Displaying publications 81 - 100 of 335 in total

Abstract:
Sort:
  1. Aldossary MS, Abu Hajia SS, Santini A
    Int Orthod, 2018 12;16(4):638-651.
    PMID: 30385291 DOI: 10.1016/j.ortho.2018.09.005
    OBJECTIVE: To measure Total Light Energy (TLE) Transmission through six makes of ceramic orthodontic brackets alone and bracket-plus-adhesive samples, using the MARC™-Resin Calibrator (RC).

    METHODS: Six makes, three each monocrystalline (M) and polycrystalline (P) were used; PureSapphire (M), SPA Aesthetic (M), Ghost (M), Mist (P), Reflections (P), and Dual Ceramic (P). The Ortholux™ Light Curing Unit (LCU) was used to cure the orthodontic adhesive Transbond™XT. The LCU's tip irradiance was measured and TLE transmitted through the ceramic bracket was obtained, then adhesive added to the bracket, and transmitted TLE measured through bracket-plus-adhesive samples. The LCU was set at five seconds as recommended for curing adhesive through ceramic brackets.

    RESULTS: Mean tip irradiance was 1859.2±16.2mW/cm2. The TLE transmitted through brackets alone ranged 1.7 to 3.9J/cm2, in the descending order: Ghost>Pure Sapphire>Reflections>Mist>SPA Aesthetics>Dual Ceramic. The TLE transmitted through bracket-plus-adhesive samples ranged 1.6 to 3.7J/cm2, in the descending order: Ghost>Mist>Reflections>Pure Sapphire>SPA Aesthetics>Dual Ceramic. TLE was reduced with the addition of adhesive (range -0.1 to -0.7J/cm2). There was a significant difference for Pure Sapphire, Reflections, and Mist (P<0.05), but not for SPA Aesthetics, Ghost, and Dual Ceramic. There was no overall significant difference between the monocrystalline and polycrystalline makes. The two best makes were of the monocrystalline type, concerning TLE transmission, but with the exception of polycrystalline Dual Ceramic; the next worst make was a monocrystalline bracket, SPA Aesthetics.

    CONCLUSION: Light energy attenuation through ceramic orthodontic brackets is make-dependent, with no overall difference between monocrystalline and polycrystalline brackets. Light energy is further attenuated with the addition of resin-based orthodontic adhesive.

    Matched MeSH terms: Light-Curing of Dental Adhesives
  2. Kamal A, Salman B, Ar NH, Samsudin AR
    Clin Oral Investig, 2021 Mar;25(3):1029-1033.
    PMID: 32562076 DOI: 10.1007/s00784-020-03393-3
    OBJECTIVE: The aim of this study is to investigate the efficacy of delivering low-level laser therapy (LLLT) in the management of dry socket at University Dental Hospital Sharjah.

    MATERIALS AND METHOD: Forty-five patients with dry socket were divided into two treatment groups. Group I dry socket patients (n = 30) received conventional treatment while group II patients (n = 15) were irradiated with LLLT at a setting of 200-mW, 6-J, continuous-wave mode using an R02 tipless handpiece (Fotona Er:YAG, Europe), on the buccal, lingual, and middle surfaces of the socket for 30 s from a delivery distance of 1 cm. Pain score and quantification of granulation tissue in the socket were recorded at 0, 4, and 7 days post-dry socket treatment.

    RESULTS: Results showed that the LLLT-irradiated group II sockets showed a much lower VAS pain score of 1-2 as early as day 4, and a richer amount of granulation tissue compared to the conventional treated group I socket. The amount and rate of granulation tissue formation in the dry socket are inversely proportional to the pain score showing significant clinical effectiveness of LLLT on promoting the healing of the dry socket, with improvement in symptoms (P = .001). Conventionally treated dry sockets take at least 7 days to match the effective healing of an LLLT-irradiated dry socket.

    CONCLUSION: LLLT irradiation influences biomodulation of dry socket healing by dampening inflammation, promoting vascularization, stimulating granulation, and controlling pain symptoms.

    CLINICAL RELEVANCE: LLLT may be an additional effective tool for managing dry sockets in general dental practice.

