Displaying publications 81 - 100 of 336 in total

Abstract:
Sort:
  1. Usman MG, Rafii MY, Ismail MR, Malek MA, Latif MA
    Molecules, 2014 May 21;19(5):6474-88.
    PMID: 24853712 DOI: 10.3390/molecules19056474
    Research was carried out to estimate the levels of capsaicin and dihydrocapsaicin that may be found in some heat tolerant chili pepper genotypes and to determine the degree of pungency as well as percentage capsaicin content of each of the analyzed peppers. A sensitive, precise, and specific ultra fast liquid chromatographic (UFLC) system was used for the separation, identification and quantitation of the capsaicinoids and the extraction solvent was acetonitrile. The method validation parameters, including linearity, precision, accuracy and recovery, yielded good results. Thus, the limit of detection was 0.045 µg/kg and 0.151 µg/kg for capsaicin and dihydrocapsaicin, respectively, whereas the limit of quantitation was 0.11 µg/kg and 0.368 µg/kg for capsaicin and dihydrocapsaicin. The calibration graph was linear from 0.05 to 0.50 µg/g for UFLC analysis. The inter- and intra-day precisions (relative standard deviation) were <5.0% for capsaicin and <9.9% for dihydrocapsaicin while the average recoveries obtained were quantitative (89.4%-90.1% for capsaicin, 92.4%-95.2% for dihydrocapsaicin), indicating good accuracy of the UFLC method. AVPP0705, AVPP0506, AVPP0104, AVPP0002, C05573 and AVPP0805 showed the highest concentration of capsaicin (12,776, 5,828, 4,393, 4,760, 3,764 and 4,120 µg/kg) and the highest pungency level, whereas AVPP9703, AVPP0512, AVPP0307, AVPP0803 and AVPP0102 recorded no detection of capsaicin and hence were non-pungent. All chili peppers studied except AVPP9703, AVPP0512, AVPP0307, AVPP0803 and AVPP0102 could serve as potential sources of capsaicin. On the other hand, only genotypes AVPP0506, AVPP0104, AVPP0002, C05573 and AVPP0805 gave a % capsaicin content that falls within the pungency limit that could make them recommendable as potential sources of capsaicin for the pharmaceutical industry.
    Matched MeSH terms: Limit of Detection
  2. Mukhtar NH, See HH
    Anal Chim Acta, 2016 08 10;931:57-63.
    PMID: 27282751 DOI: 10.1016/j.aca.2016.04.032
    In this study, the potential for carbonaceous nanomaterials to be used as adsorbents for the mixed matrix membrane (MMM) microextraction and preconcentration of organic pollutants was demonstrated. For this method, multiwall carbon nanotubes (MWCNT) and single layer graphene (SLG) nanoparticles were individually incorporated through dispersion in a cellulose triacetate (CTA) polymer matrix to form a MWCNT-MMM and SLG-MMM, respectively. The prepared membranes were evaluated for the extraction of selected polycyclic aromatic hydrocarbons (PAHs) present in sewage pond water samples. The extraction was performed by dipping a small piece of membrane (7 mm × 7 mm) in a stirred 7.5 mL sample solution to initiate the analyte adsorption. This step was followed by an analyte desorption into 60 μL of methanol prior to high performance liquid chromatography (HPLC) analysis. When the optimum SLG-MMM microextraction technique was applied to spiked sewage pond water samples, the detection limit of the method for the PAHs were in the range of 0.02-0.09 ng/mL, with relative standard deviations of between 1.4% and 7.8%. Enrichment factors of 54-100 were achieved with relative recoveries of 99%-101%. A comparison was also made between the proposed approach and standard solid phase extraction using polymeric bonded octadecyl (C18) cartridges.
    Matched MeSH terms: Limit of Detection
  3. Hui H, Gopinath SCB, Ismail ZH, Chen Y, Pandian K, Velusamy P
    Biotechnol Appl Biochem, 2023 Apr;70(2):581-591.
