaedimonas acanthamoeba" and the endosymbiont of Acanthamoeba UWC8/"Ca. Jidaibacter acanthamoeba" are well studied, knowledge pertaining to their morphologies are quite vague. Hence, we used transmission electron microscopy to examine our endocytobionts which are affiliated to previously described intracellular bacteria of Acanthamoeba sp. We used good-quality TEM images for the localization and the fate of the current endocytobionts inside different life stages of the hosts. Furthermore, to the best of our knowledge, our TEM findings are the first to provide morphological evidence for the clearance of defective Acanthamoeba endocytobionts via an autophagic-like process.
    Matched MeSH terms: Acanthamoeba/genetics*; DNA, Bacterial/genetics; DNA, Mitochondrial/genetics; RNA, Ribosomal, 16S/genetics; Genome, Bacterial/genetics; Alphaproteobacteria/genetics*; Host-Pathogen Interactions/genetics
  19. Ooi SE, Sarpan N, Abdul Aziz N, Nuraziyan A, Ong-Abdullah M
    Plant Reprod, 2019 06;32(2):167-179.
    PMID: 30467592 DOI: 10.1007/s00497-018-0350-5
    KEY MESSAGE: Transcriptomes generated by laser capture microdissected abnormal staminodes revealed adoption of carpel programming during organ initiation with decreased expression of numerousHSPs,EgDEF1, EgGLO1but increasedLEAFYexpression. The abnormal mantled phenotype in oil palm involves a feminization of the male staminodes into pseudocarpels in pistillate inflorescences. Previous studies on oil palm flowering utilized entire inflorescences or spikelets, which comprised not only the male and female floral organs, but the surrounding tissues as well. Laser capture microdissection coupled with RNA sequencing was conducted to investigate the specific transcriptomes of male and female floral organs from normal and mantled female inflorescences. A higher number of differentially expressed genes (DEGs) were identified in abnormal versus normal male organs compared with abnormal versus normal female organs. In addition, the abnormal male organ transcriptome closely mimics the transcriptome of abnormal female organ. While the transcriptome of abnormal female organ was relatively similar to the normal female organ, a substantial amount of female DEGs encode HEAT SHOCK PROTEIN genes (HSPs). A similar high amount (20%) of male DEGs encode HSPs as well. As these genes exhibited decreased expression in abnormal floral organs, mantled floral organ development may be associated with lower stress indicators. Stamen identity genes EgDEF1 and EgGLO1 were the main floral regulatory genes with decreased expression in abnormal male organs or pseudocarpel initials. Expression of several floral transcription factors was elevated in pseudocarpel initials, notably LEAFY, FIL and DL orthologs, substantiating the carpel specification programming of abnormal staminodes. Specific transcriptomes thus obtained through this approach revealed a host of differentially regulated genes in pseudocarpel initials compared to normal male staminodes.
    Matched MeSH terms: Heat-Shock Proteins/genetics*; Plant Proteins/genetics; Transcription Factors/genetics*; Gene Expression Regulation, Plant/genetics*; Arecaceae/genetics*; Flowers/genetics; Inflorescence/genetics
  20. Mat Jaafar TNA, Taylor MI, Mohd Nor SA, Bruyn M, Carvalho GR
    J Fish Biol, 2020 Feb;96(2):337-349.
    PMID: 31721192 DOI: 10.1111/jfb.14202
    We examine genetic structuring in three commercially important species of the teleost family Carangidae from Malaysian waters: yellowtail scad Atule mate, bigeye scad Selar crumenophthalmus and yellowstripe scad Selaroides leptolepis, from the Indo-Malay Archipelago. In view of their distribution across contrasting habitats, we tested the hypothesis that pelagic species display less genetic divergence compared with demersal species, due to their potential to undertake long-distance migrations in oceanic waters. To evaluate population genetic structure, we sequenced two mitochondrial (mt)DNA [650 bp of cytochrome oxidase I (coI), 450 bp of control region (CR)] and one nuclear gene (910 bp of rag1) in each species. One hundred and eighty samples from four geographical regions within the Indo-Malay Archipelago including a population of yellowtail from Kuwait were examined. Findings revealed that the extent of genetic structuring among populations in the semi-pelagic and pelagic, yellowtail and bigeye were lower than demersal yellowstripe, consistent with the hypothesis that pelagic species display less genetic divergence compared with demersal species. The yellowtail phylogeny identified three distinct clades with bootstrap values of 86%-99% in mtDNA and 63%-67% in rag1. However, in bigeye, three clades were also observed from mtDNA data while only one clade was identified in rag1 dataset. In yellowstripe, the mtDNA tree was split into three closely related clades and two clades in rag1 tree with bootstraps value of 73%-99% and 56% respectively. However, no geographic structure appears in both mtDNA and rag1 datasets. Hierarchical molecular variance analysis (AMOVA), pair wise FST comparisons and the nearest-neighbour statistic (Snn ) showed significant genetic differences among Kuwait and Indo-Malay yellowtail. Within the Indo-Malay Archipelago itself, two distinct mitochondrial lineages were detected in yellowtail suggesting potential cryptic species. Findings suggests varying degrees of genetic structuring, key information relevant to management of exploited stocks, though more rapidly evolving genetic markers should be used in future to better delimit the nature and dynamics of putative stock boundaries.
    Matched MeSH terms: DNA, Mitochondrial/genetics; Fishes/genetics; Genetic Markers/genetics*; Genetics, Population*; Perciformes/genetics*; Genes, RAG-1/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links