    Matched MeSH terms: Low-Level Light Therapy*
  3. Kamal A, Salman B, Razak NHA, Samsudin ABR
    Eur J Dent, 2020 Oct;14(4):613-620.
    PMID: 32777838 DOI: 10.1055/s-0040-1714765
    OBJECTIVE:  A dry socket is a well-recognized complication of wound healing following tooth extraction. Its etiology is poorly understood and commonly occur among healthy patients. As such, management strategies for dry socket has always been empirical rather than scientific with varying outcome. The aim of this study is to investigate the efficacy of concentrated growth factor (CGF) and low-level laser therapy (LLLT) and compared them to the conventional treatment in the management of dry socket.

    MATERIALS AND METHODS:  Sixty patients with one dry socket each, at University Dental Hospital Sharjah, were divided into three treatment groups based on their choice. In group I (n = 30), conventional treatment comprising of gentle socket curettage and saline irrigation was done. Group II (n = 15) dry sockets were treated with CGF and group III (n = 15) sockets were lased with LLLT. All dry socket patients were seen at day 0 for treatment and subsequently followed-up at 4, 7, 14, and 21 days. Pain score, perisocket inflammation, perisocket tenderness, and amount of granulation tissue formation were noted.

    STATISTICAL ANALYSIS:  Data were analyzed as mean values for each treatment group. Comparisons were made for statistical analysis within the group and among the three groups to rank the efficacy of treatment using one-way analysis of variance (ANOVA). Statistically significant difference is kept at p < 0.05.

    RESULTS:  Conventional treatment group I took more than 7 days to match the healing phase of group II CGF treated socket and group III LLLT irradiated socket (p = 0.001). When healing rate between CGF and LLLT are compared, LLLT group III showed a delay of 4 days compared with CGF in granulation tissue formation and pain control.

    CONCLUSION:  CGF treated socket was superior to LLLT in its ability to generate 75% granulation tissue and eliminate pain symptom by day 7 (p = 0.001).