    PMID: 35765758 DOI: 10.1002/bab.2380
    Myocardial infarction (MI) is highly related to cardiac arrest leading to death and organ damage. Radiological techniques and electrocardiography have been used as preliminary tests to diagnose MI; however, these techniques are not sensitive enough for early-stage detection. A blood biomarker-based diagnosis is an immediate solution, and due to the high correlation of troponin with MI, it has been considered to be a gold-standard biomarker. In the present research, the cardiac biomarker troponin I (cTnI) was detected on an interdigitated electrode sensor with various surface interfaces. To detect cTnI, a capture aptamer-conjugated gold nanoparticle probe and detection antibody probe were utilized and compared through an alternating sandwich pattern. The surface metal oxide morphology of the developed sensor was proven by microscopic assessments. The limit of detection with the aptamer-gold-cTnI-antibody sandwich pattern was 100 aM, while it was 1 fM with antibody-gold-cTnI-aptamer, representing 10-fold differences. Further, the high performance of the sensor was confirmed by selective cTnI determination in serum, exhibiting superior nonfouling. These methods of determination provide options for generating novel assays for diagnosing MI.
    Matched MeSH terms: Limit of Detection
  4. Ibrahim I, Lim HN, Huang NM
    Mikrochim Acta, 2019 06 14;186(7):452.
    PMID: 31201543 DOI: 10.1007/s00604-019-3547-x
    A multi-functional hybrid of cellulose acetate with cadmium sulfide and Methylene blue (CA/CdS/MB) in a bead composition was synthesized and investigated as a photosensor-adsorbent for the rapid, selective, and sensitive detection, and adsorption of Cu(II) ions. These hybrid CA-modified beads are composed of multiple adsorption active sites and possess a surface area of 58 cm2 g-1. They are an efficient adsorbent with a maximum adsorption capacity of 0.57 mg g-1. Photoelectrochemical (PEC) detection of Cu(II) was accomplished by modifying the beads on a glassy carbon electrode. The beads containing 20 mmol of sulfur displayed the widest linear analytical range (0.1-290 nM) and the lowest detection limit (16.9 nM) for Cu(II) with high selectivity and reliable reproducibility. The successful application of the beads has provided a new insight for the selection of a responsive photoactive material for a PEC assay, as well as an effective adsorbent material for Cu(II) ions. Graphical abstract A multi-functional hybrid of cellulose acetate with cadmium sulfide and Methylene blue (CA/CdS/MB) in a bead composition was synthesized and investigated as a photosensor-adsorbent for the rapid, selective and sensitive detection and adsorption of Cu(II) ions.
    Matched MeSH terms: Limit of Detection
  5. Chan SH, Lee W, Asmawi MZ, Tan SC
    PMID: 27232053 DOI: 10.1016/j.jchromb.2016.05.015
    A sequential solid-phase extraction (SPE) method was developed and validated using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) for the detection and quantification of salbutamol enantiomers in porcine urine. Porcine urine samples were hydrolysed with β-glucuronidase/arylsulfatase from Helix pomatia and then subjected to a double solid-phase extraction (SPE) first using the Abs-Elut Nexus SPE and then followed by the Bond Elut Phenylboronic Acid (PBA) SPE. The salbutamol enantiomers were separated using the Astec CHIROBIOTIC™ T HPLC column (3.0mm×100mm; 5μm) maintained at 15°C with a 15min isocratic run at a flow rate of 0.4mL/min. The mobile phase constituted of 5mM ammonium formate in methanol. Salbutamol and salbutamol-tert-butyl-d9 (internal standard, IS) was monitored and quantified with the multiple reaction monitoring (MRM) mode. The method showed good linearity for the range of 0.1-10ng/mL with limit of quantification at 0.3ng/mL. Analysis of the QC samples showed intra- and inter-assay precisions to be less than 5.04%, and recovery ranging from 83.82 to 102.33%.
    Matched MeSH terms: Limit of Detection
  6. Abdullah J, Ahmad M, Heng LY, Karuppiah N, Sidek H
    Talanta, 2006 Oct 15;70(3):527-32.
    PMID: 18970803 DOI: 10.1016/j.talanta.2005.12.061
    The development of an optical biosensor based on immobilization of 3-methyl-2-benzothiazolinone hydrazone (MBTH) in hybrid nafion/sol-gel silicate film and tyrosinase in chitosan film for the detection of phenolic compounds has been described. Tyrosinase was immobilized in chitosan film deposited on the hybrid nafion/sol-gel silicate film containing MBTH. The enzymatic oxidation product of phenolic compounds were stabilized through formation of adduct with MBTH to produce a maroon color adduct. The color intensity of adduct was found to increase proportionally with the increase of the substrate concentrations after 5min exposure. The linearity of the biosensor towards phenol, catechol and m-cresol were in the respective concentration range of 0.5-7.0, 0.5-10.0 and 1.0-13.0mg/L with detection limit of 0.18, 0.23 and 0.43mg/L, respectively. The biosensor shows a good stability for at least 3 months.
    Matched MeSH terms: Limit of Detection
  7. Saad B, Kanapathy K, Ahmad MN, Hussin AH, Ismail Z
    Talanta, 1991 Dec;38(12):1399-402.
    PMID: 18965315
    Three main types of PVC solvent polymeric membrane ion-selective electrodes for chloroquine are described. They are based on three ion-pairing agents namely dipicrylamine (DPA), tetraphenylborate (TPB) or tetrakis(4-chlorophenyl)borate (TCPB) with either dioctylphenyl phosphonate (DOPP) or trioctyl phosphate (TOP) solvent mediator. All electrodes exhibit Nernstian responses, fast dynamic response times and a wide useful pH range. The best all-round electrode is based on TPB and TOP plasticizing solvent mediators with a limit of detection of 7.1 x 10(-6)M and was utilized for the assay of chloroquine in tablets. Direct potentiometric determinations with either the analyte addition method or the normal calibration method gave results comparable to the official method.
    Matched MeSH terms: Limit of Detection
  8. Kim JH, Chong CK, Sinniah M, Sinnadurai J, Song HO, Park H
    J Clin Virol, 2015 Apr;65:11-9.
    PMID: 25766980 DOI: 10.1016/j.jcv.2015.01.018
    BACKGROUND: Dengue is a mosquito-borne disease that causes a public health problem in tropical and subtropical countries. Current immunological diagnostics based on IgM and/or nonstructural protein 1 (NS1) antigen are limited for acute dengue infection due to low sensitivity and accuracy.
    OBJECTIVES: This study aimed to develop a one-step multiplex real-time RT-PCR assay showing higher sensitivity and accuracy than previous approaches.
    STUDY DESIGN: Serotype-specific primers and probes were designed through the multiple alignment of NS1 gene. The linearity and limit of detection (LOD) of the assay were determined. The assay was clinically validated with an evaluation panel that was immunologically tested by WHO and Malaysian specimens.
    RESULTS: The LOD of the assay was 3.0 log10 RNA copies for DENV-1, 2.0 for DENV-3, and 1.0 for DENV-2 and DENV-4. The assay showed 95.2% sensitivity (20/21) in an evaluation panel, whereas NS1 antigen- and anti-dengue IgM-based immunological assays exhibited 0% and 23.8-47.6% sensitivities, respectively. The assay showed 100% sensitivity both in NS1 antigen- and anti-dengue IgM-positive Malaysian specimens (26/26). The assay provided the information of viral loads and serotype with discrimination of heterotypic mixed infection.
    CONCLUSIONS: The assay could be clinically applied to early dengue diagnosis, especially during the first 5 days of illness and approximately 14 days after infection showing an anti-dengue IgM-positive response.
    Matched MeSH terms: Limit of Detection
  9. Ahmad Faris AN, Ahmad Najib M, Mohd Nazri MN, Hamzah ASA, Aziah I, Yusof NY, et al.
    Int J Environ Res Public Health, 2022 Aug 25;19(17).
    PMID: 36078284 DOI: 10.3390/ijerph191710570
    Water- and food-related health issues have received a lot of attention recently because food-poisoning bacteria, in particular, are becoming serious threats to human health. Currently, techniques used to detect these bacteria are time-consuming and laborious. To overcome these challenges, the colorimetric strategy is attractive because it provides simple, rapid and accurate sensing for the detection of Salmonella spp. bacteria. The aim of this study is to review the progress regarding the colorimetric method of nucleic acid for Salmonella detection. A literature search was conducted using three databases (PubMed, Scopus and ScienceDirect). Of the 88 studies identified in our search, 15 were included for further analysis. Salmonella bacteria from different species, such as S. Typhimurium, S. Enteritidis, S. Typhi and S. Paratyphi A, were identified using the colorimetric method. The limit of detection (LoD) was evaluated in two types of concentrations, which were colony-forming unit (CFU) and CFU per mL. The majority of the studies used spiked samples (53%) rather than real samples (33%) to determine the LoDs. More research is needed to assess the sensitivity and specificity of colorimetric nucleic acid in bacterial detection, as well as its potential use in routine diagnosis.