    Matched MeSH terms: Low-Level Light Therapy
  4. Hui KC, Ang WL, Yahya WZN, Sambudi NS
    Chemosphere, 2022 Mar;290:133377.
    PMID: 34952025 DOI: 10.1016/j.chemosphere.2021.133377
    The present work demonstrates the coupling of titanium dioxide, TiO2 nanoparticles (TNP) with N-doped, Bi-doped, and N-Bi co-doped rice husk-derived carbon dots (CDs) via a facile dispersion method, forming respective photocatalyst composites of CDs/TNP, N-CDs/TNP, Bi-CDs/TNP and N-Bi-CDs/TNP. Characterization analyzes verified the successful incorporation of respective CDs samples into TNP, forming photocatalyst composite with narrowed band gap and quenched photoluminescence intensity. Photocatalytic activity of TNP and the respective composites was investigated for photodegradation of diclofenac (DCF) under both simulated sunlight and natural sunlight irradiation. The as-prepared N-Bi-CDs/TNP composite showed the best photocatalytic performance among all composites, able to completely degrade 5 ppm of DCF within 60 min and 180 min under both types of visible light irradiation, respectively. The N-Bi-CDs/TNP composite also showed a TOC removal efficiency up to 87.63%. N-Bi-CDs, worked as photosensitizer and electron reservoir, contributed to the outstanding photocatalytic activity of N-Bi-CDs/TNP, whereby the recombination was prolonged and light absorption was shifted towards the visible light region. Furthermore, the composite of N-Bi-CDs/TNP also demonstrated good stability and reusability over repeated degradation cycles. The photodegradation of DCF resulted into several intermediates, which were identified from LC-MS analysis. The present work could provide an insight on the application of heteroatoms doped and co-doped carbon dots in semiconductor oxide as high performance photocatalysts.
    Matched MeSH terms: Light
  5. Jaafar NF, Nordin N, Mohamed Haris NY, Mohd Halim NH, Lahuri AH, Samad WZ
    Environ Sci Pollut Res Int, 2023 Apr;30(16):47144-47157.
    PMID: 36732455 DOI: 10.1007/s11356-023-25623-3
    In recent years, previously reported studies revealed a high efficiency of pollutant degradation by coupling photocatalysis and electrochemical processes (PECs) using titanium dioxide (TiO2) photoelectrode rather than using photocatalysis or electrocatalysis alone. However, some of the TiO2 photoelectrodes that have been reported were not cost-effective. This is due to the use of expensive chemicals and certain expensive equipment in the fabrication process, other than involving complicated preparation steps. Therefore, this study is aimed at investigating the PEC performance and stability of low-cost TiO2-polyvinyl chloride (TiO2-PVC) composite photoelectrode for Reactive Orange 16 (RO16) degradation. The materials characterisation using the ATR-FTIR, XRD and UV-Vis DRS proved that TiO2 and TiO2-PVC were successfully synthesised. The micrograph obtained for the surface characterisation using the FESEM showed that the smooth surface of freshly prepared photoelectrodes turned slightly rough with tiny pits formation after five continuous PEC processes. Nevertheless, the photoelectrode retained its original shape in good condition for further PEC processes. By PEC process, the fabricated photoelectrode showed 99.4% and 51.1% of colour and total organic carbon (TOC) removal, respectively, at optimised PEC parameters (1.0 mol L-1 NaCl concentration, 10 V applied voltage, 120 min degradation time and initial pH 2). Moreover, the fabricated photoelectrode demonstrated sufficient reusability potential (~ 96.3%) after five cycles of PEC processes. In summary, a low-cost and stable composite photoelectrode with high efficiency in RO16 degradation was successfully fabricated and could be potentially applied for other emerging pollutants degradation via the PEC degradation technique.
    Matched MeSH terms: Light*
  6. Alazzawi MMJ, Husein A, Alam MK, Hassan R, Shaari R, Azlina A, et al.
    Prog Orthod, 2018 Apr 16;19(1):10.
    PMID: 29658096 DOI: 10.1186/s40510-018-0208-2
    BACKGROUND: Quality bone regeneration, which leads to the improvement of bone remodeling, is essential for orthodontic treatment. In order to improve bone regeneration and increase the amount of tooth movement, different techniques have been implemented. The object of this study is to compare the effects of low-level laser therapy (LLLT), low-intensity pulsed ultrasound (LIPUS), and their combination on bone remodeling during orthodontic tooth movement.

    METHODS: Eighty (80) male, 6-week-old Sprague Dawley rats were grouped in to four groups, the first group was irradiated with (940 nm) diode laser, second group with LIPUS, and third group with combination of both LLLT and LIPUS. A forth group used was a control group in an incomplete block split-mouth design. The LLLT and LIPUS were used to treat the area around the moving tooth once a day on days 0-7, then the experiment was ended in each experimental endpoint (1, 3, 7, 14, and 21 days). For amount of tooth movement, models were imaged and analyzed. Histological examination was performed after staining with (hematoxylin and eosin) and (alizarin red and Alcian Blue) stain. One step reverse transcription-polymerase chain reaction RT-PCR was also performed to elucidate the gene expression of RANK, RANKL, OPG, and RUNX-2.

    RESULTS: The amount of tooth movement, the histological bone remodeling, and the RT-PCR were significantly greater in the treatment groups than that in the control group. Among the treatment groups, the combination group was the highest and the LIPUS group was the lowest.

    CONCLUSION: These findings suggest that LLLT and LIPUS can enhance the velocity of tooth movement and improve the quality of bone remodeling during orthodontic tooth movement.