    Matched MeSH terms: Limit of Detection
  10. Thavanathan J, Huang NM, Thong KL
    Int J Nanomedicine, 2015;10:2711-22.
    PMID: 25897217 DOI: 10.2147/IJN.S74753
    We have developed a colorimetric biosensor using a dual platform of gold nanoparticles and graphene oxide sheets for the detection of Salmonella enterica. The presence of the invA gene in S. enterica causes a change in color of the biosensor from its original pinkish-red to a light purplish solution. This occurs through the aggregation of the primary gold nanoparticles-conjugated DNA probe onto the surface of the secondary graphene oxide-conjugated DNA probe through DNA hybridization with the targeted DNA sequence. Spectrophotometry analysis showed a shift in wavelength from 525 nm to 600 nm with 1 μM of DNA target. Specificity testing revealed that the biosensor was able to detect various serovars of the S. enterica while no color change was observed with the other bacterial species. Sensitivity testing revealed the limit of detection was at 1 nM of DNA target. This proves the effectiveness of the biosensor in the detection of S. enterica through DNA hybridization.
    Matched MeSH terms: Limit of Detection
  11. Shammugasamy B, Ramakrishnan Y, Ghazali HM, Muhammad K
    J Chromatogr A, 2013 Jul 26;1300:31-7.
    PMID: 23587317 DOI: 10.1016/j.chroma.2013.03.036
    A simple sample preparation technique coupled with reversed-phase high-performance liquid chromatography was developed for the determination of tocopherols and tocotrienols in cereals. The sample preparation procedure involved a small-scale hydrolysis of 0.5g cereal sample by saponification, followed by the extraction and concentration of tocopherols and tocotrienols from saponified extract using dispersive liquid-liquid microextraction (DLLME). Parameters affecting the DLLME performance were optimized to achieve the highest extraction efficiency and the performance of the developed DLLME method was evaluated. Good linearity was observed over the range assayed (0.031-4.0μg/mL) with regression coefficients greater than 0.9989 for all tocopherols and tocotrienols. Limits of detection and enrichment factors ranged from 0.01 to 0.11μg/mL and 50 to 73, respectively. Intra- and inter-day precision were lower than 8.9% and the recoveries were around 85.5-116.6% for all tocopherols and tocotrienols. The developed DLLME method was successfully applied to cereals: rice, barley, oat, wheat, corn and millet. This new sample preparation approach represents an inexpensive, rapid, simple and precise sample cleanup and concentration method for the determination of tocopherols and tocotrienols in cereals.
    Matched MeSH terms: Limit of Detection
  12. Wahib NB, Khandaker MU, Aqilah Binti Mohamad Ramli N, Sani SFA, Bradley DA
    Appl Radiat Isot, 2019 Jun;148:218-224.
    PMID: 31003071 DOI: 10.1016/j.apradiso.2019.04.001
    Study has been made of the thermoluminescence (TL) yield of various glass-based commercial kitchenware (Reko-China, Skoja-France, Godis-China, Glass Tum-Malaysia, Lodrat-France). Interest focuses on their potential for retrospective dosimetry. Use was made of a60Co gamma-ray irradiator, delivering doses in the range 2-10 Gy. Results for the various media show all the glassware brands to yield linearity of response against dose, with a lower limit of detection of ∼0.06 and ∼0.08 Gy for loose and compact powdered samples. Among all of the brands under study, the Lodrat glassware provides the greatest sensitivity, at 6.0 E+02 nC g-1 Gy-1 and 1.5E+03 nC g-1 Gy-1 for compact- and loose-powdered forms respectively. This is sufficiently sensitive to allow its use as a TL material for accident dosimetry (2 Gy being the threshold dose for the onset of a number of deterministic biological effects, including skin erythema and sterility). Energy Dispersive X-ray (EDX) analyses have been conducted, showing the presence of a number of impurities (including C, O, Na, Mg, Al, Si, Ca and Br). Fading of the irradiated glasses show the amount of better than 3% and 5% of the stored energy for both loose and compact powdered samples within 9 days post irradiation. As such, commercial kitchenware glass has the potential to act as relatively good TL material for gamma radiation dosimetry at accident levels. This is the first endeavour reporting the TL properties of low cost commercial kitchenware glasses for gamma-ray doses in the few Gy range, literature existing for doses from 8 Gy to 200 Gy.
    Matched MeSH terms: Limit of Detection
  13. Nemati K, Abu Bakar NK, Bin Abas MR, Sobhanzadeh E, Low KH
    J Hazard Mater, 2010 Oct 15;182(1-3):453-9.
    PMID: 20638781 DOI: 10.1016/j.jhazmat.2010.06.053
    The aim of this work was to evaluate two different digestion methods for the determination of the total concentration of metals (Zn, Cu, Cr, Ni, Pb and Cd) in shrimp sludge compost. The compost made from shrimp aquaculture sludge co-composted with organic materials (peat, crushed bark and manure) was used as an organic growing medium for crop. Open system digestion and microwave assisted digestion procedures were employed in sample preparation. Various combinations and volumes of hydrofluoric, nitric and hydrochloric acids were evaluated for the efficiency of both methods. A certified reference material (CRM 146) was used in the comparison of these two digestion methods. The results revealed a good agreement between both procedures and the certified valued. The best recoveries were found in the range between 95% and 99% for microwave assisted digestion with a mixture of 2 ml of HF, 6 ml of HNO(3) and 2 ml of HCl. This procedure was recommended as the method for digestion the compost herein based on the recovery analysis and time taken.
    Matched MeSH terms: Limit of Detection
  14. Goh KM, Wong YH, Ang MY, Yeo SCM, Abas F, Lai OM, et al.
    Food Res Int, 2019 07;121:553-560.
    PMID: 31108780 DOI: 10.1016/j.foodres.2018.12.013
    The detection of 3- and 2-MCPD ester and glycidyl ester was transformed from selected ion monitoring (SIM) mode to multiple reaction monitoring (MRM) mode by gas chromatography triple quadrupole spectrometry. The derivatization process was adapted from AOCS method Cd 29a-13. The results showed that the coefficient of determination (R2) of all detected compounds obtained from both detection mode was comparable, which falls between 0.997 and 0.999. The limit of detection and quantification (LOD and LOQ) were improved in MRM mode as compared to SIM mode. In MRM mode, the LOD of 3- and 2-MCPD ester was achieved 0.01 mg/kg while the LOQ was 0.05 mg/kg. Besides, LOD and LOQ of glycidyl ester were 0.024 and 0.06 mg/kg respectively. A blank spiked with MCPD esters (0.03, 0.10 and 0.50 mg/kg) and GE (0.06, 0.24 and 1.20 mg/kg) were chosen for repeatability and recovery tests. MRM mode showed better repeatability in area ratio and recovery with relative standard deviation (RSD %) 
    Matched MeSH terms: Limit of Detection
  15. Manaf NA, Saad B, Mohamed MH, Wilson LD, Latiff AA
    J Chromatogr A, 2018 Mar 30;1543:23-33.
    PMID: 29478831 DOI: 10.1016/j.chroma.2018.02.032
    Sorbents were prepared by cross-linking β-cyclodextrin (β-CD) using two different types of cross-linker units at variable reactant mole ratios. The resulting polymers containing β-CD were evaluated as sorbents in micro-solid phase extraction (μ-SPE) format for the extraction of the endogenous steroids testosterone (T), epitestosterone (E), androsterone (A), etiocholanolone (Etio), 5α-androstane-3α,17β-diol (5αAdiol) and 5β-androstane-3α,17β-diol (5βAdiol). The best sorbent (C1; cyclodextrin polymer) showed superior extraction characteristics compared with commercial sorbents (C18 and Bond Elut Plexa). Parameters influencing the extraction efficiency of the C1 sorbent such as extraction and desorption times, desorption solvent and volume of sample were investigated. The extracts were separated using a Hypersil Gold column (50 × 2.1 mm, 1.9 μm) under gradient elution coupled to a LC-MS/MS. The compounds were successfully separated within 8 min. The method offers good repeatability (RSD  0.995) were within the range of 1-200 ng mL-1 for T and E, 250-4000 ng mL-1 for A and Etio and 25-500 ng mL-1 for 5αAdiol and 5βAdiol, respectively. The method was applied for the determination of steroid profile of urine from volunteers.