    Matched MeSH terms: Low-Level Light Therapy/methods*
  7. Yaacob JS, Mahmad N, Mat Taha R, Mohamed N, Mad Yussof AI, Saleh A
    ScientificWorldJournal, 2014;2014:262710.
    PMID: 24977187 DOI: 10.1155/2014/262710
    Various explants (stem, leaf, and root) of Citrus assamensis were cultured on MS media supplemented with various combinations and concentrations (0.5-2.0 mg L(-1)) of NAA and BAP. Optimum shoot and root regeneration were obtained from stem cultures supplemented with 1.5 mg L(-1) NAA and 2.0 mg L(-1) BAP, respectively. Explant type affects the success of tissue culture of this species, whereby stem explants were observed to be the most responsive. Addition of 30 gL(-1) sucrose and pH of 5.8 was most optimum for in vitro regeneration of this species. Photoperiod of 16 hours of light and 8 hours of darkness was most optimum for shoot regeneration, but photoperiod of 24 hours of darkness was beneficial for production of callus. The morphology (macro and micro) and anatomy of in vivo and in vitro/ex vitro Citrus assamensis were also observed to elucidate any irregularities (or somaclonal variation) that may arise due to tissue culture protocols. Several minor micromorphological and anatomical differences were observed, possibly due to stress of tissue culture, but in vitro plantlets are expected to revert back to normal phenotype following full adaptation to the natural environment.
    Matched MeSH terms: Light
  8. Makama AB, Salmiaton A, Choong TSY, Hamid MRA, Abdullah N, Saion E
    Chemosphere, 2020 Aug;253:126689.
    PMID: 32304862 DOI: 10.1016/j.chemosphere.2020.126689
    Removal of ciprofloxacin (CIP) pollutant from wastewater using conventional process is particularly challenging due to poor removal efficiency. In this work, CIP was photocatalytically degraded using a porous ZnO/SnS2 photocatalyst prepared via microwaves. The influence of process parameters (e.g., pH, catalyst mass and initial CIP concentration) and radical scavengers on visible-light induced degradation of CIP on the catalyst was investigated. From the study, it was found that visible-light induced degradation of CIP on ZnO/SnS2 is a surface-mediated process and the reaction kinetics followed the Langmuir-Hinshelwood first-order kinetics. It was found that the optimum condition for CIP degradation was at pH of 6.1 and catalyst dosage of 500 mg L-1. Higher catalyst dosage however led to a decline in reaction rate due to light scattering effect and reduction in light penetration.
    Matched MeSH terms: Light
  9. Raajini Devi K, Aida Zairani MI, Hazlita MI, Jemaima CH, Farizal F, Safinaz Mohd Khialdin
    MyJurnal
    A 21-year-old Chinese gentleman with no known medical illness, presented with a history of right painless blurring of vision with central scotoma of two weeks duration. He also had a history of multiple episodes of seizures prior to presentation. Visual acuity was 1/60 with unremarkable anterior segment findings and no relative afferent pupillary defect. Fundus examination of the right eye revealed dilated and tortuous retinal veins with multiple retinal capillary hemangiomas and sub retinal hard exudates at the macula with edema. A diagnosis of Von Hippel Lindau disease was made when a posterior fossa mass suggestive of hemangioblastoma with obstructive hydrocephalus was seen on computed tomography of the brain. Craniotomy with nodule excision was performed. The retinal capillary hemangiomas were treated with the combination of laser photocoagulation and intravitreal Ranibizumab injections. Visual acuity subsequently improved to 6/36.
    Matched MeSH terms: Light Coagulation
  10. Mukai Y, Sanudin N, Firdaus RF, Saad S
    Zoolog Sci, 2013 Jun;30(6):421-4.
    PMID: 23721464 DOI: 10.2108/zsj.30.421
    In general, African catfish shows higher survival rates in the dark conditions than in the light conditions. In this study, larval behavior of African catfish was observed under 0, 0.01, 0.1, 1, 10, and 100 lx using a CCD camera to investigate the reason why African catfish larvae show higher survival rates in dark conditions. The larvae showed significantly higher swimming activity under 0, 0.01, and 0.1 lx than that under 10 and 100 lx. The larvae also showed significantly increased aggressive behavior under 10 and 100 lx; the swimming larvae attacked resting individuals more frequently under 10 and 100 lx than under 0, 0.01, and 0.1 lx. The aggressive behavior and sharp teeth of the attacking larvae appeared to induce skin surface lesions on injured larvae. Chemical substances were then generated from the injured skin surface, and these chemical stimuli triggered cannibalistic behavior in other fish near the injured fish. The results of this study demonstrate that the higher survival rates of African catfish larvae under dark conditions are a result of inactivity and subsequent increase in chemical releasing stimuli concentrations around inactive individuals that triggers feeding behavior in nearby active catfish. Therefore, we recommend larval rearing of African catfish in dark or dim conditions, as it improves catfish survival rates.