    Matched MeSH terms: Limit of Detection
  16. Nur Syamimi Zainudin, Nur Aqilah Abdul Rahman
    MyJurnal
    Dyes are aromatic organic compound which have an affinity towards the substrate to which they are being applied to. The presence of dyes in wastewater samples is not safe for human even at low level. The presence of dyes in wastewater which are discharged from textile industry must be analysed. Hence, a precise, fast, accurate, simple and inexpensive analytical method with low detection limit is needed for the determination of dyes in wastewaters. The differential pulse anodic stripping voltammetric (DPASV) technique using bare glassy carbon electrode (GCE) as a working electrode and phosphate buffer at pH 4.2 as a supporting electrolyte has been proposed for Reactive Black 5 (RB5) determination. Several experimental voltammetric parameters were being optimized for obtaining a maximum response before analytical validation of the proposed technique being carried out. The optimum parameters were initial potential (Ei) = +0.3 V, end potential (Ef) = +1.0 V, scan rate (v) = 0.04 V/s, accumulation time (tacc) = 50 s, accumulation potential (Eacc) = 0.4 V and pulse amplitude = 0.075 V. The well-defined anodic peak appeared at 0.77972 V. The response was linear from 0.5 to 1.25 mg/L (R2=0.9986) with LOD of 0.050 mg/L. The relative standard deviation (RSD) achieved were 0.08 %, 0.62 % and 0.50 %, respectively for three consecutive days. The % recovery range achieved was from 89.71 % to 111.15 %. It can be concluded that the proposed technique is precise, accurate, inexpensive, fast and has a potential to be an alternative analytical technique for RB5 analysis. The proposed method will in the future be tested for the amount of RB5 in the wastewater samples from textile industry.
    Matched MeSH terms: Limit of Detection
  17. Chan SK, Kuzuya A, Choong YS, Lim TS
    SLAS Discov, 2019 01;24(1):68-76.
    PMID: 30063871 DOI: 10.1177/2472555218791743
    The inherent ability of nucleic acids to recognize a complementary pair has gained wide popularity in DNA sensor applications. DNA molecules can be produced in bulk and easily incorporated with various nanomaterials for sensing applications. More complex designs and sophisticated DNA sensors have been reported over the years to allow DNA detection in a faster, cheaper, and more convenient manner. Here, we report a DNA sensor designed to function like a switch to turn "on" silver nanocluster (AgNC) generation in the presence of a specific DNA target. By defining the probe region sequence, we are able to tune the color of the AgNC generated in direct relation to the different targets. As a proof of concept, we used dengue RNA-dependent RNA polymerase conserved sequences from all four serotypes as targets. This method was able to distinguish each dengue serotype by generating the serotype-respective AgNCs. The DNA switch was also able to identify and amplify the correct target in a mixture of targets with good specificity. This strategy has a detection limit of between 1.5 and 2.0 µM depending on the sequence of AgNC. The DNA switch approach provides an attractive alternative for single-target or multiplex DNA detection.
    Matched MeSH terms: Limit of Detection
  18. Ravikumar A, Panneerselvam P, Radhakrishnan K, Morad N, Anuradha CD, Sivanesan S
    J Fluoresc, 2017 Nov;27(6):2101-2109.
    PMID: 28819702 DOI: 10.1007/s10895-017-2149-4
    A label -free DNAzyme amplified biosensor is found to be highly selective and sensitive towards fluorescent detection of Pb2+ ions in aqueous media. The DNAzyme complex has designed by the hybridization of the enzyme and substrate strand. In the presence of Pb2+, the DNAzyme activated and cleaved the substrate strand of RNA site (rA) into two oligonucleotide fragments. Further, the free fragment was hybridized with a complementary strand on the surface of MBs. After magnetic separation, SYBER Green I was added and readily intercalate with the dsDNA to gives a bright fluorescence signal with intensity directly proportional to the concentration of Pb2+ions. A detection limit of 5 nM in Pb2+ the detection range 0 to 500 nM was obtained. This label- free fluorescent biosensor has been successfully applied to the determination of environmental water samples. Then results open up the possibility for real-time quantitative detection of Pb2+ with convenient potential applications in the biological and environmental field. Graphical Abstract.