    Matched MeSH terms: Light
  11. Sitti Raehanah Muhamad Shaleh, Marlena Amatus, Najamuddin Abdul Basri, Rossita Shapawi
    MyJurnal
    This study was aimed at determining the optimum temperature for culturing the copepod, Euterpina acutifrons. The trial was conducted for 10 days in chambers at temperatures of 25⁰C, 27⁰C, 29⁰C and 31⁰C. Ten adult individuals of the copepod were randomly collected and placed into three replicate experimental flasks for each treatment. Throughout the trial, the salinity, light intensity, and photoperiod were maintained at 30 ±2psu, 100molm-2s-1 and 12:12 light-dark cycle, respectively. The copepods were fed with 80,000cell/ml Isochrysis sp. daily. At the end of the trial, the total numbers of E. acutifrons nauplii, copepodites and adults were determined and counted using Sedgwick-Rafter. The highest population was found at 27⁰C with mean total population of 800±100 individuals from an initial of 10 individuals. This was followed by those reared at 25⁰C and 29⁰C where the population counts were 700±100 individuals and 367±115 individuals, respectively. At the 31⁰C, all the copepod specimens were found dead on day 5th. Statistical analysis showed that the temperature had a significant effect (P
    Matched MeSH terms: Light
  12. Nasima Akter, Shahidan Radiman, Faizal Mohamed, Nazaruddin Ramly, Putra EGR, Rini AS
    Sains Malaysiana, 2014;43:203-209.
    Kappa-carrageenan is one form of necessary hydrocolloid. Hydrocolloids are macromolecular materials, which swell upon absorption of water; in some cases, forming a stiff gel in the presence of additives. This property is very important to suspend nanocarriers into gel network, which provide them long time stability at a varying temperature range. In this work, we prepared microemulsion and trapped these particles inside the kappa-carrageenan gel network. The microemulsion was composed of sodium N-lauroylsarcosinate hydrate (SNLS), oleic acid and deionized water. The purpose of this study was to immobilize them into the gel network, giving longer shelf life at a range of temperatures for oral drug delivery. Morphological properties were investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and Fourier transform infrared (FTIR) spectra. The TEM results showed that microemulsions are trapped in the gel network, and the diameter of the microemulsions are below 100 nm, which is comparable with the DLS results. The important functional groups of kappa-carrageenan and microemulsion were shown from the FTIR result of the complex microemulsion gel. These results confirmed the interaction between SNLS based microemulsion and kappa- carrageenan gel.
    Matched MeSH terms: Dynamic Light Scattering
  13. Wong JC, Xiang L, Ngoi KH, Chia CH, Jin KS, Ree M
    Polymers (Basel), 2020 Feb 19;12(2).
    PMID: 32093008 DOI: 10.3390/polym12020477
    A series of polystyrene nanoparticles (PS-1, PS-2, PS-3, and PS-4) in aqueous solutions were investigated in terms of morphological structure, size, and size distribution. Synchrotron small-angle X-ray scattering analysis (SAXS) was carried out, providing morphology details, size and size distribution on the particles. PS-1, PS-2, and PS-3 were confirmed to behave two-phase (core and shell) spherical shapes, whereas PS-4 exhibited a single-phase spherical shape. They all revealed very narrow unimodal size distributions. The structural parameter details including radial density profile were determined. In addition, the presence of surfactant molecules and their assemblies were detected for all particle solutions, which could originate from their surfactant-assisted emulsion polymerizations. In addition, dynamic light scattering (DLS) analysis was performed, finding only meaningful hydrodynamic size and intensity-weighted mean size information on the individual PS solutions because of the particles' spherical nature. In contrast, the size distributions were extracted unrealistically too broad, and the volume- and number-weighted mean sizes were too small, therefore inappropriate to describe the particle systems. Furthermore, the DLS analysis could not detect completely the surfactant and their assemblies present in the particle solutions. Overall, the quantitative SAXS analysis confirmed that the individual PS particle systems were successfully prepared with spherical shape in a very narrow unimodal size distribution.
    Matched MeSH terms: Dynamic Light Scattering
  14. Sumitha S, Vasanthi S, Shalini S, Chinni SV, Gopinath SCB, Anbu P, et al.
    Molecules, 2018 Dec 13;23(12).
    PMID: 30551671 DOI: 10.3390/molecules23123311
    In the present study, we have developed a green approach for the synthesis of silver nanoparticles (DSAgNPs) using aqueous extract of Durio zibethinus seed and determined its antibacterial, photocatalytic and cytotoxic effects. Surface plasmon resonance confirmed the formation of DSAgNPs with a maximum absorbance (λmax) of 420 nm. SEM and TEM images revealed DSAgNPs were spherical and rod shaped, with a size range of 20 nm and 75 nm. The zeta potential was found to be -15.41 mV. XRD and EDX analyses confirmed the nature and presence of Ag and AgCl. DSAgNPs showed considerable antibacterial activity, exhibited better cytotoxicity against brine shrimp, and shown better photocatalytic activity against methylene blue. Based on the present research work, it can be concluded that DSAgNPs could be used in the field of water treatment, pharmaceuticals, biomedicine, biosensor and nanotechnology in near future.
    Matched MeSH terms: Light*
  15. Cherian SB, Bairy KL, Rao MS
    Indian J Exp Biol, 2009 Nov;47(11):893-9.
    PMID: 20099462
    With a view to examine the effect of chronic maternal stress on cognitive function in the offspring during young age, pregnant Wistar rats were subjected to restraint stress from embryonic day 11 till delivery. Male and female pups born to these stressed rats were subjected to passive avoidance test on postnatal day 30 and 31. Results were compared with rats of the same age and sex born to control mothers, which were not stressed. The results showed that prenatal maternal restraint stress impairs the memory retention during young age in both sexes. The memory retention deficit induced by maternal restraint stress was evident in the decreased latency to enter the dark compartment of passive avoidance apparatus by the rats born to stressed mothers. The observed behavioral deficit may be due to the insult of stress on the developing hippocampus, a structure of the brain concerned with learning and memory. The results suggest that prolonged prenatal stress leads to long lasting malfunction in the behavioral development during young age in both male and female young rats. However when compared to their respective stress naïve controls, it seems evident that prenatal restraint stress has a less effect on females which could be due to their oesterogenic effects. These data reinforce the view that prenatal stress affects cognitive development in a sex-specific manner.
    Matched MeSH terms: Light
  16. Kar Soon T, Al-Azad S, Ransangan J
    J Microbiol Biotechnol, 2014 Aug;24(8):1034-43.
    PMID: 24759424
    This study determined the effect of light intensity and photoperiod on the dry cell weight and total amount of carotenoids in four isolates of purple non-sulfur bacteria obtained from shaded and exposed microhabitats of a mangrove ecosystem in Kota Kinabalu, Sabah, Malaysia. The initial isolation of the bacteria was carried out using synthetic 112 medium under anaerobic conditions (2.5 klx) at 30 ± 2°C. On the basis of colony appearance, cell morphology, gram staining, motility test, and 16S rRNA gene sequencing analyses, all four bacteria were identified as Afifella marina. One of the bacterial isolates, designated as Af. marina strain ME, which was extracted from an exposed mud habitat within the mangrove ecosystem, showed the highest yield in dry cell weight (4.32± 0.03 g/l) as well as total carotenoids (0.783 ± 0.002 mg/g dry cell weight). These values were significantly higher than those for dry cell weight (3.77 ± 0.02g/l ) and total carotenoid content (0.706 ± 0.008 mg/g) produced by the isolates from shaded habitats. Further analysis of the effect of 10 levels of light intensity on the growth characteristics of Af. marina strain ME showed that the optimum production of dry cell weight and total carotenoids was achieved at different light intensities and incubation periods. The bacterium produced the highest dry cell weight of 4.98 g/l at 3 klx in 72 h incubation, but the carotenoid production of 0.783 mg/g was achieved at 2.5 klx in 48 h incubation. Subsequent analysis of the effect of photoperiod on the production of dry cell weight and total carotenoids at optimum light intensities (3 and 2.5 klx, respectively) revealed that 18 and 24 h were the optimum photoperiods for the production of dry cell weight and total carotenoids, respectively. The unique growth characteristics of the Af. marina strain ME can be exploited for biotechnology applications.