    Matched MeSH terms: Limit of Detection
  19. Mohd Yusop AY, Xiao L, Fu S
    Data Brief, 2019 Aug;25:104234.
    PMID: 31384643 DOI: 10.1016/j.dib.2019.104234
    This paper presents the data on the optimisation and validation of a liquid chromatography-high-resolution mass spectrometry (LC-HRMS) to establish the presence of phosphodiesterase 5 (PDE5) inhibitors and their analogues as adulterants in instant coffee premixes. The method development data covered chromatographic optimisation for better analyte separation and isomeric resolution, mass spectrometry optimisation for high sensitivity and sample preparation optimisation for high extraction recovery (RE) and low matrix effect (ME). The validation data covered specificity, linearity, range, accuracy, limit of detection, limit of quantification, precisions, ME, and RE. The optimisation and validation data presented here is related to the article: "Determination of phosphodiesterase 5 (PDE5) inhibitors in instant coffee premixes using liquid chromatography-high-resolution mass spectrometry (LC-HRMS)" Mohd Yusop et al., 2019.
    Matched MeSH terms: Limit of Detection
  20. Morgan Freiman J, Wang J, Easterbrook PJ, Robert Horsburgh C, Marinucci F, White LF, et al.
    J Hepatol, 2019 Feb 20.
    PMID: 30797050 DOI: 10.1016/j.jhep.2019.02.011
    BACKGROUND & AIMS: Affordable point-of-care (POC) tests for hepatitis C (HCV) viraemia are needed to improve access to treatment in low and middle income countries (LMICs). Our aims were to determine the target limit of detection (LOD) necessary to diagnose the majority of persons with HCV eligible for treatment, and identify characteristics associated with low-level viraemia (LLV) (defined as the lowest 3% of the distribution of HCV RNA) to understand those at risk of being mis-diagnosed.

    METHODS: We established a multi-country cross-sectional dataset of first available quantitative HCV RNA linked to demographic and clinical data. We excluded individuals on HCV treatment. We analyzed the distribution of HCV RNA and determined critical thresholds for detection of HCV viraemia. We then performed logistic regression to evaluate factors associated with LLV, and derived relative sensitivities for significant covariates.

    RESULTS: The dataset included 66,640 individuals with HCV viraemia from Georgia (44.4%), Canada (40.9%), India (8.1%), Cambodia (2.6%), Egypt (1.6%), Pakistan (1.3%), Cameroon (0.4%), Indonesia (0.2%), Thailand (0.2%), Vietnam (0.1%), Malaysia (0.05%), and Mozambique (0.02%). The 97% LOD was 1,318 IU/mL (95% CI 1298.4, 1322.3). Factors associated with LLV were younger age 18-30 vs. 51-64 years (OR 2.56 95% CI 2.19, 2.99), female vs. male sex (OR 1.32, 95% CI 1.18, 1.49), and advanced fibrosis stage F4 vs. F0-1 (OR 1.44, 95%CI 1.21, 1.69). Only the younger age group had a decreased relative sensitivity below 95% at 93.3%.

    CONCLUSIONS: In this global dataset, a test with an LOD of 1,318 IU/mL would identify 97% of viraemic HCV infections among almost all populations. This LOD will help guide manufacturers in the development of affordable POC diagnostics to expand HCV testing and linkage to care in LMICs.

    LAY SUMMARY: We created and analyzed a dataset from 12 countries with 66,640 participants with chronic hepatitis C virus infection. We determined that about 97% of those with viraemic infection had 1300 International Units/mL or more of circulating virus at the time of diagnosis. While current diagnostic tests can detect as little as 12 International Units/mL of virus, our findings suggest that increasing the level of detection closer to 1300 would maintain good test accuracy and will likely allow for more affordable portable tests to be developed for use in low and middle income countries.

    Matched MeSH terms: Limit of Detection
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links