    Matched MeSH terms: Light
  17. Ngao CF, Tan TS, Narayanan P, Raman R
    Eur Arch Otorhinolaryngol, 2014 May;271(5):975-80.
    PMID: 23605244 DOI: 10.1007/s00405-013-2491-3
    The aim of this study is to examine the effectiveness of transmeatal low-power laser stimulation (TLLS) in treating tinnitus. This is a prospective, double-blinded, randomized, placebo-controlled trial. Patients with persistent subjective tinnitus as their main symptom were recruited into the study from the outpatient clinics. The recruited patients were randomized into the experimental group or TLLS+ group (patients in this group were prescribed to use TLLS at 5 mW at 650 nM wavelength for 20 min daily and oral betahistine 24 mg twice per day for a total of 10 weeks) and the control group or TLLS- group (patients in this group were prescribed with a placebo device to use and oral betahistine 24 mg twice per day for 10 weeks). All patients were required to answer two sets of questionnaires: the Tinnitus handicap inventory (THI) and visual analogue scales (VAS) symptoms rating scales, before starting the treatment and at the end of the 10-week treatment period. The total score of the THI questionnaire was further graded into five grades, grade 1 being mild and grade 5 being catastrophic. Wilcoxon-signed ranks test and Mann-Whitney test were used to compare and analyze the THI and VAS scores before and after treatment for each group. Changes with p value of <0.05 were considered as statistically significant. Chi square test was used to analyze the change of parameters in categorical forms (to compare between TLLS+ and TLLS-). Changes with p value of <0.05 were considered as statistically significant. Forty-three patients successfully and diligently completed their treatment. It was noted that using any condition of the device, TLLS+ or TLLS-, patient's tinnitus symptoms improved in terms of THI scores (TLLS+, p value = 0.038; TLLS-, p value = 0.001) or VAS scores with a change of at least one grade (TLLS+, p value = 0.007; TLLS-, p value = 0.002) at p value <0.05 significant level. In contrast when TLLS+ group was compared with TLLS- group, no statistically significant result was obtained. In term of VAS scores, there seems to be no statistically significant improvement in patients' annoyance, sleep disruption, depression, concentration and tinnitus loudness and pitch heard between the two groups. Transmeatal low-power laser stimulation did not demonstrate significant efficacy as a therapeutic measure in treating tinnitus.
    Study site: Otorhinolaryngology clinic, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
    Matched MeSH terms: Low-Level Light Therapy/instrumentation*
  18. Hassan NS, Jalil AA, Fei ICM, Razak MTA, Khusnun NF, Bahari MB, et al.
    Chemosphere, 2023 Oct;338:139502.
    PMID: 37453521 DOI: 10.1016/j.chemosphere.2023.139502
    Vanadia (V2O5)-incorporated fibrous silica-titania (V/FST) catalysts, which were successfully synthesized using a hydrothermal method followed by the impregnation of V2O5. The catalysts were then characterized using numerous techniques, including X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption analyses, ultraviolet-visible diffuse reflectance spectroscopy, Fourier-transform infrared, X-ray photoelectron spectroscopy, and photoluminescence (PL) analyses. The study found that varying the amount of V2O5 (1-10 wt%) had a significant impact on the physicochemical properties of the FST, which in turn improved the photodegradation efficiency of two organic compounds, ciprofloxacin (CIP) and congo red (CR). 5V/FST demonstrated the best performance in degrading 10 mg L-1 of CIP (83%) and CR (100%) at pH 3 using 0.375 g L-1 catalyst under visible light irradiation within 180 min. The highest photoactivity of 5V/FST is mainly due to higher crystallinity and the highest number of V2O5-FST interactions. Furthermore, as demonstrated by PL analysis, the 5V/FST catalyst has the most significant impact on interfacial charge transfer and reduces electron-hole recombination. The photodegradation of both contaminants follows the Langmuir-Hinshelwood pseudo-first-order model, according to the kinetic study. The scavenger investigation demonstrated that hydroxyl radicals and holes dominated species in the system, indicating that the catalyst effectively generated reactive species for pollutant degradation. A possible mechanism was also identified for FST and 5V/FST. Interestingly, V2O5 acts as an electron-hole recombination inhibitor on FST for selective hole oxidation of ciprofloxacin and congo red photodegradation. Finally, the degradation efficiency of the catalyst remained relatively stable even after five cyclic experiments, indicating its potential for long-term use in environmental remediation.
    Matched MeSH terms: Light
  19. Masroor K, Jeoti V, Drieberg M, Cheab S, Rajbhandari S
    Sensors (Basel), 2021 Apr 22;21(9).
    PMID: 33922288 DOI: 10.3390/s21092943
    The bi-directional information transfer in optical body area networks (OBANs) is crucial at all the three tiers of communication, i.e., intra-, inter-, and beyond-BAN communication, which correspond to tier-I, tier-II, and tier-III, respectively. However, the provision of uninterrupted uplink (UL) and downlink (DL) connections at tier II (inter-BAN) are extremely critical, since these links serve as a bridge between tier-I (intra-BAN) and tier-III (beyond-BAN) communication. Any negligence at this level could be life-threatening; therefore, enabling quality-of-service (QoS) remains a fundamental design issue at tier-II. Consequently, to provide QoS, a key parameter is to ensure link reliability and communication quality by maintaining a nearly uniform signal-to-noise ratio (SNR) within the coverage area. Several studies have reported the effects of transceiver related parameters on OBAN link performance, nevertheless the implications of changing transmitter locations on the SNR uniformity and communication quality have not been addressed. In this work, we undertake a DL scenario and analyze how the placement of light-emitting diode (LED) lamps can improve the SNR uniformity, regardless of the receiver position. Subsequently, we show that using the principle of reciprocity (POR) and with transmitter-receiver positions switched, the analysis is also applicable to UL, provided that the optical channel remains linear. Moreover, we propose a generalized optimal placement scheme along with a heuristic design formula to achieve uniform SNR and illuminance for DL using a fixed number of transmitters and compare it with an existing technique. The study reveals that the proposed placement technique reduces the fluctuations in SNR by 54% and improves the illuminance uniformity up to 102% as compared to the traditional approach. Finally, we show that, for very low luminous intensity, the SNR values remain sufficient to maintain a minimum bit error rate (BER) of 10-9 with on-off keying non-return-to-zero (OOK-NRZ) modulation format.
    Matched MeSH terms: Light
  20. Amarnath Praphakar R, Jeyaraj M, Ahmed M, Suresh Kumar S, Rajan M
    Int J Biol Macromol, 2018 Oct 15;118(Pt B):1627-1638.
    PMID: 29981824 DOI: 10.1016/j.ijbiomac.2018.07.008
    Recently, drug functionalized biodegradable polymers have been appreciated to be imperative to fabricate multi-drug delivery nanosystems for sustainable drug release. In this work, amphiphilic chitosan-grafted-(cetyl alcohol-maleic anhydride-pyrazinamide) (CS-g-(CA-MA-PZA)) was synthesized by multi-step reactions. The incorporation of rifampicin (RF) and entrapment of silver nanoparticles (Ag NPs) on CS-g-(CA-MA-PZA) polymer was carried out by dialysis technique. From the FT-IR experiment, the polymer modification, incorporation of drugs and the entrapment of Ag NPs on micelles were confirmed. The surface morphology of Ag NPs, polymeric system and drug loaded micelles was described by SEM, TEM and AFM techniques. In addition, the controlled release behaviour of CS-g-(CA-MA-PZA) micelles was studied by UV-Vis spectroscopy. In vitro cell viability, cell apoptosis and cellular uptake experiments shows that multi-drug delivery system could enhance the biocompatibility and higher the cytotoxicity effect on the cells. Since the prepared amphiphilic polymeric micelles exhibit spotty features and the system is a promising strategy for a novel candidate for immediate therapeutically effects for alveolar macrophages.
    Matched MeSH terms: Dynamic Light Scattering
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links